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A.1 Properties of LogDet subproblem495

Proof of Theorem 3.2496

The optimality condition of (11) is PG(X�1) = PG(H), X 2 S++
n

(G). Let Z = L�TD�1L�1,497

then PG(Z) = H498

ZL = L�TD�1 =) ZLej = L�TD�1ej

Let Jj = Ij [ j, where Ij = {j + 1, . . . , j + b} as defined in the theorem, then select Jj indices of499

vectors on both sides of the second equality above and selecting the Jj indices :500


Zjj ZjIj

ZIjj ZJjJj

� 
1
LIj

�
=


1/djj
0

�
(15)

Note that L�T is an upper triangular matrix with ones in the diagonal hence J th

j
block of L�T ej501

will be [1, 0, 0, . . .]. Also, since PG(Z) = H502


Zjj ZjIj

ZIjj ZJjJj

�
=


Hjj HjIj

HIjj HJjJj

�

Substituting this in the linear equation 15503


Hjj HjIj

HIjj HJjJj

� 
1
LIj

�
=


1/djj
0

�


Hjj HjIj

HIjj HJjJj

� 
djj

djj · LIj

�
=


1
0

�

Hjjdjj + djjH
T

Ijj
LIjj = 1

HIjjdjj + djjHIjIjLIjj = 0
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The lemma follows from solving the above equations. Note that here we used that lower triangular504

halves of matrices L and H have the same sparsity patterns, which follows from the fact that banded505

graph is a chordal graph with perfect elimination order {1, 2, . . . , n}. Furthermore, Xt is positive506

definite, since as (Hjj � HT

Ijj
H�1

IjIj
HIjj) is a schur complement of submatrix of H formed by507

Jj = Ij [ {j}.508

Proof of Theorem 3.1 The proof follows trivially from Theorem 3.1, when b is set to 1.509

A.2 Regret bound analysis510

Proof sketch of Theorem 3.3. We decompose the regret into RT  T1+T2+T3 in Lemma .1 and indi-511

vidually bound the terms. Term T2 = 1
2⌘ ·

P
T�1
t=1 (wt+1�w⇤)T (X�1

t+1�X�1
t

)(wt+1�w⇤) depends on512

closeness of consecutive inverses of preconditioners, (X�1
t+1 �X�1

t
), to upperbound this we first give513

explicit expressions of X�1
t

for tridiagonal preconditioner in Lemma .2 in Appendix A.2.2. This ex-514

plicit expression is later used to bound each entry of (X�1
t+1�X�1

t
) with O(1/

p
t) in Appendix A.2.4,515

this gives a O(
p
T ) upperbound on T2. To show an upperbound on T3 =

P
T

t=1
⌘

2 · gT
t
Xtgt, we516

individually bound gT
t
Xtgt by using a Loewner order Xt � kXtk2 In � kXtk1In and show that517

kXtk1 = O(1/
p
T ) and consequently T3 = O(

p
T ).518

A.2.1 Regret bound decomposition519

In this subsection we state Lemma .1 which upper bound the regret RT using three terms T1, T2, T3.520

Lemma .1 ( [25] ). In the OCO problem setup, if a prediction wt 2 Rn
is made at round t and is521

updated as wt+1 := wt � ⌘Xtgt using a preconditioner matrix Xt 2 S++
n

522

RT 
1

2⌘
· (kw1 � w⇤

k
2
X

�1
1

� kwT+1 � w⇤
k
X

�1
T

) (16)

+
1

2⌘
·

T�1X

t=1

(wt+1 � w⇤)T (X�1
t+1 �X�1

t
)(wt+1 � w⇤) (17)

+
TX

t=1

⌘

2
· gT

t
Xtgt (18)

Proof.

kwt+1 � w⇤
k
2
X

�1
t

= kwt � ⌘Xtgt � w⇤
k
2
X

�1
t

= kwt � w⇤
k
2
X

�1
t

+ ⌘2gT
t
Xtgt

� 2⌘(wt � w⇤)T gt

=) 2⌘(wt � w⇤)T gt = kwt � w⇤
k
2
X

�1
t

� kwt+1 � w⇤
k
2
X

�1
t

+ ⌘2gT
t
Xtgt

523

Using the convexity of ft, ft(wt) � ft(w⇤)  (wt � w⇤)T gt, where gt = �ft(wt) and summing524

over t 2 [T ]525

RT 

TX

t=1

1

2⌘
·

⇣
kwt � w⇤

k
2
X

�1
t

� kwt+1 � w⇤
k
2
X

�1
t

⌘
(19)

+
⌘

2
· gT

t
Xtgt (20)
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The first summation can be decomposed as follows526

TX

t=1

⇣
kwt � w⇤

k
2
X

�1
t

� kwt+1 � w⇤
k
2
X

�1
t

⌘

=
⇣
kw1 � w⇤

k
2
X

�1
1

� kwT+1 � w⇤
k
2
X

�1
T

⌘

+
T�1X

t=1

(wt+1 � w⇤)T (X�1
t+1 �X�1

t
)(wt+1 � w⇤)

Substituting the above identity in the Equation (19) proves the lemma.527

Let RT  T1 + T2 + T3, where528

• T1 = 1
2⌘ · (kw1 � w⇤

k
2
X

�1
1

� kwT+1 � w⇤
k
X

�1
T

)529

•

T2 =
1

2⌘
·

T�1X

t=1

(wt+1 � w⇤)T (X�1
t+1 �X�1

t
)(wt+1 � w⇤) (21)

• T3 =
P

T

t=1
⌘

2 · gT
t
Xtgt530

A.2.2 Properties of tridiagonal preconditioner531

In this subsection, we derive properties of the tridigonal preconditioner obtained from solving the532

LogDet subproblem (11) with G set to a chain graph over ordered set of vertices {1, . . . , n}:533

Xt = argmin
X2Sn(G)++

� log det (X) + Tr(XHt) (22)

= argmin
X2Sn(G)++

D`d (X,H�1
t

) (23)

