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ABSTRACT

Diffusion models have emerged as a powerful generative technology and have
been found to be applicable in various scenarios. Most existing foundational dif-
fusion models are primarily designed for text-guided visual generation and do not
support multi-modal conditions, which are essential for many visual editing tasks.
This limitation prevents these foundational diffusion models from serving as a
unified model in the field of visual generation, like GPT-4 in the natural language
processing field. In this work, we propose ACE, an All-round Creator and Editor,
which achieves comparable performance compared to those expert models in a
wide range of visual generation tasks. To achieve this goal, we first introduce
a unified condition format termed Long-context Condition Unit (LCU), and pro-
pose a novel Transformer-based diffusion model that uses LCU as input, aiming
for joint training across various generation and editing tasks. Furthermore, we
propose an efficient data collection approach to address the issue of the absence of
available training data. It involves acquiring pairwise images with synthesis-based
or clustering-based pipelines and supplying these pairs with accurate textual in-
structions by leveraging a fine-tuned multi-modal large language model. To com-
prehensively evaluate the performance of our model, we establish a benchmark
of manually annotated pairs data across a variety of visual generation tasks. The
extensive experimental results demonstrate the superiority of our model in visual
generation fields. Thanks to the all-in-one capabilities of our model, we can easily
build a multi-modal chat system that responds to any interactive request for image
creation using a single model to serve as the backend, avoiding the cuambersome
pipeline typically employed in visual agents.

1 INTRODUCTION

In recent years, foundational generative models have made groundbreaking progress in natural lan-
guage processing (NLP) (Anil et al.| 2023} |Anthropic,|2023azbj;|Ouyang et al.,|2022). Conversational
language models like ChatGPT (Brown et al.| 2020; |OpenAl, [2023b) offer a unified framework for
addressing various NLP tasks through a prompt-guided approach. By employing a unified input-
output structure, these models can achieve dynamic multi-turn interactions with users. Furthermore,
by harnessing the knowledge of historical dialogues (Anthropic, [2024; |(OpenAlL 2024)), they possess
the capacity to comprehend intricate queries with greater nuance and depth. However, such unified
architecture has not been fully explored in visual generation field. Existing foundational models
of visual generation typically create images or videos from pure text, which is not compatible with
most visual generation tasks, such as controllable image generation (Zhang et al., 2023b; Jiang et al.}
2024) or image editing (Brooks et al., [2023). Thereby, specific visual generation tasks still require
tailored tuning based on these foundational models, which is inflexible and inefficient. For this
reason, the visual generative model has not yet become a powerful and unified productivity tool in
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Figure 1: Multi-turn image editing results of ACE. ACE supports a wide range of image gener-
ation and editing tasks through natural language instructions, allowing complex and precise editing
requests to be easily accomplished through multi-turn interactions.

various application scenarios like large language models (LLMs) (Abdin et al., 2024} [Dubey et al.}
2024} [Bai et all,[2023}; [Yang et al., [2024).

One major challenge of building an all-in-one visual generation model lies in the diversity of multi-
modal input formats and the variety of supported generation tasks. To address this, we design a
unified framework using a Diffusion Transformer generation model that accommodates a wide range
of inputs and tasks, empowering it to serve as an All-round Creator and Editor, which we refer to as
ACE. First, we analyze the condition inputs of most visual generation tasks, and define Condition
Unit (CU), which establishes a unified input paradigm consisting of core elements such as image,
mask, and textual instruction. Second, for those CUs containing multiple images, we introduce
Image Indicator Embedding to ensure the order of the images mentioned in instruction matches
image sequence within the CUs. Besides, we imply 3d position embedding instead of 2d spatial-level
position embedding on the image sequence, allowing for better exploring the relationships among
conditional images. Third, we concatenate the current CU with historical information from previous
generation rounds to construct the Long-context Condition Unit (LCU). By leveraging this chain of
generation information, we expect the model to better understand the user’s request and create the
desired image. As depicted in Fig.[T} ACE supports a range of generating and editing capabilities,
allowing it to accomplish complex and precise generation tasks through multi-turn instructions.

