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ABSTRACT

Blind super-resolution methods based on Stable Diffusion (SD) demonstrate im-
pressive generative capabilities in reconstructing clear, high-resolution (HR) images
with intricate details from low-resolution (LR) inputs. However, their practical
applicability is often limited by poor efficiency, as they require hundreds to thou-
sands of sampling steps. Inspired by Adversarial Diffusion Distillation (ADD),
we incorporate this approach to design a highly effective and efficient blind super-
resolution method. Nonetheless, two challenges arise: First, the original ADD
significantly reduces result fidelity, leading to a perception-distortion imbalance.
Second, SD-based methods are sensitive to the quality of the conditioning input,
while LR images often have complex degradation, which further hinders effective-
ness. To address these issues, we introduce a Timestep-Adaptive ADD (TA-ADD)
to mitigate the perception-distortion imbalance caused by the original ADD. Fur-
thermore, we propose a prediction-based self-refinement strategy to estimate HR,
which allows for the provision of more high-frequency information without the
need for additional modules. Extensive experiments show that our method, AddSR,
generates superior restoration results while being significantly faster than previous
SD-based state-of-the-art models (e.g., 7× faster than SeeSR).

1 INTRODUCTION

Blind super-restoration (BSR) aims to convert low-resolution (LR) images that have undergone
complex and unknown degradation into clear high-resolution (HR) versions. Differing from classical
super-resolution (1; 2; 3; 4; 5), where the degradation process is singular and known, BSR is crafted
to enhance real-world degraded images, imbuing them with heightened practical value.

Generative models, e.g. generative adversarial network (GAN) and diffusion model, have demon-
strated significant superiority in BSR task to achieve realistic details. GAN-based models (6; 7;
8; 9; 10; 11) learn a mapping from the distribution of input LR images to that of HR images with
adversarial training. However, when handling natural images with intricate textures, they often
struggle to generate unsatisfactory visual results due to unstable adversarial objectives (9; 12).
Recently, diffusion models (DM) (13; 14) have garnered significant attention owing to their potent
generative capabilities and the ability to combine information from multiple modalities. DM-based
BSR methods can be roughly divided into two categories: those without Stable Diffusion (SD)
prior (15; 16; 17), and those incorporating SD prior (18; 19; 20). SD prior can significantly enhance
the model’s ability to capture the distribution of natural images (21), thereby enabling the generated
HR images with realistic details. Given the iterative refinement nature of DM, diffusion-based
methods typically outperform GAN-based ones, albeit at the expense of efficiency. Hence, there’s an
urgent demand for BSR models that deliver exceptional restoration quality while maintaining high
efficiency for real-world applications.

To achieve the above goal, we draw inspiration from Adversarial Diffusion Distillation (ADD) (22)
and introduce it into the BSR task. However, two key challenges still exist: 1) Perception-distortion
imbalance (23; 24; 25): Directly applying ADD in the BSR task leads to reduced fidelity, causing
a perception-distortion imbalance that undermines effectiveness. 2) Efficient restoration of high-
frequency details: The quality of the conditioning input can significantly affect the restored results
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Figure 1: Comparisons on effect and efficiency. AddSR-4 indicates the result is obtained in 4 steps,
achieving high perception quality restoration performance with the fastest speed among diffusion-
based models. In contrast, existing SD-based BSR models suffer from either low perception quality
restoration performance (e.g., ResShift) or time-consuming efficiency (e.g., SeeSR-50).

(26). Previous SD-based methods (20; 18) rely on additional degradation removal modules to
pre-clean LR images for conditioning, which hinders efficiency. Therefore, efficiently obtaining a
conditioning input with more high-frequency information to guide restoration is a key challenge in
designing an effective and efficient blind super-resolution (BSR) method.

In this paper, we propose a novel AddSR based on ADD for blind super-restoration, which enhances
restoration effects and accelerates inference speed of SD-based models simultaneously. There are two
critical designs in AddSR to address the above issues respectively: 1) We introduce timestep-adaptive
adversarial diffusion distillation (TA-ADD) loss, which designs a bivariate timestep-related weighting
function to achieve perception-distortion balance, enhancing generative ability at smaller inference
steps while reducing it at larger ones. 2) We propose a simple yet effective strategy, prediction-based
self-refinement (PSR), which uses the estimated HR image from the predicted noise to control the
model output. This approach enables efficient condition restoration of the high-frequency components
and further allows the restored results to contain more high-frequency details.

Our main contributions can be summarized as threefold:

• To the best of our knowledge, the proposed AddSR is the first to explore ADD for efficient and
effective blind super-resolution, achieving a ×7 speedup over SeeSR(19) while delivering improved
perceptual quality.

• We introduce a new TA-ADD loss to address the perception-distortion imbalance issue introduced
by the original ADD, allowing AddSR to generate superior perceptual quality while maintaining
comparable fidelity.

• We propose a prediction-based self-refinement (PSR) strategy to efficiently restore condition and
enable the restored results to generate more details without the need for additional modules.

2 RELATED WORK

GAN-based BSR. In recent years, BSR have drawn much attention due to their practicability.
Adversarial training (27; 28; 29; 30; 12) is introduced in SR task to avoid generating over-smooth
results. BSRGAN (6) designs a random shuffle strategy to enlarge the degradation space for training
a comprehensive SR model. Real-ESRGAN (7) presents a more practical degradation process called
“high-order” to synthesize realistic LR images. KDSRGAN (8) estimates the implicit degradation
representation to assist the restoration process. While GAN-based BSR methods require only one
step to restore the LR image, their capability to super-resolve complex natural images is limited. In
this work, our AddSR seamlessly attains superior restoration performance based on diffusion model,
making it a compelling choice.
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Figure 2: Overview of AddSR. Our proposed AddSR consists of a student model, a pretrained
teacher model, and a discriminator. Let C = {xLR, x̂10, x̂20, x̂30}, where ci denotes the i-th element of
C and i stands for i-th inference step.