The second equality holds true only when Ht is positive definite. Although in Algorithm 1 we534

maintain a sparse Ht = Ht�1 + PG(gtgTt /�t), H0 = ✏In which is further used in (22) to find the535

preconditioner Xt, our analysis assumes the full update Ht = Ht�1 + gtgTt /�t, H0 = ✏In followed536

by preconditioner Xt computation using (23). Note that the preconditioners Xt generated both ways537

are the same, as shown in Section 3.2.538

The following lemma shows that the inverse of tridiagonal preconditioners used in Algorithm 1, will539

restore Hi,j , when (i, j) fall in the tridiagonal graph, else, the expression is related to product of540

Hi+k,i+k+1 corresponding to the edges in the path from node i to j in chain graph. This lemma will541

be used later in upperbounding T2.542

Lemma .2 (Inverse of tridiagonal preconditioner). If G = chain/tridiagonal graph and X̂ =543

argmin
X2Sn(G)++ D`d (X,H�1), then the inverse X̂�1

has the following expression544

(X̂�1)ij =

(
Hij |i� j|  1
Hii+1Hi+1i+2...Hj�1j

Hi+1i+1...Hj�1j�1

(24)

Proof.

X̂�1X̂(j) = ej

Where X̂(j) is the jth column of X̂ . Let Ŷ denote the right hand side of Equation (24).545

(Ŷ X̂)jj = X̂jj Ŷjj + X̂j�1j Ŷj�1j + X̂jj+1Ŷjj+1

= X̂jjHjj + X̂j�1jHj�1j + X̂jj+1Hjj+1

= 1
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The third equality is by using the following alternative form of Equation (12):546

(X̂(1))i,j =

8
>><

>>:

0, if j � i > 1
�Hi,i+1

(HiiHi+1,i+1�H
2
i+1,i+1)

, if j = i+ 1

1
Hii

✓
1 +

P
j2neigG(i)

H
2
ij

HiiHjj�H
2
ij

◆
, if i = j

, (25)

where i < j. Similarly, the offdiagonals of Ŷ X̂ can be evaluated to be zero as follows.547

(Ŷ X̂)ij = ŶijX̂jj + Ŷij�1X̂j�1j + Ŷij+1X̂j+1j

= ŶijX̂jj + Ŷij

Hj�1j�1

Hj�1j
+ Ŷij

Hjj+1

Hjj

X̂j+1j

= 0

548

Lemma .3. Let y 2 Rn
,549

� = maxt maxi2[n�1] |(Ht)ii+1| /
p
(Ht)ii(Ht)i+1i+1 < 1, then550

yTX�1
t

y  kyk22 kdiag(Ht)k2

✓
1 + �

1� �

◆
,

where Xt is defined as in Lemma .2.551

Proof. Let X̃�1
t

= diag(Ht)�1/2X̂t diag(Ht)�1/2552

yTX�1
t

y 

���diag(Ht)
1/2y

���
2

2

���X̃�1
t

���
2

(26)

Using the identity of spectral radius ⇢(X)  kXk1 and since X̃ is positive definite,
���X̃�1

t

���
2
553

kX̃�1
t

k1554

���X̃�1
t

���
2
 max

i

8
<

:
X

j

���(X̃�1
t

)ij
���

9
=

;

 1 + 2(� + �2 + . . .)


1 + �

1� �

The second inequality is using Lemma .2. Substituting this in Equation (26) will give the lemma.555

A.2.3 Upperbounding Regret556

The following Lemma is used in upperbounding both T1 and T3. In next subsection, we’ll upper557

bound T2 as well.558

Lemma .4. Let � = maxt2[T ] maxi2[n�1] |(Ht)ii+1| /
p
(Ht)ii(Ht)i+1i+1, then559

1/(1� �)  8/✏̂2,

where, ✏̂ is a constant in parameter ✏ = ✏̂G1
p
T and consequently used in initializing H0 = ✏In in560

line 1 in Algorithm 1,561
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Proof.

1/(1� �) = max
t

max
i2[n�1]

1

1�
���(Ĥt)ii+1

���
(27)

= max
t

max
i2[n�1]

1 +
���(Ĥt)ii+1

���

1� (Ĥt)2ii+1

(where (Ĥt)ii+1 = (Ht)ii+1/
p
(Ht)ii(Ht)i+1i+1)

 max
t

max
i2[n�1]

2(Ht)ii(Ht)i+1i+1

(Ht)ii(Ht)i+1i+1 � (Ht)2ii+1

(since |(Ht)ii+1| 
p

(Ht)ii(Ht)i+1i+1)

 max
t

max
i2[n�1]

2(Ht)ii(Ht)i+1i+1

det

✓
(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

�◆ (28)

Note that


(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

�
⌫ ✏


1 0
0 1

�
(using line 1 in Algorithm 1), thus562

det

✓
(Ht)ii (Ht)ii+1

(Ht)i+1i (Ht)i+1i+1

�◆
� det

✓
✏


1 0
0 1

�◆
= ✏2. The numerator last inequality can563

be upperbounded by bounding (Ht)ii individually as follows:564

(Ht)ii =
tX

s=1

(gs)
2
i
/�s

=
tX

s=1

(gs)
2
i
/�s

=
tX

s=1

(gs)
2
i
/(G1

p
s)



tX

s=1

G2
1/(G1

p
s)



tX

s=1

G1
p
s

 2G1
p
t (29)

Substituting the above in (28) gives565

1/(1� �)  max
t

8G2
1t

✏̂2G2
1T


8

✏̂2

566

Lemma .5 (Upperbound of T1).