To address the issue of the absence of available training data for various visual generation tasks,
we establish a meticulous data collection and processing workflow to collect high-quality structured
CU data at a scale of 0.7 billion. For visual conditions, we collect image pairs by synthesizing
images from source images or by pairing images from large-scale databases. The former utilizes
powerful open-source models to edit images to meet specific requirements, such as changing styles

(Han et al.| 2024) or adding objects (Pan et al., 2024), while the latter involves clustering and
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Figure 2: The overview of all generation and editing task types supported by ACE. These tasks
are categorized into 8 basic types, multi-turn and long-context generation based on different input
conditions (in green) and are formulated using the proposed input paradigm as 3 formats (in blue).
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grouping images from extensive databases to provide sufficient real data, thereby minimizing the
risk of overfitting to the synthesized data distribution. For textual instructions, we first manually
construct instructions for diverse tasks by building templates or requesting LLMs, then optimize the
instruction construction process by training an end-to-end instruction-labeling multi-modal large
language model (MLLM) (Chen et al.,2024)), thereby enriching the diversity of the text instructions.

Our ACE provides more comprehensive coverage of tasks on a single model compared to previ-
ous approaches. Therefore, to thoroughly evaluate the performance of our generation model, we
construct an evaluation benchmark that encompasses the main tasks. This benchmark incorporates
inputs sourced from both the real world and model-generated data, supporting global and local edit-
ing tasks. It is larger in scale and broader in scope compared to previous benchmarks (Sheynin
et al., 2024; Zhang et al., [2023a). We conduct a user study to subjectively assess the quality of
images generated by our method and the adherence to instructions, revealing that our approach gen-
erally aligns more closely with human perception across the majority of tasks. We summarize our
main contributions as follows:

* We propose ACE, a unified foundational model framework that supports a wide range of visual
generation tasks. To our knowledge, this is the most comprehensive diffusion generation model to
date in terms of task coverage.

* By defining the CU for unifying multi-modal inputs across different tasks and incorporating long-
context CU, we introduce historical contextual information into visual generation tasks, paving
the way for ChatGPT-like dialog systems in visual generation.

* We design specific data construction pipelines for various tasks to enhance the quality and effi-
ciency of data collection, and we ensure the richness of multi-modal data through MLLM fine-
tuning for automated instruction labeling.

* We establish a more comprehensive evaluation benchmark compared to previous ones, cover-
ing the most known visual generation tasks. Evaluation results indicate that ACE demonstrates
notable competitiveness in specialized models while also exhibiting strong generalization capa-
bilities across a broader range of open tasks.

2 ALL-ROUND CREATOR AND EDITOR

ACE is an image creation and editing model based on the Diffusion Transformer that follows tex-
tual instructions. It establishes a unified framework that covers a wide range of tasks through the
definition of standard input paradigm and strategy for aligning multi-modal information. With this
exquisite design, the model is capable of handling various single tasks, multi-turn tasks, and long-
context tasks with historical information.
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2.1 PROBLEM DEFINITION

2.1.1 TASKS

When it comes to generation and editing, the input condition information varies significantly de-
pending on the specific task types. This encompasses a diverse range of forms, including textual
instructions, conditioning images in controllable generation, masks used in region editing, and im-
ages in guided generation, among others. We analyze and categorize these conditions from textual
and visual modalities respectively: (i) Textual modality: we refer to all types of textual condi-
tions as instructions and categorize them into Generating-based Instructions and Editing-based
Instructions, depending on whether they describe the content of the generated image directly or the
difference from the input visual cues; (ii) Visual modality: we categorize all generation tasks into
8 basic types, as shown in Fig.2]

» Text-guided Generation. It only uses generating-based text prompt as a condition to create
images, and none of the visual cues are adopted.

* Low-level Visual Analysis. It extracts low-level visual features from input images, such as edge
maps or segmentation maps. One source image and editing-based instruction are required in the
task to accomplish creation.