Diffusion-based BSR. Diffusion models has demonstrated significant advantages in image generation
tasks (e.g., text-to-image). One common approach (15; 31; 32; 33) is training a non-multimodal
diffusion model from scratch, which takes the concatenation of a LR image and noise as input in every
step. Another approach (21; 18; 19; 20; 34) fully leverages the prior knowledge from a pre-trained
multimodal diffusion model (i.e., SD model), which requires training a ControlNet and incorporates
new adaptive structures (e.g., cross-attention). SD-based methods excel in performance compared
to the aforementioned approaches, as they effectively incorporate high-level information. However,
the large number of model parameters and the need for numerous sampling steps pose substantial
challenges to their application in the real world.

Efficient Diffusion Models. Several works (35; 14; 36; 37; 38; 39) are proposed to accelerate the
inference process of DM. Although these methods can reduce the sampling steps from thousands to 20-
50, the restoration effect will deteriorate dramatically. Recnet, adversarial diffusion distillation (22) is
proposed to achieve 1∼4 steps inference while maintaining satisfactory generating ability. However,
ADD was originally designed for the text-to-image task. Considering the multifaceted nature of BSR,
such as image quality, degradation, or the trade-off between fidelity and realness, employing ADD
to expedite the SD-based model for BSR is non-trivial. In contrast, AddSR introduces two pivotal
designs to adapt ADD into BSR tasks, making it both effective and efficient.

3 METHODOLOGY

3.1 OVERVIEW OF ADDSR

Network Components. The AddSR training procedure primarily consists of three components:
the student model with weights θ, the pretrained teacher model with frozen weights ψ and the
discriminator with weights ϕ, as depicted in Fig. 2. Specifically, both the student model and the
teacher model share identical structures, with the student model initialized from the teacher model.
The student model incorporates a ControlNet (40) to receive xLR or predicted x̂i−1

0 for controlling the
output of the U-Net (41). Furthermore, the student model utilizes RAM (42) to obtain representation
embeddings crep, extracting high-level information (i.e., image content) and sends this information
to CLIP (43) to generate text embeddings ctext. These embeddings help the backbone (U-Net and
ControlNet) produce high-quality restored images. As for the discriminator, we adopt the same
structure as StyleGAN-T (44) conditioned on cimg extracted from xLR by DINOv2 (45).

Training Procedure. (1) Student model with prediction-based self-refinement. Firstly, we
uniformly choose a student timestep s from {s1, s2, s3, s4} (evenly selected from 0 to 999) and
employ the forward process on the HR image x0 to generate the noisy state xs =

√
αsx0+

√
1− αsϵ.

Secondly, we input xs with the condition ci, the i-th element of C = {xLR, x̂10, x̂20, x̂30} (x̂i−1
0 is

obtained by PSR to reduce the degradation impact and provide more high-frequency information to
the restoration process, as detailed in Sec. 3.2), along with crep and ctext, into the student model to
generate samples x̂i0(xs, s, crep, ctext, ci). (2) Teacher model. Firstly, we equally choose a teacher
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Figure 3: Illustration of the proposed PSR. The previous SD-based methods usually use LR image
to guide model’s output, while our PSR additionally utilizes the predicted HR image from the previous
step to provide better supervision with marginal additional time cost.

Figure 4: Left: Visual comparisons with and without PSR. Right: Perception quality of the control
signal at each timestep. MANIQA is calculated between the input of ControlNet and x0.

timestep t from {t1, t2, ..., t1000} and employ forward process to student-generated samples x̂θ to
obtain the noisy state x̂θ,t =

√
αtx̂

i
0 +

√
1− αtϵ. Secondly, we put x̂θ,t with condition x0, c′rep and

c′text into teacher model to generate samples x̂ψ(x̂θ,t, t, c′rep, c
′
text, x0). Note that x̂ψ is conditioned

on x0 instead of xLR. The primary reason is that substituting xLR with x0 to regulate the output
of the teacher model can force student model implicitly learning the high-frequency information of
HR images even conditioned on ci. (3) Timestep-adaptive ADD for BSR task. It consists of two
parts: adversarial loss and a novel timestep-adaptive distillation loss, which is correlated with both
the teacher and student model timesteps. The overall objective is:

LTA−ADD =Lta−dis(x̂i0(xs, s, ρ, ci), x̂ψ(x̂θ,t, t, ρ′, x0), d(s, t))+
λLadv(x̂i0(xs, s, ρ, ci), x0, ψcimg

),
(1)

where ρ denotes the crep and ctext, ρ′ stands for c′rep and c′text. λ is the balance weight, empirically
set to 0.02. ψcimg is the discriminator conditioned on cimg. d(s, t) is a weighting function defined
by student timestep s and teacher timestep t, dynamically adjusting Lta−dis and Ladv to alleviate
perception-distortion imbalance. Further analysis is provided in Sec. 3.3.