T1 
16D2

2G1
p
T

✏̂2⌘
, (30)

where D2 = maxt2[T ] kwt � w⇤
k2 and G1 = maxtkgtk1567
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Proof. Since XT is positive definite568

T1 

kw1 � w⇤
k
2
X

�1
1

2⌘

=
(y(1))TX�1

1 y(1)

2⌘
(where y(1) = w1 � w⇤)



��y(1)
��2
2
kdiag(H1)k2
2⌘

·
1 + �

1� �
(Lemma .3)


D2

2(G
2
1/�1 + ✏)

2⌘
·
1 + �

1� �
(line 4 in Algorithm 1)


8D2

2(G
2
1/�1 + ✏)

✏̂2⌘
(Lemma .4)


8D2

2(G1 + ✏̂G1
p
T )

✏̂2⌘
(Since �t = G1

p
t and ✏ = ✏̂G1

p

T )


16D2

2G1
p
T

✏̂2⌘
(✏̂ < 1)

569

Lemma .6 (O(
p
T ) upperbound on T3).

T3 =
TX

t=1

⌘

2
· gT

t
Xtgt 

4nG1⌘

✏̂3
p

T

where, kgtk1  G1 and parameters ✏ = ✏̂G1
p
T , �t = G1

p
t in Algorithm 1.570

Proof. Using Theorem 3.1, nonzero entries of Xt can be written as follows:571

(Xt)ii =
1

Hii

0

@1 +
X

(i,j)2EG

H2
ij

HiiHjj �H2
ij

1

A

(Xt)ii+1 = �
Hii+1

HiiHi+1i+1 �H2
ii+1

where, EG denote the set of edges of the chain graph G in Theorem 3.1. Also, for brevity, the subscript572

is dropped for Ht. Let X̂t =
p
diag(H)Xt

p
diag(H), then X̂t can be written as573

(X̂t)ii =

0

@1 +
X

(i,j)2EG

Ĥ2
ij

1� Ĥ2
ij

1

A ,

(X̂t)ii+1 = �
Ĥii+1

1� Ĥ2
ii+1

,

where, Ĥij = Hij/
p
HiiHjj . Note that X̂t � kX̂tk2In � kX̂tk1In, using574

max{|�1(X̂t)|, . . . , |�n(X̂t)|}  kX̂tk1 (property of spectral radius). So we upperbound kX̂tk1 =575

maxi2[n]{|(X̂t)11|+ |(X̂t)12|, . . . , |(X̂t)ii�1|+ |(X̂t)ii|+ |(X̂t)ii+1|, . . . , |(X̂t)nn|+ |(X̂t)nn�1|}576

next. Individual terms |(X̂t)ii�1|+ |(X̂t)ii|+ |(X̂t)ii+1| can be written as follows:577
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X

(i,j)2EG

|(X̂t)ij | = 1 +
X

(i,j)2EG

Ĥ2
ij

1� Ĥ2
ij

+
|Ĥij |

1� Ĥ2
ij

= 1 +
X

(i,j)2EG

|Ĥij |

1� |Ĥij |

 2 max
i2[n�1]

1

1� |Ĥii+1|

The last inequality is because |Ĥij |  1. Thus, kX̂tk1  2maxi2[n�1]
1

1�|Ĥii+1|
. Now578

gT
t
Xtgt  gT

t
diag(Ht)

�1/2X̂t diag(Ht)
�1/2gt

 kX̂tk1kdiag(Ht)
�1/2gtk

2
2

⇣���X̂t

���
2


���X̂t

���
1

⌘

 2 max
i2[n�1]

1

1� |Ĥii+1|
gT
t
diag(Ht)

�1gt.

Using diag(Ht) ⌫ ✏In (step 1 in Algorithm 1), where ✏ = ✏̂G1
p
T as set in Lemma A.8, gives579

gT
t
Xtgt  2 max

i2[n�1]

1

1� |Ĥii+1|

kgtk22
✏̂G1

p
T

 2 max
i2[n�1]

nG1

✏̂(1� |Ĥii+1|)
p
T


2nG1

✏̂(1� �)
p
T

(where � = max
t2[T ]

max
i2[n�1]

���(Ĥt)ii+1

���)

Summing up over t gives580

X

t

⌘

2
gT
t
Xtgt 

X

t

16nG1⌘

✏̂3
p
T

(Using Lemma .4)


16nG1⌘

✏̂3
p

T

581

A.2.4 O(
p
T ) Regret582

In this section we derive a regret upper bound with a O(T 1/2) growth. For this, we upper bound583

T2 as well in this section. In (21), T2 =
P

T

t=2(wt � w⇤)T (X�1
t

�X�1
t�1)(wt � w⇤) can be upper584

bounded to a O(T 1/2) by upperbounding entries of X�1
t

�X�1
t�1 individually. The following lemmas585

constructs a telescoping argument to bound
��(X�1

t
�X�1

t�1)i,j
��.586

Lemma .7. Let H, H̃ 2 S++
n

, such that H̃ = H + ggT /�, where g 2 Rn
, then587

H̃ijq
H̃iiH̃jj

�
Hijp
HiiHjj

=
gigj

�
q
H̃iiH̃jj

+
Hijp
HiiHjj

 s
HiiHjj

H̃iiH̃jj

� 1

!
= ✓ij

19



Proof.

H̃ijq
H̃iiH̃jj

�
Hijp
HiiHjj

=
1p

HiiHjj

(H̃ij

p
HiiHjjq
H̃iiH̃jj

�Hij)

=
1p

HiiHjj

0

@gigj

p
HiiHjjq
H̃iiH̃jj

+Hij

0

@
p
HiiHjjq
H̃iiH̃jj

� 1

1

A

1

A

588

The following Lemma bounds the change in the inverse of preconditioner Y �1, when there is a rank589

one perturbation to H � 0 in following LogDet problem (11) :590

Y = argmin
X2Sn(G)++

� log det (X) + Tr(XH)

= argmin
X2Sn(G)++

D`d(X,H)