¢ Controllable Generation. It is the inverse task of Low-level Visual Analysis, which creates vivid
images based on given conditions, e.g., edge map, contour image, doodle image, scribble image,
depth map, segmentation map, low-resolution image, efc.

* Semantic Editing. It aims to modify some semantic attributes of an input image by providing
editing instructions, such as altering the style of an image or modifying the facial attributes of a
character.

* Element Editing. It focuses on adding, deleting, or replacing a specific subject in the image
while keeping other elements unchanged.

» Repainting. It erases and repaints partial image content of input image indicated by given mask
and instruction.

* Layer Editing. It decomposes an input image into different layers, each of which contains a
subject or background, or reversely fuses different layers.

* Reference Generation. It generates an image based on one or more reference images, analyzing
the common elements among them and presenting these elements in the generated image.

By leveraging the generation tasks of these fundamental units, we can combine them to create multi-
turn scenarios. Furthermore, utilizing the historical information from every round makes it possible
to tackle long-context visual generation tasks.

2.1.2 INPUT PARADIGM

A significant obstacle to implementing different types of generation and editing task requests within
one framework lies in the diverse input condition formats of tasks. To address this issue, we design
a unified input paradigm defined as Conditional Unit (CU) that fits as many tasks as possible. The
CUs composed of a textual instruction 7' that describes the generation requirements, along with
visual information V', where V' consists of a set of images I that can be defined as I = ) (if there
are no source image) or I = {I*, 12, ... I} (if there are source images) and corresponding masks
M = {M',M? ..., M~N}. When there is no specific mask, M is set to a blank image. The overall
formulation of the CU is as follows:

CU:{TvV}v V:{[113M1]7[12§M2]7"'7[IN§MN]}7 (1

where a channel-wise connection operation is performed between corresponding I and M, N rep-
resents the total number of visual information inputs for this task.

Furthermore, to better address the demands of complex long-context generation and editing, histor-
ical information can be optionally integrated into CU, which is formulated as:

LCU’L - {{E,m’ ,I’ifm+17 e 7Ti}; {wfmv ‘/;7717,4»17 ooy ‘/;}} (2)

where m denotes the maximum number of rounds of historical knowledge introduced in the current
request. LCU; is a Long-context Condition Unit used to generate desired content for the i-th request.
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(a) Overall Architecture of ACE. (b) Detailed Illustration of Main Blocks.

Figure 3: The illustration of ACE framework. Condition Tokenizing module tokenizes each input
CU, concatenating them to obtain the visual token sequence and the text token sequence. The
Image Indicator Embedding module employs pre-defined textual tokens to indicate the image order
in textual instructions and distinguish various input images. The Long-context Attention Block
ensures effective communication and integration of long-context sequences.

2.2 ARCHITECTURE

In this section, we introduce a unified visual generation framework that can perform all visual gen-
eration tasks within a single model, and incorporate long-context conditions to enhance compre-
hension. As illustrated in Fig. E}i the overall framework is built based on a Diffusion Transformer
model (Vaswani et al., 2017; |Peebles & Xiel [2023)), and integrated with three novel components to
achieve unified generation: Condition Tokenizing, Image Indicator Embedding, and Long-context
Attention Block. We will provide a detailed description of them below.

Condition Tokenizing. Considering an LCU that comprises M CUs, the model involves three entry
points for each CU: a language model (T5) (Raffel et al., |2020) to encode textual instructions, a
Variational Autoencoder (VAE) (Kingma & Welling, 2014) to compress reference image to latent
representation, and a down-sampling module to resize mask to the shape of corresponding latent im-
age. The latent image and its mask (an all-one mask if no mask is provided) are concatenated along
the channel dimension. These image-mask pairs are then patchified into 1-dimensional visual token
Sequences U, n,p, where m, n are indexes for CUs and visual information Vs in each CU, while p
denotes the spatial index in patchified latent images. Similarly, textual instructions are encoded into
1-dimensional token sequences y,,. After processing within each CU, we separately concatenate all
visual token sequences and all textual token sequences to form a long-context sequence.