3.2 PREDICTION-BASED SELF-REFINEMENT

Motivation. As shown in Fig. 3 (a), original SD-based methods directly use LR images to control the
output of DM in each inference step. However, some studies (18; 20; 26) have found that the restored
results can be affected by the condition quality, as LR images often suffer from multiple degradations,
which can significantly disrupt the restoration process (e.g., see the first line of Fig. 4). To provide
a better condition, these methods employ additional degradation removal models to pre-clean LR
images, aiming to mitigate the impact of degradation. However, such approaches often compromise
efficiency, which hinders designing an efficient method.
Approach. To achieve efficient restoration of high-frequency details, we propose a novel prediction-
based self-refinement strategy, which incurs only minimal efficiency overhead. The core idea of PSR
is to utilize the predicted noise to estimate HR. Specifically, we use the following equation:

x̂0 = (xs −
√
1− αsϵθ,s)/

√
αs (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 5: Illustrations of TA-ADD in perception-distortion trade-off. (a) The perception and
fidelity variation trends with and without TA-ADD. MANIQA and PSNR stand for perception
quality and fidelity, respectively. (b) The outputs at 1st and 4th timesteps. The final output without
LTA−ADD hallucinates the paw into an animal head, while AddSR retains the appearance of the paw.

to estimate the HR image x̂0 from predicted noise in each step, and then control the model output in
next step, where xs is the noisy state and ϵθ,s is the predicted noise at timestep s. The x̂0 in each
step has more high-frequency information to better control the model output (e.g., Fig. 3-right and
also Fig. 4-left). Moreover, although PSR does not use additional modules to pre-clean LR image,
the HR image estimated by PSR exhibit superior quality compared to the LR image (Fig. 4-right).
By leveraging our simple yet effective PSR, AddSR captures conditions with more high-frequency
information, generating restored results with enhanced detail, without sacrificing efficiency.

3.3 TIMESTEP-ADAPTIVE ADD

Motivation. Perception-distortion trade-off (23) is a well-known phenomenon in SR task. We
observe that training BSR task with ADD directly exacerbates this phenomenon, as shown in
Fig. 5(a). Specifically, during the first three inference steps, there is a significant decrease in fidelity,
accompanied by improvement in perception quality. In the last inference step, fidelity remains at a
low level, while perception quality undergoes a dramatic increase. The aforementioned scenario may
give rise to two issues: (1) When the inference step is small, the quality of restored image is subpar.
(2) As the inference step increases, the generated images may exhibit “hallucinations”.

Figure 6: Relation between weighting ratio and
timesteps. (a) weighting ratio = λ/(

∏t
i=0(1−βt))

1
2 .

Once the teacher timestep is established, the weight-
ing ratio remains constant. (b) weighting ratio =
λ/d(s, t). Even the teacher timestep is established,
the weighting ratio can change to balance perception-
distortion across different student timesteps.

Analysis. The primary reason lies with ADD,
which maintains a consistent weight for GAN
loss and distillation loss across various student
timesteps, as depicted in Fig. 6(a). Once the
teacher timestep is established, the ratio of
adversarial loss and distillation loss remains
constant for different student timesteps. How-
ever, since the perception quality of generated
images gradually increases with larger infer-
ence steps, the weight-invariant ADD may lead
to insufficient adversarial constraints on the
student model during small inference steps,
resulting in the generation of blurry images.
Conversely, as the inference step increases,
the adversarial training constraints become too
strong, leading to the generation of “hallucina-
tions” (see Fig. 5(b)).

Approach. To address this issue, we ex-
tend the original unary weighting function
(
∏t
i=0(1 − βt))

1
2 to a bivariate weighting function d(s, t), allowing for dynamic adjustment of

the ratio between adversarial loss and distillation loss based on both student timestep and teacher
timestep, as shown in Fig. 6(b). Specifically, we increase this ratio when only one inference step is
performed, and gradually decrease it as the inference step increases. This alleviates the aforemen-
tioned issue of generating blurry images with small inference step and “hallucinations” with larger
inference steps. We employ the exponential forms to control the weighting ratio. The function d(s, t)
can be defined as follows:

d(s, t) = (

t∏
i=0

(1− βt))
1
2 × µ · νp(s)−1, (3)
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Table 1: Quantitative comparison with SotAs on different degradation cases. ‘*’ indicates that the
metric is non-reference. The best results are marked in red, while the second best ones are in blue.

Datasets Metrics BSRGAN Real-ESRGAN MM-RealSR LDL FeMaSR StableSR-200 ResShift-15 PASD-20 DiffBIR-50 SeeSR-50 AddSR-1 AddSR-4
ICCV 2021 ICCVW 2021 ECCV 2022 CVPR 2022 MM 2022 Arxiv 2023 NeurIPS 2023 Arxiv 2023 Arxiv 2023 CVPR 2024 - -

Single:
SR(×4)

MANIQA∗ ↑ 0.3990 0.3859 0.3959 0.3501 0.4603 0.4088 0.4582 0.4405 0.4680 0.5082 0.3894 0.6430
MUSIQ∗ ↑ 66.06 63.32 64.22 61.10 65.31 65.46 65.50 66.80 67.61 68.88 63.05 71.43

CLIPIQA∗ ↑ 0.5951 0.5367 0.5967 0.5120 0.6773 0.6483 0.6803 0.6396 0.6934 0.7039 0.5572 0.7794
NIQE∗ ↓ 5.01 5.21 5.22 5.39 5.80 5.35 5.74 4.68 4.88 5.06 5.31 4.75
LPIPS∗ ↓ 0.2003 0.1962 0.1934 0.1892 0.1770 0.1944 0.1544 0.1891 0.2388 0.3085 0.2872 0.2812
PSNR↑ 25.52 25.30 24.35 25.09 23.74 24.45 25.53 25.15 23.43 24.61 22.70 21.83
SSIM↑ 0.7091 0.7158 0.7232 0.7282 0.6788 0.6904 0.7206 0.6896 0.6025 0.6709 0.6012 0.5651