Lemma .8 (Rank 1 perturbation of LogDet problem (11)). Let H, H̃ 2 S++
n

, such that591

H̃ = H + ggT /�, where g 2 Rn
. Also, Ỹ = argmin

X2Sn(G)++ D`d(X, H̃) and Y =592

argmin
X2Sn(G)++ D`d(X,H), where G is a chain graph, then593

���(Ỹ �1
� Y �1)ii+k

���  G2
1(k� + k + 2)�k�1/�,

where i, i + k  n, G1 = kgk1 and maxi,j |Hij |/
p

HiiHjj  � < 1. Let (diag(H)) :=594

condition number of the diagonal part of H , then  := max((diag(H)),(diag(H̃))).595

Proof. Using Lemma .2 will give the following:596

���(Ỹ �1
� Y �1)ii+k

���

=

�����
H̃ii+1 . . . H̃i+k�1i+k

H̃i+1i+1 . . . H̃i+k�1i+k�1

�
Hii+1 . . . Hi+k�1i+k

Hi+1i+1 . . . Hi+k�1i+k�1

�����

=

����
q
H̃iiÑii+1 . . . Ñi+k�1i+k

q
H̃i+ki+k

�

p
HiiNii+1 . . . Ni+k�1i+k

p
Hi+ki+k

���

=
q
H̃iiH̃i+ki+k

���Ñii+1 . . . Ñi+k�1i+k �Nii+1 . . . Ni+k�1i+k

q
HiiHi+ki+k/H̃iiH̃i+ki+k

����

where Nij = Hij/
p
HiiHjj < 1 (Since determinants of 2x2 submatrices of H are positive).597

Expanding Ñii+1 = Nii+1 + ✓ii+1 (from Lemma .7), subsequently Ñii+2 = Nii+2 + ✓ii+2 and so598

on will give599

���Ñii+1 . . . Ñi+k�1i+k �Nii+1 . . . Ni+k�1i+k

s
HiiHi+ki+k

H̃iiH̃i+ki+k

����� =

���✓ii+1Ñi+1i+2 . . . Ñi+k�1i+k +Nii+1

⇣
Ñi+1i+2 . . . Ñi+k�1i+k �Ni+1i+2 . . . Ni+k�1i+k

s
HiiHi+ki+k

H̃iiH̃i+ki+k

!
|
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600

= |✓ii+1Ñi+1i+2 . . . Ñi+k�1i+k +Nii+1✓i+1i+2Ñii+3 . . . Ñi+k�1i+k + · · ·+Nii+1 . . . Nii+k�1✓i+k�1i+k

+Nii+1 . . . Nii+k

 
1�

s
HiiHi+ki+k

H̃iiH̃i+ki+k

!
|

 (
k�1X

l=0

|✓i+li+l+1|)�
k�1 + �k�1

�����1�
s

HiiHi+ki+k

H̃iiH̃i+ki+k

����� ,

=)
���(Ỹ �1

� Y �1)ii+k

��� 
q
H̃iiH̃i+ki+k ·

 
(
k�1X

l=0

|✓i+li+l+1|)�
k�1 + �k�1

�����1�
s

HiiHi+ki+k

H̃iiH̃i+ki+k

�����

!

where maxi,j |Ni,j |, maxi,j |Ñi,j |  � < 1. Expanding ✓i+li+l+1 from Lemma .7 in the term601

|✓i+li+l+1|

q
H̃iiH̃i+ki+k will give:602

|✓i+li+l+1|

q
H̃iiH̃i+ki+k

=

������

q
H̃iiH̃i+ki+k

gi+lgi+l+1

�
q
H̃i+li+lH̃i+l+1i+l+1

+
q
H̃iiH̃i+ki+kNi+li+l+1

 s
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

� 1

!�����



������

q
H̃iiH̃i+ki+k

gi+lgi+l+1

�
q
H̃i+li+lH̃i+l+1i+l+1

������
+

�����

q
H̃iiH̃i+ki+kNi+li+l+1

 
1�

s
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

!�����

Since Hi+li+lHi+l+1i+l+1  H̃i+li+lH̃i+l+1i+l+1,603

1�

s
Hi+li+lHi+l+1i+l+1

H̃i+li+lH̃i+l+1i+l+1

 max

✓
1�

Hi+li+l

H̃i+li+l

, 1�
Hi+l+1i+l+1

H̃i+l+1i+l+1

◆

 max

✓
g2
i+l

�H̃i+li+l

,
g2
i+l+1

�H̃i+l+1i+l+1

◆

Using the above, Hi,i/Hj,j  , and |gi|  G1, 8i, j 2 [n], gives604

q
H̃iiH̃i+ki+k|✓i+li+l+1|  G2

1/�+ �G2
1/�

 G2
1(1 + �)/�

Thus the following part of
����
⇣
Ỹ �1

� Y �1
⌘

ii+k

���� can be upperbounded:605

q
H̃iiH̃i+ki+k

 
(
k�1X

l=0

|✓i+li+l+1|)�
k�1

!
 G2

1(1 + �)k�k�1/�

Also,
q
H̃iiH̃i+ki+k�k�1

���1�
q

HiiHi+ki+k

H̃iiH̃i+ki+k

���  �k�1G2
1/�, so606

����
⇣
Ỹ �1

� Y �1
⌘

ii+k

����  G2
1(k� + k + 2)�k�1/�

607

Lemma .9 (O(
p
T ) upper bound of T2). Given that (diag(Ht))  , kwt � w⇤

k2  D2,608

maxi,j |(Ht)ij |/
p
(Ht)ii(Ht)jj  � < 1, 8t 2 [T ] in Algorithm 1, then T2 in Appendix A.2.1609

can be bounded as follows:610

T2 
2048

p
T

⌘✏̂5
(G1D2

2)

where �t = G1
p
t, and ✏ = ✏̂G1

p
T in Algorithm 1, and ✏̂  1 is a constant.611
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Proof. Note that T2 = 1
2⌘ ·

P
T�1
t=1 (wt+1 � w⇤)T (X�1

t+1 � X�1
t

)(wt+1 � w⇤) 612
P

T�1
t=1 D2

2

��(X�1
t+1 �X�1

t
)
��
2
/(2⌘). Using kAk2 = ⇢(A)  kAk1 for symmetric matrices A,613

we get614

��X�1
t+1 �X�1

t

��
2
 kX�1

t+1 �X�1
t

k1

= max
i

(
X

j

��(X�1
t+1 �X�1

t
)ij
��)