Image Indicator Embedding. As illustrated as Fig. 3p, to indicate the image order in tex-
tual instructions and distinguish various input images, we encode some pre-defined textual tokens
“{image}, {imagel}, ..., {imageN}” into T5 embeddings as Image Indicator Embeddings (/-Emb).
These indicator embeddings are added to the corresponding image embedding sequence and text
embedding sequence, which is formulated as:

y;n,n = Ym + I'Embm,na 3)

u, = Uy pp + I-Emb,, . 4)

m,n,p
In this way, image indicator tokens in textual instructions and the corresponding images are implic-
itly associated.

Long-context Attention Block. Given the long-context visual sequence, we first modulate it
with the time step embedding (7-Emb), then incorporate a 3D Rotational Positional Encodings
(RoPE) (Su et al 2023)) to differentiate between different spatial- and frame-level image embed-
dings. During the Long Context Self-Attention, all image embeddings of each CU at each spatial
location, are equivalently and comprehensively interact with each other by u = Atén(u’, v’). Next,
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Figure 4: The pipeline of dataset construction and instructions labeling. In data construction,
two methods are utilized: synthesizing using open-source expert models and mining from large-
scale data. For instruction labeling, we combined templating with MLLM labeling, further training
the Instruction Captioner to achieve large-scale instruction labeling.

unlike the cross-attention layer of the conventional Diffusion Transformer model, where each visual
token attends to all of the textual tokens, we implement cross-attention operation with each condi-
tion unit. That means image tokens in m-th CU will only attend to the textual tokens from the same
CU. This can be formulated as:

T = AN (L s Yoy ) - 5)

This ensures that, within the cross-attention layer, the text embeddings and image embeddings align
on a frame-by-frame basis.

3 DATASETS

3.1 PAIR DATA COLLECTION

A critical challenge of training foundational visual generation model lies in how to acquire pair-
wise images for various tasks. In this section, we introduce two ways to efficiently build high-
quality datasets for most of the generation and editing tasks: (i) Synthesizing from source image:
thanks to the rapid development in the field of visual generation, there have been many of powerful
open-source models designed to solve one specific problem. Leveraging these powerful single-point
technologies, we could synthesis plenty of image pairs for lots of generation and editing tasks,
such as controllable generation, style editing, object editing, and so on. (ii) Pairing from massive
databases: though the synthesis-based method is efficient and straightforward in acquiring pairwise
data. However, It still possesses two drawbacks. First, some editing problems have not been fully ex-
plored, and there are no powerful open-source models available for these tasks. Second, using only
synthetic data can easily cause over-fitting and reduce the quality of generated images. Therefore,
it is essential to provide sufficient real data to address the aforementioned drawbacks. We propose
a hierarchically aggregating pipeline for pairing content-related images from massive databases to
build pairs of data for training, as illustrated in Fig. d] We first extract semantic features using
SigLIP (Zhai et al 2023) from large-scale datasets (e.g., LAION-5B (Schuhmann et al.| |2022),
Openlmages (Openlmagel 2023), and our private datasets). Then leveraging K-means clustering
technology, coarse-grained clustering is implemented to divide all images into tens of thousands of
clusters. Within each cluster, we implement a two-turn union-find algorithm to achieve fine-grained
image aggregation. The first turn is based on the SigLIP feature and the second turn uses a similarity
score tailored for specific tasks. For instance, we calculate the face similarity score for the facial
editing task and the object consistency score for the general editing task. Finally, we collect all
possible pairs from each disjoint set and implement cleaning strategies to filter high-quality pairs.
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Benefiting from these two automatic pipelines, we construct a large-scale training dataset that con-
sists of nearly 0.7 billion image pairs, covering 8 basic types of tasks, multi-turn and long-context
generation. We depict its distribution in Fig.[6]and provide a detailed description of the specific data
construction methods for each task, please refer to appendix