Mixture:
Blur(σ=2)+
SR(×4)

MANIQA∗ ↑ 0.3823 0.3688 0.3796 0.3337 0.4184 0.3587 0.4195 0.4124 0.4648 0.4974 0.3779 0.6340
MUSIQ∗ ↑ 64.73 60.89 62.21 58.64 62.96 60.85 62.02 64.41 67.09 68.27 61.95 71.11

CLIPIQA∗ ↑ 0.5752 0.5116 0.5687 0.4910 0.6390 0.5819 0.6375 0.6026 0.6857 0.6892 0.5389 0.7727
NIQE∗ ↓ 5.17 5.54 5.66 5.72 5.62 5.96 6.25 5.01 5.18 5.32 5.81 6.11
LPIPS∗ ↓ 0.2240 0.2267 0.2295 0.2226 0.1979 0.2384 0.2029 0.2223 0.2522 0.2124 0.3007 0.2953
PSNR↑ 25.07 24.74 24.20 24.45 24.00 24.01 24.95 24.70 22.97 24.12 22.57 21.69
SSIM↑ 0.6820 0.6890 0.6927 0.6973 0.6730 0.6596 0.6926 0.6688 0.5802 0.6508 0.5905 0.5556

Mixture:
SR(×4)+
Noise(σ =40)

MANIQA∗ ↑ 0.2645 0.3120 0.3285 0.3138 0.3123 0.3485 0.3741 0.4270 0.4121 0.5537 0.4320 0.6517
MUSIQ∗ ↑ 50.47 53.43 56.53 53.30 56.55 52.24 60.99 64.20 61.85 70.32 65.54 71.26

CLIPIQA∗ ↑ 04543 0.4761 0.5158 0.6208 0.5178 0.4414 0.5949 0.5503 0.6149 0.7557 0.6219 0.7768
NIQE∗ ↓ 7.04 6.00 4.40 5.61 4.27 5.12 6.10 5.02 5.09 4.95 4.87 6.29
LPIPS∗ ↓ 0.4611 0.3601 0.3052 0.3138 0.3267 0.4017 0.3129 0.3451 0.3404 0.2999 0.3546 0.3488
PSNR↑ 17.90 21.97 22.04 22.68 21.84 21.20 22.78 22.12 22.22 21.04 21.01 20.79
SSIM↑ 0.5210 0.6044 0.5998 0.5838 0.5421 0.5077 0.5979 0.5587 0.5311 0.5388 0.5684 0.5621

Mixture:
Blur(σ =2)+
SR(×4)+
Noise(σ =20)+
JPEG(q=50)

MANIQA∗ ↑ 0.3524 0.3374 0.3287 0.3082 0.3271 0.3452 0.3702 0.4024 0.4538 0.5266 0.3930 0.6335
MUSIQ∗ ↑ 59.83 55.54 55.30 52.79 60.87 61.21 56.99 63.25 64.50 69.08 62.69 70.59

CLIPIQA∗ ↑ 0.5380 0.5047 0.4978 0.4699 0.6061 0.6010 0.5888 0.5733 0.6626 0.7180 0.5669 0.7703
NIQE∗ ↓ 5.31 5.69 5.70 5.77 4.87 6.33 7.03 5.49 4.93 5.06 5.13 4.68
LPIPS∗ ↓ 0.3223 0.3346 0.3372 0.3272 0.2922 0.3429 0.3526 0.3482 0.3502 0.3085 0.3398 0.3368
PSNR↑ 23.04 22.70 22.47 22.36 22.17 22.39 22.36 22.25 21.46 21.86 21.65 21.45
SSIM↑ 0.5866 0.5935 0.5950 0.5948 0.5633 0.5704 0.5574 0.5594 0.5029 0.5474 0.5312 0.5210

where β represents the noise schedule coefficient, with t and s denoting the teacher timestep and
student timestep, respectively. The hyper-parameter µ sets the initial weighting ratio, while ν controls
the distillation loss increase over student timesteps, typically resulting in higher fidelity with larger
ν. The function p(·) serves as a projection function that maps student timesteps to inference steps
(e.g., mapping s = 999 to 1). We primarily consider the exponential and linear forms to control the
weighting ratio. A comparison of preferences and detailed settings for different hyper-parameters are
provided in Appendix Sec. C. From these comparisons, we find that the exponential form of d(s, t)
yields good results, so we use Eq. (3) as the distillation loss function for the remaining experiments.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training Datasets. We adopt DIV2K (46), Flickr2K (47), first 20K images from LSDIR (48)
and first 10K face images from FFHQ (49) for training. We use the same degradation model as
Real-ESRGAN (7) to synthesize HR-LR pairs.

Test Datasets. We evaluate AddSR on 4 datasets: DIV2K-val (46), DRealSR (50), RealSR (51) and
RealLR200 (19). We conduct 4 degradation types on DIV2K-val to comprehensively assess AddSR,
and except RealLR200, all datasets are cropped to 512×512 and degraded to 128×128 LR image.

Implementation Details. We adopt SeeSR (19) as the teacher model. Note that our approach
is applicable to most of the existing SD-based BSR methods for improving restoration results
and acceleration. The student model is initialized from the teacher model, and fine-tuned with
Adam optimizer for 50K iterations. The batch size and learning rate are set to 6 and 2×10−5,
respectively. AddSR is trained under 512×512 resolution images with 4 NVIDIA A100 GPUs (40G).