 16
G1

p
t(1� �)2

(Lemma .8 )

 1024 ·
G1
p
t✏̂4

Now using   2/✏̂ (using Equation (29) and (Ht)ii > ✏̂) and summing up terms in T2 using the615

above will give the result.616

Putting together T1, T2 and T3 from Lemma .5, Lemma .9 and Lemma .6 respectively, when ✏, �t617

are defined as in Lemma .9:618

619

T1 
16D2

2G1
p
T

✏̂2⌘
,

T2 
2048

p
T

⌘✏̂5
(G1D2

2) (31)

T3 
4nG1⌘

✏̂3
p

T (32)

Setting ⌘ = D2

✏̂
p
n

620

RT  T1 + T2 + T3  O(
p
nG1D2

p

T )

A.2.5 Non-convex guarantees621

Minimizing smooth non-convex functions f is a complex yet interesting problem. In Agarwal622

et al. [1], this problem is reduced to an online convex optimization, where a sequence of objectives623

ft(w) = f(w) + c kw � wtk
2
2 are minimized. Using this approach Agarwal et al. [1] established624

convergence guarantees to reach a stationary point via regret minimization. Thus non-convex625

guarantees can be obtained from regret guarantees and is our main focus in the paper.626

A.3 Numerical stability627

In this section we conduct perturbation analysis to derive an end-to-end componentwise condition628

number (pg. 135, problem 7.11 in [26]) upper bound of the tridiagonal explicit solution in Theo-629

rem 3.1. In addition to this, we devise Algorithm 3 to reduce this condition number upper bound630

for the tridiagonal sparsity structure, and be robust to Ht which don’t follow the non-degeneracy631

condition: any principle submatrix of Ht corresponding to a complete subgraph of G.632

Theorem .10 (Condition number of tridiagonal LogDet subproblem (11)). Let H 2 S++
n

be such633

that Hii = 1 for i 2 [n]. Let �H be a symmetric perturbation such that �Hii = 0 for i 2 [n], and634

H +�H 2 S++
n

. Let PG(H) be the input to 11, where G is a chain graph, then635

`d

1  max
i2[n�1]

2/(1� �2
i
) = ̂`d

1, (33)

where, �i = Hii+1,`d

1 := componentwise condition number of (11) for perturbation �H .636

The tridiagonal LogDet problem with inputs H as mentioned in Theorem .10, has high condition637

number when 1 � �2
i
= Hii � H2

ii+1/Hi+1i+1 are low and as a result the preconditioner Xt in638
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SONew (Algorithm 1) has high componentwise relative errors. We develop Algorithm 3 to be robust639

to degenerate inputs H , given that Hii > 0. It finds a subgraph G̃ of G for which non-degeneracy640

conditions in Theorem 3.2 is satisfied and (14) is well-defined. This is done by removing edges which641

causes inverse H�1
IjIj

to be singular or (Hjj�HT

Ijj
H�1

IjIj
HIjj) to be low. In the following theorem we642

also show that the condition number upper bound in Theorem .10 reduces in tridiagonal case. To test643

the robustness of this method we conducted an ablation study in Table 5, in an Autoencoder benchmark644

(from Section 5) in bfloat16 where we demonstrate noticeable improvement in performance when645

Algorithm 3 is used.646

Theorem .11 (Numerically stable algorithm). Algorithm 3 finds a subgraph G̃ of G, such that647

explicit solution for G̃ in (14) is well-defined. Furthermore, when G is a tridiagonal/chain graph, the648

component-wise condition number upper bound in (33) is reduced upon using Algorithm 3, ̂G̃
`d

< ̂G
`d

,649

where ̂G̃
`d

, ̂G
`d

are defined as in Theorem .10 for graphs G̃ and G respectively.650

The proofs for Theorems .10 and .11 are given in the following subsections.

Algorithm 3 Numerically stable banded LogDet solution
1: Input: G� tridiagonal or banded graph, H� symmetric matrix in Rn⇥n with sparsity structure G and

Hii > 0, �� tolerance parameter for low schur complements.
2: Output: Finds subgraph G̃ of G without any degenerate cases from Lemma .13 and finds preconditioner X̂

corresponding to the subgraph
3: Let Ei = {(i, j) : (i, j) 2 EG} be edges from vertex i to its neighbours in graph G.
4: Let V +

i
= {j : i < j, (i, j) 2 EG} and V

�
i

= {j : i > j, (i, j) 2 EG}, denote positive and negative
neighbourhood of vertex i.

5: Let K =
n
i : Hii �H

T

Iii
H

�1
IiIi

HIii is undefined or  �

o

6: Consider a new subgraph G̃ with edges EG̃ = EG \ (
S

i2K
Ei [ (V +

i
⇥ V

�
i
))

7: return X̂ := SPARSIFIED_INVERSE (H̃t, G̃), where H̃t = PG̃(Ht)

651

A.3.1 Condition number analysis652

Theorem .12 (Full version of Theorem .10). Let H 2 S++
n

such that Hii = 1, for i 2 [n] and653

a symmetric perturbation �H such that �Hii = 0, for i 2 [n] and H + �H � 0. Let X̂ =654

argmin
X2Sn(G)++ D`d

�
X,H�1

�
and X̂ + �X̂ = argmin

X2Sn(G)++ D`d

�
X, (H +�H)�1

�
,655

here G := chain/tridiagonal sparsity graph and Sn(G)++
denotes positive definite matrices which656

follows the sparsity pattern G.657

`d = lim
✏!0

sup

8
<

:

����X̂ij

���

✏
���X̂ij

���
: |�Hk,l|  |✏Hk,l| , (k, l) 2 EG

9
=

;

 max
i2[n�1]

1/(1� �2
i
)

where, `d := condition number of the LogDet subproblem, 2(.) := condition number of a matrix in658