Evaluation Metrics. We employ non-reference metrics (i.e., MANIQA (52), MUSIQ (53), CLIP-
IQA (54)) and reference metrics (i.e., LPIPS (55), PSNR, SSIM (56)) to comprehensively evalu-
ate AddSR. Non-reference metrics are prioritized as they closely align with human perception.

Compared Methods. Extensive state-of-the-art BSR methods are compared, including GAN-based
methods: BSRGAN (6), Real-ESRGAN (7), MM-RealSR (57), LDL (9), FeMaSR (10) and diffusion-
based methods: StableSR (20), ResShift (15), PASD (21), DiffBIR (18), SeeSR (19).

4.2 EVALUATION ON SYNTHETIC DATA

To demonstrate the superiority of the proposed AddSR in handling various degradation cases, we
synthesized 4 test datasets using the DIV2K-val dataset with different degradation processes. The
quantitative results are summarized in Tab. 1. Since SD-based methods emphasize perceptual quality,
we provide results using perceptual-priority parameters. In the ablation study (Tab. 7), we present
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Figure 8: Visual comparisons on synthetic LR images. Please zoom in for a better view.

Table 2: Quantitative comparison of SUPIR: Inference time, model size, training source, and metrics.
Model Params [B] Time [s] Training Source Dataset Size [M] PSNR↑ SSIM↑ MANIQA↑ CLIPIQA↑

SUPIR (CVPR 2024) ∼15.56 14.17 64 A6000 (48G) 20 20.78 0.4587 0.6787 0.7992
AddSR (Ours) ∼2.28 0.80 4 A100 (40G) 0.034 21.45 0.5210 0.6335 0.7703

the corresponding results under balanced parameters. The conclusions include: (1) Our AddSR-
4 achieves the highest scores in MANIQA, MUSIQ and CLIPIQA across 4 degradation cases.
Especially for MANIQA, AddSR surpasses the second-best method by more than 16% on average.
(2) Diffusion-based models usually achieve low scores in full-reference metrics like PSNR, SSIM and
LPIPS, possibly because of their powful generative ability for realistic details that do not exist in GT.

Figure 7: Illustration on disparity between full-
reference metrics and human preference. Despite
AddSR achieves lower scores in full-reference met-
rics, it generates human-preferred images.

However, full-reference metrics cannot pre-
cisely reflect human preferences (see Fig. 7),
as discussed in previous works (58; 59; 60).
(3) AddSR-1 can generate comparative results
against other SD-based methods except SeeSR,
but significantly reduces the sampling steps
(i.e., from ≥15 steps to only 1 step).

Moreover, we provide the comparison with
SOTA perceptual method SUPIR (58) in Tab. 2,
which details parameters, inference time, train-
ing sources, training data, and metrics. As
shown, SUPIR exhibits better perceptual qual-
ity compared to AddSR. However, AddSR
strikes a better balance among model size, in-
ference time, fidelity, perceptual quality and
training resource consumption.

For a more intuitive comparison, we provide
visual results in Fig. 8. One can see that GAN-
based method like FeMaSR fails to reconstruct the clean and detailed HR images of the three
displayed LR images. As for SD-based method DiffBIR, it tends to generate wrong texture. This
is mainly because DiffBIR uses a degradation removal structure to remove the degradation of LR
images. However, the processed LR image is blurry, which may lead to the blurry results. Thanks
to our proposed PSR, AddSR uses the predicted x̂i−1

0 to control the model output, which has more
high-frequency information and nearly no extra time cost. With TA-ADD, AddSR can generate
precise images and rich details. In a nutshell, AddSR can produce images with better perceptual
quality than the state-of-the-art models while requiring fewer inference steps and less time.
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Table 3: Quantitative comparison with state of the arts on real-world LR images.
Datasets Metrics BSRGAN Real-ESRGAN MM-RealSR LDL FeMaSR StableSR-200 ResShift-15 PASD-20 DiffBIR-50 SeeSR-50 AddSR-1 AddSR-4

ICCV 2021 ICCVW 2021 ECCV 2022 CVPR 2022 MM 2022 Arxiv 2023 NeurIPS 2023 Arxiv 2023 Arxiv 2023 CVPR 2024 - -

RealSR

MANIQA∗ ↑ 0.3762 0.3727 0.3966 0.3417 0.3609 0.3656 0.3750 0.4041 0.4392 0.5396 0.4189 0.6597
MUSIQ∗ ↑ 63.28 60.36 62.94 58.04 59.06 61.11 56.06 62.92 64.04 69.82 63.56 72.25

CLIPIQA∗ ↑ 0.5116 0.4492 0.5281 0.4295 0.5408 0.5277 0.5421 0.5187 0.6491 0.6700 0.4929 0.7215
PSNR↑ 26.49 25.78 23.69 25.09 25.17 25.63 26.34 26.67 25.06 25.24 24.22 22.73
SSIM↑ 0.7667 0.7621 0.7470 0.7642 0.7359 0.7483 0.7352 0.7577 0.6664 0.7204 0.6863 0.6336

DrealSR

MANIQA∗ ↑ 0.3431 0.3428 0.3625 0.3237 0.3178 0.3222 0.3284 0.3874 0.4646 0.5125 0.3873 0.6034
MUSIQ∗ ↑ 57.17 54.27 56.71 52.38 53.70 52.28 50.14 55.33 60.40 65.08 57.42 68.16