`2 norm, �i = Hii+1/
p

HiiHi+1i+1659

Proof. Consider the offdiagonals for which (X̂ + �X̂)ii+1 = �Hii+1/(1 � H2
ii+1) =660

f(Hii+1),where f(x) = �x/(1 � x2). Let y = f(x), ŷ = f(x + �x) and |�x/x|  ✏ then661

using Taylor series662

����
(ŷ � y)

y

���� =
����
xf 0(x)

f(x)

����

����
�x

x

����+O((�x)2)

=) lim
✏!0

����
(ŷ � y)

✏y

���� 
xf 0(x)

f(x)
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Using the above inequality, with x := Hii+1 and y := X̂ii+1,663

lim
✏!0

�����
�X̂ii+1

✏X̂ii+1

����� 
1 +H2

ii+1

1�H2
ii+1

(34)


2

1�H2
ii+1

Let g(x) = x2/(1� x2), let y1 = g(w1), y2 = g(x2), ŷ1 = g(w1 +�x), ŷ2 = g(x2 +�x). Using664

Taylor series665 ����
(ŷ1 � y1)

y1

���� =
����
x1f 0(x1)

f(x1)

����

����
�x1

x1

����+O((�x1)
2)

����
(ŷ2 � y2)

y2

���� =
����
x2f 0(x2)

f(x2)

����

����
�x2

x2

����+O((�x2)
2)

=) lim
✏!0

�y1 +�y2
✏(1 + y1 + y2)

 max

✓
2

1� x2
1

,
2

1� x2
2

◆

Putting x1 := Hii+1, x2 := Hii�1 and analyzing y1 := H2
ii+1/(1�H2

ii+1) and y2 := H2
ii�1/(1�666

H2
ii�1) will result in the following667

lim
✏!0

�����
�X̂ii

X̂ii

�����  max

✓
2

1�H2
ii+1

,
2

1�H2
ii�1

◆
(35)

Since X̂ii = 1 + H2
ii+1/(1 � H2

ii+1) + H2
ii�1/(1 � H2

ii�1). Putting together Equation (35) and668

Equation (34), the theorem is proved.669

A.3.2 Degenerate Ht670

In SONew (1), the Ht = PG(
P

t

s=1 gsg
T

s
/�t) generated in line 4 could be such that the matrix671 P

t

s=1 gsg
T

s
/�t need not be positive definite and so the schur complements Hii �H2

ii+1/Hi+1i+1672

can be zero, giving an infinite condition number `d

1 by Theorem .10. The following lemma describes673

such cases in detail for a more general banded sparsity structure case.674

Lemma .13 (Degenerate inputs to banded LogDet subproblem). Let H = PG(GGT ), when ✏ = 0 in675

Algorithm 1, where G 2 Rn⇥T
and let g(i)1:T be ith row of G, which is gradients of parameter i for T676

rounds, then Hij =
D
g(i)1:T , g

(j)
1:T

E
.677

• Case 1: For tridiagonal sparsity structure G: if g(j)1:T = g(j+1)
1:T , then Hjj �678

H2
jj+1/Hj+1j+1 = 0.679

• Case 2: For b > 1 in (14): If rank(HJjJj ) = rank(HIjIj ) = b, then (Hjj �680

HT

Ijj
H�1

IjIj
HIjj) = 0 and Djj = 1. If rank(HIjIj ) < b then the inverse H�1

IjIj
doesn’t681

exist and Djj is not well-defined.682

Proof. For b = 1, if g(j)1:T = g(j+1)
1:T , then Hjj+1 = Hjj = Hj+1j+1 =

���g(j)1:T

���
2

2
, thus Hjj�683

H2
jj+1/Hj+1j+1 = 0.684

For b > 1, since HIjIj , using Guttman rank additivity formula, rank(Hjj �H2
jj+1/Hj+1j+1) =685

rank(HJjJj )� rank(HIjIj ) = 0, thus Hjj �H2
jj+1/Hj+1j+1 = 0.686

Furthermore, if rank(H)  b, then all b+ 1⇥ b+ 1 principal submatrices of H have rank b, thus 8j,687

HJjJj have a rank b, thus Djj for all j are undefined.688

689

If GGT =
P

T

i=1 gigi is a singular matrix, then solution to the LogDet problem might not be well-690

defined as shown in Lemma .13. For instance, Case 1 can occur when preconditioning the input layer691

of an image-based DNN with flattened image inputs, where jth and (j + 1)th pixel can be highly692

correlated throughout the dataset. Case 2 can occur in the first b iterations in Algorithm 1 when the693

rank of submatrices rank(HIjIj ) < b and ✏ = 0.694
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Table 3: float32 experiments on Autoencoder benchmark using different band sizes. Band size 0
corresponds to diag-SONew and 1 corresponds to tridiag-SONew. We see the training loss getting
better as we increase band size

Band size 0 (diag-SONew) 1 (tridiag-SONew) 4 10

Train CE loss 53.025 51.723 51.357 51.226

A.3.3 Numerically Stable SONew proof695

Proof of Theorem .11696

Let Ii = {j : i < j, (i, j) 2 EG} and I 0
i

=
�
j : i < j, (i, j) 2 EG̃

 
Let K =697 �

i : Hii �HT

Iii
H�1

IiIi
HIii is undefined or 0, i 2 [n]

 
denote vertices which are getting removed by698

the algorithm, then for the new graph G̃, Dii = 1/Hii, 8i 2 K since Hii > 0.699

Let K̄ =
�
i : Hii �HT

Iii
H�1

IiIi
HIii > 0, i 2 [n]

 
. Let for some j 2 K̄, if700

l = argmin {i : j < i, i 2 K \ Ij} ,

denotes the nearest connected vertex higher than j for which Dll is undefined or zero, then according701

to the definition EG̃ in Algorithm 3, I 0
j
= {j + 1, . . . l� 1} ⇢ Ij , since Djj is well-defined, HIjIj is702

invertible, which makes it a positive definite matrix (since H is PSD). Since Hjj �HT

Ijj
H�1

IjIj
HIjj >703

0, using Guttman rank additivity formula HJjJj � 0, where Jj = Ij [ j. Since HJ
0
jJ

0
j

is a submatrix704

of HJjJj , it is positive definite and hence its schur complement Hjj �HT

I
0
jj
H�1

I
0
jI

0
j
HI

0
jj

> 0. Thus705

for all j 2 [n], the corresponding Djj’s are well-defined in the new graph G̃.706

Note that G̃
`d

= maxi2[n�1] 1/(1� �2
i
) < maxi2K̄ 1/(1� �2

i
) = G

`d
, for tridiagonal graph, where707

�i = Hii+1, in the case where Hii = 1. This is because the argmax
i2[n�1] 1/(1� �2

i
) 2 K.708

A.4 Additional Experiments, ablations, and details709

A.4.1 Ablations710

Effect of band size in banded-SONew Increasing band size in banded-SONew captures more711

correlation between parameters, hence should expectedly lead to better preconditioners. We confirm712

this through experiments on the Autoencoder benchmark where we take band size = 0 (diag-SONew),713

1 (tridiag-SONew), 4, and 10 in Table 3.714

Effect of mini-batch size To find the effect of mini-batch size, in Table 4, We empirically compare715

SONew with state of the art first-order methods such as Adam and RMSProp, and second-order716

method Shampoo. We see that SONew performance doesn’t deteriorate much when using smaller717

or larger batch size. First order methods on the other hand suffer significantly. We also notice that718

Shampoo doesn’t perform better than SONew in these regimes.719

Table 4: Comparison on Autoencoder with different batch-sizes
Baseline\Batch size 100 1000 5000 10000
RMSProp 55.61 53.33 58.69 64.91

Adam 55.67 54.39 58.93 65.37

Shampoo(20) 53.91 50.70 53.52 54.90

tds 53.84 51.72 54.24 55.87

bds-4 53.52 51.35 53.03 54.89

Effect of Numerical Stability Algorithm 3 On tridiag-SONew and banded-4-SONew, we observe720

that using Algorithm 3 improves training loss. We present in Table 5 results where we observed721

significant performance improvements.722
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Table 5: bfloat16 experiments on Autoencoder benchmark with and without Algorithm 3. We
observe improvement in training loss when using Algorithm 3

Optimizer Train CE loss - without Algorithm 3 Train CE loss - with Algorithm 3
tridiag-SONew 53.150 51.936

band-4-SONew 51.950 51.84

A.4.2 Hyperparaeter search space723

We provide the hyperparamter search space for experiments presented in Section 5. We search over724

2k hyperparameters for each Autoencoder experiment using a Bayesian Optimization package. The725

search ranges are: first order momentum term �1 2 [1e� 1, 0.999], second order momentum term726

�2 2 [1e � 1, 0.999], learning rate 2 [1e � 7, 1e � 1], ✏ 2 [1e � 10, 1e � 1]. We give the optimal727

hyperparameter value for each experiment in Table 11. For VIT and GraphNetwork benchmark, we728

search �1,�2 2 [0.1, 0.999], lr 2 [1e� 5, 1e� 1], ✏ 2 [1e� 9, 1e� 4], weight decay 2 [1e� 5, 1.0],729

learning rate warmup 2 [2%, 5%, 10%]⇤total_train_steps, dropout2 [00, 0.1], label smoothing over730

{0.0, 0.1, 0.2} . We use cosine learning rate schedule. Batch size was kept = 1024, and 512 for Vision731

Transformer, and GraphNetwork respectively. We sweep over 200 hyperparameters in the search732

space for all the optimizers.733

For rfdSON [36], there’s no ✏ hyperparameter. In addition to the remaining hyperparameters, we tune734

↵ 2 {1e� 5, 1.0} (plays similar role as ✏) and µt 2 [1e� 5, 0.1].735

For LLM [44] benchmark, we only tune the learning rate 2 [1e� 2, 1e� 3, 1e� 4] while keeping736

the rest of the hyperparams as constant. This is due to the high cost of running experiments hence737

we only tune the most important hyperparameter. For Adafactor [43], we use factored=False, decay738

method=adam, �1 = 0.9, weight decay=1e� 3, decay factor=0.99, and gradient clipping=1.0.739

A.4.3 Additional Experiments740

VIT and GraphNetwork Benchmarks: In Figure 5 we plot the training loss curves of runs741

corresponding to the best validation runs in Figure 1. Furthermore, from an optimization point742

of view, we plot the best train loss runs in Figure 6 got by searching over 200 hyperparameters.743

We find that tridiag-SONew is 9% and 80% relatively better in ViT and GraphNetwork benchmark744

respectively (Figure 6), compared to Adam (the next best baseline).745

Autoencoder float32 and bfloat16 experiments: We provide curves of all the baselines and SONew746

in Figure 4(a) and the corresponding numbers in Table 6 for float32 experiments.747

To test numerical stability of SONew and compare it with other algorithm in low precision regime,748

we also conduct bfloat16 experiments on the Autoencoder benchmark (Table 7). We notice that749

SONew undergoes the least degradation. Tridiagonal-sparsity SONew CE loss increases by only 0.21750

absolute difference (from 51.72 in float32 (6) to 51.93), whereas Shampoo and Adam incur 0.70 loss751

increase. It’s worthwhile to note that SONew performs better than all first order methods while taking752

similar time and linear memory, whereas while Shampoo performs marginally better, it is 22⇥ slower753

than tridiagonal-SONew. The corresponding loss curves are given in Figure 4(b).754

Note: In the main paper, our reported numbers for rfdSON on Autoencoder benchmark in Table 1755

for float32 experiments are erraneuous. Please consider the numbers provided in Table 6 and the756

corresponding curve in Figure 4(a). Note that there’s no qualitiative change in the results and none of757

the claims made in the paper are affected. SONew is still significantly better than rfdSON. We also758

meticulously checked all other experiments, and they do not have any errors.759

A.4.4 Convex experiments760

As our regret bound applies to convex optimization, we compare SONew to rfdSON [36], another761

recent memory-efficient second-order Newton method. We follow [36] for the experiment setup762