CLIPIQA∗ ↑ 0.5094 0.4514 0.5171 0.4410 0.5639 0.5101 0.5287 0.5384 0.6397 0.6910 0.5543 0.7381
PSNR↑ 28.68 28.57 26.84 27.41 26.83 29.14 28.27 29.06 26.56 28.09 27.49 26.09
SSIM↑ 0.8022 0.8042 0.7959 0.8069 0.7545 0.8040 0.7542 0.7906 0.6436 0.7664 0.7588 0.7036

RealLR200
MANIQA∗ ↑ 0.3688 0.3656 0.3879 0.3266 0.4099 0.3672 0.4182 0.4193 0.4626 0.4911 0.4215 0.6182
MUSIQ∗ ↑ 64.87 62.93 65.24 60.95 64.24 62.89 60.25 66.35 66.84 68.63 65.02 72.62

CLIPIQA∗ ↑ 0.5699 0.5423 0.6010 0.5088 0.6547 0.5916 0.6468 0.6203 0.6965 0.6617 0.5679 0.7724

Figure 9: Visual comparisons on real-world LR images. Please zoom in for a better view.

Figure 10: Illustrations of prompt-guided restoration that engages with manual prompts for more
precise outcomes. In each group, the prompts for the second and third images are obtained through
RAM and manual input, respectively. Left: ‘2ALC515’ is corrected as ‘24LC515’ by manual prompt.
Right: The background near mushroom is modified to be blurry, aligning with GT.

4.3 EVALUATION ON REAL-WORLD DATA

Tab. 3 shows the quantitative results on 3 real-world datasets. We can see that our AddSR achieves
the best scores in MANIQA, MUSIQ and CLIPIQA, the same as in the synthetic degradation cases.
This demonstrates that AddSR has an excellent generalization ability to handle unknown complex
degradations, making it practical in real-world scenarios. Additionally, AddSR-1 surpasses the
GAN-based methods, primarily due to the integration of diffusion model with adversarial training.
This integration enables AddSR to leverage high-level information to enhance the restoration process
and generate high perception quality images, even through a one-step inference.

Fig. 9 shows the visualization results. We present the examples of building and face to comprehen-
sively compare various methods. A noticeable observation is that AddSR generate more clear and
regular line, as evidenced by the linear pattern of the building in the first example. In the second
example, the original LR image is heavily degraded, FeMaSR and ResShift fail to generate the human
face, showing only the blurry outline of the face. DiffBIR can generate more details, yet still unclear.
The image generated by SeeSR exhibits artifacts. Conversely, our AddSR can generate comparative
results with FeMaSR and ResShift in one-step. As evaluating the inference steps, AddSR generates
more clear and detailed human face, which significantly surpasses the aforementioned methods.

Prompt-Guided Restoration. One of the advantages of diffusion model is to integrate with text. In
Fig. 10, we demonstrate that our AddSR can efficiently achieve more precise restoration results in 4
steps by incorporating with manual prompt, i.e., we can manually input the text description of the LR
image to assist the restoration process. Specifically, in Fig. 10(a), the word on the chip can be corrected
from ‘2ALC515’ to ‘24LC515’ with the manual prompt. In Fig. 10(b), the mushroom’s background
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Table 4: Quantitative comparison of SeeSR-Turbo and AddSR: Results from 2 steps.
Methods RealLR200 DIV2K

NIQE↓ MANIQA↑ MUSIQ↑ CLIPIQA↑ PSNR↑ SSIM↑ MANIQA↑ CLIPIQA↑
SeeSR-Turbo-2 7.87 0.3503 53.88 0.4634 18.45 0.2851 0.5719 0.6479

AddSR-2 5.08 0.6182 72.62 0.7724 21.92 0.5481 0.5759 0.7357

Table 5: Ablation studies on refined training process. The best results are marked in bold.
Exp Condi

Image RAM RealLR200 DrealSR
MANIQA∗ ↑ MUSIQ∗ ↑ CLIPIQA∗ ↑ MANIQA∗ ↑ MUSIQ∗ ↑ CLIPIQA∗ ↑ PSNR↑

(1) % % 0.5623 70.75 0.7431 0.5331 64.55 0.7285 26.96
(2) ✓ % 0.6092 71.76 0.7660 0.5372 62.67 0.6997 26.78
(3) % ✓ 0.5772 71.33 0.7549 0.5433 65.09 0.7087 26.87

AddSR ✓ ✓ 0.6182 72.62 0.7724 0.6034 68.16 0.7381 26.09

Table 6: Ablation studies on PSR and TA-ADD.
Methods Time[s] RealLR200 DrealSR

MANIQA∗ ↑ MUSIQ∗ ↑ CLIPIQA∗ ↑ MANIQA∗ ↑ MUSIQ∗ ↑ CLIPIQA∗ ↑ PSNR↑
w/o PSR 0.44∼0.77 0.5910 71.28 0.7541 0.5672 66.67 0.6589 25.85

w/o TA-ADD 0.44∼0.80 0.6058 72.19 0.7630 0.5898 67.58 0.7042 25.77
AddSR 0.44∼0.80 0.6182 72.62 0.7724 0.6034 68.16 0.7381 26.09

Figure 11: Left: Comparison against SeeSR-Turbo-2. Right: Visual comparison of TA-ADD.

should appear blurry, while the RAM prompt renders the tree branches sharply. Conversely, the
manual prompt maintains the background’s intended blur, aligning with the Ground Truth.

Comparison with the Efficient SeeSR-Turbo. A recent efficient SD-based method named SeeSR-
Turbo (19) has been introduced for blind super-resolution through 2-steps inference. To demonstrate
the superiority of our AddSR, we conduct a visual comparison between SeeSR-Turbo and AddSR.
The qualitative results are shown in Fig. 11-Left. One can see that our AddSR generates realistic
textures by 2 steps, while SeeSR-Turbo tends to generate blurry results. We also provide quantitative
comparison on RealLR200 and DIV2K on Tab. 4, Our AddSR surpasses SeeSR-Turbo across all
displayed metrics, including PSNR, SSIM, NIQE, MANIQA, MUSIQ and CLIPIQA.

4.4 ABLATION STUDY

Effectiveness of Refined Training Process. To enrich the information provided by the teacher
model, we refine the training process by substituting the LR image with HR image as inputs of
ControlNet, RAM, and CLIP. Since SeeSR is adopted as the baseline, we also replace the LR image
of its RAM input with HR image. The quantitative results are shown in Tab. 5. We can see that with
the supervision from HR input, the perception quality of restored images becomes better.

Effectiveness of TA-ADD on Balancing Perception and Fidelity. The proposed TA-ADD aims to
balance perception and fidelity quality of restored images. The quantitative results are shown in Tab. 6.
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Table 7: Quantitative comparison of different settings for TA-ADD on synthetic degraded DIV2K.
The best results are bold, and the second best results are underlined.

Metrics Real-ESRGAN SeeSR Ours-perception Ours-fidelity
MANIQA↑ 0.3374 0.5266 0.6335 0.5759
CLIPIQ↑ 0.5047 0.7180 0.7703 0.7357
PSNR↑ 22.70 21.86 21.45 21.92
SSIM↑ 0.5935 0.5474 0.5210 0.5481

Despite we increase the weight of the distillation loss in the later inference steps, the perceptual quality
still improves. This could be attributed to the initial steps producing sufficiently high perception
quality images, which offer more informative cues when combined with PSR. Consequently, the later
inference steps can achieve high perceptual quality.

In addition, we can adjust the hyperparameters in TA-ADD and the number of inference steps to
achieve competitive PSNR and SSIM results while excelling in perceptual quality. We primarily
compare the leading methods in terms of fidelity (GAN-based Real-ESRGAN) and perceptual quality
(SeeSR). As shown in Tab. 7, Our method remarkably enhances perceptual quality compared to
SeeSR while also offering better fidelity. When compared to Real-ESRGAN, our method shows a
substantial improvement in perceptual quality while maintaining comparable fidelity. This indicates
that TA-ADD effectively navigates the perception-fidelity trade-off. Specifically, we made the
following adjustments: 1) larger values for µ and ν (µ=0.7, ν=2.1) in TA-ADD during training, and
2) fewer inference steps (2 steps) to achieve high-fidelity results.

The visual results are shown in Fig. 11-Right. For the upper 3 images, the content is a statue. However,
without TA-ADD, the model hallucinates its hand as a bird. For the bottom 3 images, the original
background is rock. Again, without utilizing TA-ADD, AddSR might hallucinate the background
as an eye of a wolf. Conversely, with the help of TA-ADD, the restored images can generate
more consistent contents with GTs. TA-ADD constrains the model from excessively leveraging its
generative capabilities, thereby preserving more information in the image content, aligning closely
with the GTs. Specifically, using TA-ADD, texture of the statue’s hand in the upper image remains
unchanged, and the background of the bottom image retains the rock with out-of-focus appearance.

Effectiveness of PSR. As shown in Tab. 6, incorporating PSR significantly enhances perceptual
quality with minimal computational cost. All of the three perception metrics, including MANIQA,
MUSIQ and CLIPIQA, are improved on the two popular real-world datasets.

5 CONCLUSION

We propose AddSR, an effective and efficient model based on Stable Diffusion prior for blind super-
resolution. To address the perception-distortion imbalance issue introduced by the original ADD, we
introduce timestep-adaptive ADD, which assigns distinct weights to GAN loss and distillation loss
across different student timesteps. In contrast to current SD-based BSR approaches that either use
LR images to regulate each inference step’s output or rely on additional modules to pre-clean LR
images as conditions, AddSR substitutes the LR image with the HR image estimated in the preceding
step. This substitution provides more high-frequency information, allowing for restored results with
enhanced textures and edges, while maintaining efficiency. Additionally, we use the HR image as
the controlling signal for the teacher model, enabling it to provide better supervision to the student
model. Extensive experiments demonstrate that AddSR can generate superior results within 1∼4
steps in various degradation scenarios and real-world low-quality images.

Limitations. Although the inference speed of our AddSR surpasses all of the existing SD-based
methods remarkably, there still exists a gap between AddSR and GAN-based methods. The primary
factor is that AddSR is built upon SD and ControlNet, which, due to its substantial model parameters
and intricate network structure, noticeably hinders the inference time. In the future, we plan to
explore a more streamlined network architecture to boost overall efficiency.
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Appendix

A COMPARISONS AMONG ADD, SEESR AND ADDSR

In this section, we provide a comparison among ADD, SeeSR, and our proposed AddSR. Their archi-
tecture diagrams are depicted in Fig. 12. Firstly, the distinctions between ADD and AddSR primarily
lie in two aspects: 1) Introduction of ControlNet: ADD is originally developed for text-to-image
task, which typically only takes text as input. In contrast, AddSR is an image-to-image model that
requires the additional ControlNet to receive information from the LR image. 2) Perception-distortion
Trade-off : ADD aims to generate photo-realistic images from texts. However, introducing ADD into
blind SR brings the perception-distortion imbalance issue (please refer to Sec. 3.4 in our submission),
which is addressed by our proposed timestep-adaptive ADD in AddSR.