- each dataset is split randomly in 70%/30% train and test set. Mean squared loss is used. For763

tridiag-SONew, we use a total of 2 ⇤ d space for d parameters. Hence, for fair comparison we show764

rfdSON with m = 2. Since the code isn’t open sourced, we implemented it ourselves. In order to765

show reproducibility with respect to the reported numbers in [36], we include results with m = 5 as766

well. We see in the Table 8 that tridiag-SONew consitently matches or outperforms rfdSON across all767
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Table 6: float32 experiments on Autoencoder benchmark. We observe that diag-SONew performs the best
among all first order methods while taking similar time. tridiag and band-4 perform significantly better than
first order methods while requiring similar linear space and time. Shampoo performs best but takes O(d31 + d

3
2)

time for computing preconditioner of a linear layer of size d1 ⇥ d2, whereas our methods take O(d1d2) time, as
mentioned in Section 5.1. rfdSON takes similar space as SONew but performs considerably worse.

Optimizer First Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew

Train CE loss 67.654 59.087 54.393 58.651 53.330 53.591 53.025

Time(s) 62 102 62 67 62 62 63

Optimizer Second Order Methods
Shampoo(20) rfdSON(1) rfdSON(4) tridiag-SONew band-4-SONew

Train CE loss 50.702 53.56 52.97 51.723 51.357

Time(s) 371 85 300 70 260

Table 7: bfloat16 experiments on Autoencoder benchmark to test the numerical stability of SONew and
robustness of Algorithm 3. We notice that diag-SONew degrades only marginally (0.26 absolute difference)
compared to float32 performance. tridiag-SONew and band-4-SONew holds similar observations as well.
Shampoo performs the best but has a considerable drop (0.70) in performance compared to float32 due to
using matrix inverse, and is slower due to its cubic time complexity for computing preconditioners. Shampoo
implementation uses 16-bit quantization to make it work in 16-bit setting, leading to further slowdown. Hence
the running time in bfloat16 is even higher than in float32.

Optimizer First Order Methods
SGD Nesterov Adagrad Momentum RMSProp Adam diag-SONew

Train CE loss 80.454 72.975 68.854 70.053 53.743 54.328 53.29

Train time(s) 36 43 37 36 37 38 44

Optimizer Second Order Methods
Shampoo(20) rfdSON(1) rfdSON(4) tridiag-SONew band-4-SONew

Train CE loss 51.401 57.42 55.53 51.937 51.84

Train time(s) 1245 80 284 55 230

(a) float32 - autoencoder (b) bfloat16 - autoencoder

Figure 4: Training curves of all the baselines for Autoencoder benchmar (a) float32 training (b) bfloat16 training

3 benchmarks. Each experiment was run for 20 epochs and we report the best model’s performance768

on test set.769
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(a) VIT train CE loss (b) GraphNetwork train CE loss

Figure 5: Train loss corresponding to the best validation runs in Figure 1 (a) VIT benchmark (b) GraphNetwork
benchmark. We report the numbers and the training time in the legend. We observe that tridiag match or perform
better than adam.

(a) Best VIT train CE loss (b) Best GraphNetwork train CE loss

Figure 6: Best train loss achieved during hyperparam tuning. (a) VIT benchmark (b)GraphNetwork benchmark.
We report the numbers and the training time in the legend. We observe that tridiag significantly outperforms
adam, while being comparable to shampoo.

Table 8: Comparison of rfdSON and tridiag-SONew in convex setting on three datasets. We
optimize least square loss

P
t
(yt � wTxt)2 where w is the learnable parameter and (xt, yt) is

the tth training point. Reported numbers is the accuracy on the test set.
Table 9: (a) Dataset stats

Dataset # total points dimension

a9a 32,561 123
gisette 6000 5000
mnist 11791 780

Table 10: (b) RFD-SON vs tridiag-SONew
Dataset RFD-SON, m=2 RFD-SON, m=5 tridiag-SONew

a9a 83.3 83.6 84.6
gisette 96.1 96.2 96.6
mnist 93.2 94.5 96.5
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Table 11: Optimal hyperparams for Autoencoder Benchmark

Table 12: (a) float32 experiments optimal hy-
perparamters

Baseline �1 �2 ✏ lr
SGD 0.99 0.91 8.37e-9 1.17e-2

Nesterov 0.914 0.90 3.88e-10 5.74e-3
Adagrad 0.95 0.90 9.96e-7 1.82e-2

Momentum 0.9 0.99 1e-5 6.89e-3
RMSProp 0.9 0.9 1e-10 4.61e-4

Adam 0.9 0.94 1.65e-6 3.75e-3
Diag-SONew 0.88 0.95 4.63e-6 1.18e-3

Shampoo 0.9 0.95 9.6e-9 3.70e-3
tridiag 0.9 0.96 1.3e-6 8.60e-3
band-4 0.88 0.95 1.5e-3 5.53e-3

Table 13: (b) bfloat16 experiments optimal
hyperparamters

Baseline �1 �2 ✏ lr
SGD 0.96 0.98 2.80e-2 1.35e-2

Nesterov 0.914 0.945 8.48e-9 6.19e-3
Adagrad 0.95 0.93 2.44e-5 2.53e-2

Momentum 0.9 0.99 0.1 7.77e-3
RMSProp 0.9 0.9 2.53e-10 4.83e-4

Adam 0.9 0.94 3.03e-10 3.45e-3
Diag-SONew 0.9 0.95 4.07e-6 8.50e-3

Shampoo 0.85 0.806 6.58e-4 5.03e-3
ztridiag 0.83 0.954 1.78e-6 7.83e-3
band-4 0.9 0.96 1.52e-6 4.53e-3
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