Secondly, the key differences between SeeSR and AddSR are: 1) Introduction of Distillation: SeeSR
is trained based on vanilla SD model that needs 50 inference steps, while AddSR utilizes a teacher
model to distill an efficient student model to achieve just 1∼4 steps. 2) High-frequency Information:
SeeSR uses the LR image y as the input of the ControlNet. In contrast, AddSR on one hand adopts
the HR image x0 as the input of the teacher model’s ControlNet to supply the high-frequency signals
since the teacher model is not required during inference. On the other hand, AddSR proposes
a novel prediction-based self-refinement (PSR) to further provide high-frequency information by
replacing the LR image with the predicted image as the input of the student model’s ControlNet.
Therefore, AddSR has the ability to generate results with more realistic details.

B EFFECTIVENESS OF PREDICTION-BASED SELF-REFINEMENT

Our PSR is proposed to remove the impact of LR degradation and enhance high-frequency signals
to regulate the student model output. As shown in Fig. 13, the restored images generated with PSR
exhibit more details and sharper edges, while the images generated without PSR tend to be blurry
with fewer details.
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Figure 12: Comparisons on architecture diagram among ADD, SeeSR and AddSR. x0 and y denote
HR and LR images, respectively. x̂i0 and x̂ϕ denote the predicted x0 from the timesteps s and t,
respectively. ϵs, ϵt, ϵ̂s and ϵ̂s stand for added and predicted noise in timesteps s and t, respectively.
Lta−dis is the timestep-adaptive distillation loss.

Figure 13: Our PSR is able to enhance the high-frequency signals of restored images to generate
more photo-realistic details. The high frequency part is obtained using Fourier transform and filtering.
Please zoom in for a better view.

C COMPARISON OF TIMESTEP-ADAPTIVE ADD FORMS

To determine the optimal settings for timestep-adaptive ADD, we conduct experiments on its different
forms: exponential and linear. Specifically, the exponential form is defined as Eq. 3, while the linear
form is defined as follows:

d(s, t) = (

t∏
i=0

(1− βt))
1
2 × (γ · p(s) + κ) (4)

where the hyper-parameter κ sets the initial weighting ratio, while γ controls the increase of distillation
loss over student timesteps. The quantitative results of the exponential and linear forms under various
settings are listed in Tab. 8 and Tab. 9, respectively. The best settings for different forms in the tables
are highlighted with a gray background. From these tables, we can draw the following conclusions:
(1) The best results of the exponential form are better than those of the linear form. Therefore, we
use Eq. (3) as the distillation loss function. Moreover, when µ = 0.5 and ν = 2.1, we achieves
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Figure 14: Visual comparisons between SeeSR-Turbo and AddSR. All the results are generate by 2
steps. Please zoom in for a better view.

Table 8: Comparing the exponential form of timestep-adaptive ADD across different hyper-
parameters.

µ ν
RealSR

1 step 2 step 3 step 4 step
MANIQA↑ PSNR↑ MANIQA↑ PSNR↑ MANIQA↑ PSNR↑ MANIQA↑ PSNR↑

0.5

1.3 0.4202 24.11 0.6263 23.10 0.6427 22.36 0.6453 22.33
1.7 0.3986 24.18 0.6110 24.01 0.6195 23.44 0.6307 23.40
2.1 0.4189 24.22 0.6339 23.29 0.6496 22.76 0.6597 22.73
2.5 0.4207 24.48 0.5939 23.92 0.6081 23.33 0.6197 23.29

0.7
2.1

0.3821 24.90 0.5971 24.03 0.6078 23.39 0.6221 23.36
0.9 0.4095 23.16 0.6052 22.97 0.6062 22.88 0.6244 22.68

the best perceptual quality while maintaining good fidelity, so we use this setting for Eq. (3). (2)
Increasing the hyper-parameters that control the distillation loss ratio (i.e., ν and γ) typically results
in higher fidelity. For instance, when we fix µ to 0.5 and increase ν, the overall trend in 4 step shows
a decrease in perception quality and an improvement in fidelity. Consequently, we can achieve a
perception-distortion trade-off by adjusting ν.
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Table 9: Comparing the linear form of timestep-adaptive ADD across different hyper-parameters.

γ κ
RealSR

1 step 2 step 3 step 4 step
MANIQA↑ PSNR↑ MANIQA↑ PSNR↑ MANIQA↑ PSNR↑ MANIQA↑ PSNR↑

0.1 0.7 0.3908 24.28 0.5849 23.64 0.6133 23.00 0.6172 22.98

0.2
0.3 0.4574 23.69 0.6294 23.06 0.6465 22.48 0.6480 22.41
0.5 0.4338 23.87 0.6237 23.17 0.6407 22.55 0.6443 22.52
0.7 0.4225 24.02 0.6064 23.24 0.6313 22.60 0.6352 22.59

0.4
0.1 0.4027 24.41 0.6077 23.25 0.6157 22.51 0.6215 22.45
0.3 0.4045 24.39 0.5981 23.30 0.6124 22.58 0.6202 22.51
0.5 0.4152 24.73 0.6261 23.33 0.6495 22.65 0.6507 22.62

0.6
0.1 0.4156 24.48 0.6175 23.44 0.6261 22.82 0.6328 22.79
0.3 0.3926 24.90 0.5905 23.93 0.5857 23.51 0.5981 23.42

0.8 0.1 0.3887 24.92 0.5943 23.84 0.6038 23.36 0.6130 23.28
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