3.2 INSTRUCTIONS

In addition to collecting image pairs, it is essential to label clear natural language instructions that
indicate how to transform one image into another. Compared to the caption generation commonly
used in text-to-image task, instruction labeling is generally more challenging, as it requires analyzing
not only the semantics of individual images, but also the discrepancies across multiple images. We
employ both Template-based and MLLM-based methods to tackle this challenge. Template-based
method constructs instruction templates for specific vision tasks by leveraging human knowledge
priors. However, the instructions generated by this method lack diversity, which can lead to signifi-
cant overfitting problems. MLLM-based method generates unique instructions for each given editing
pair, leveraging off-the-shelf MLLMs. Nonetheless, current MLLMs exhibit limitations in produc-
ing precise instructions for editing tasks involving non-natural images, such as depth-controlled
image generation and image segmentation. Thus, we combine these two methods and design an
effective strategy to mitigate the aforementioned drawbacks. For tasks that contain non-natural im-
ages, we utilize a template-based method to generate instruction templates. These templates are
then combined with the generated captions to produce the final instructions. To address the issue of
insufficient diversity, we employ LLMs to reformulate instructions multiple times, and tune prompts
to ensure that each rewritten version is distinct from all preceding instructions. For tasks that con-
tain natural images, we employ an MLLM to predict the differences and commonalities between
the images in the input pair. Then an LLM is used to generate instructions focusing on semantic
distinctions according to the analysis of the differences and commonalities. Further, the collected
instructions generated by these two methods undergo human annotation and correction. The revised
instructions are used for fine-tuning an open-source MLLM, enabling it to predict instructions for
any given image pair. Specifically, we collect a dataset of approximately 800,000 curated instruc-
tions and train an Instruction Captioner by fine-tuning the InternVL2-26B (Chen et al., [2024).
Once trained, the Instruction Captioner is able to take any two images as input and generates the
instruction for transforming the source image to the target image. It can also be further extended
to the processing of cluster data, by entering a set of images, obtaining the similarity description
among images within the cluster, and the differences between each pair within the cluster. The
above process is illustrated in Fig.[]

4 EXPERIMENTS

4.1 BENCHMARKS AND METRICS

Existing Benchmarks. We first evaluate on the commonly used benchmark MagicBrush (Zhang
et al.| 2023a). It contains an overall 1,053 edit turns and 535 edit sessions for single-turn and multi-
turn image editing respectively. It compares the output images with groundtruth images and the
provided target text descriptions. Following the setting proposed in the MagicBrush benchmark,
we calculate the L1 distance, L2 distance, CLIP (Radford et al.,[2021) similarity, DINO (Liu et al.,
2023a)) similarity between the generated image and groundtruth image, and CLIP similarity between
the generated image and textual prompt. We also evaluate the Emu Edit benchmark (Sheynin et al.,
2024), please see appendix [F| for details.

ACE Benchmark. To thoroughly evaluate the performance of various visual generation tasks, we
build a benchmark dataset that covers all types of tasks the aforementioned. ACE benchmark
consists of both real and generated images. The real images are primarily sourced from the MS-
COCO (Lin et al., [2014])) dataset and the generated images are created by Midjourney (Midjourney),
2023)), using prompts obtained from JourneyDB (Sun et al.| 2023a)). For each task type, we manu-
ally craft instructions and masks to closely resemble actual user input patterns, reaching a total of
12,000 entries. The detailed statistics of ACE benchmark can be found in Fig. We evaluate
image quality and prompt following scores through a user study. The image quality score assesses
the aesthetic quality of the generated images, while the prompt following score measures how well
the images align with the provided textual instructions.
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Table 1: Results on the MagicBrush benchmark. LC denotes long-context generation with history.

Settings Methods L1 L2 CLIP-IT DINOT CLIP-T1
Global Description-guided

SD-SDEdit (Meng et al.,|2021) 0.1014 0.0278 0.8526 0.7726 0.2777
Null Text Inversion (Mokady et al.|[2022) 0.0749 0.0197 0.8827 0.8206 0.2737
GLIDE (Nichol et al.}|2022) 3.4973 115.8347 0.9487 0.9206 0.2249

E Blended Diffusion (Avrahami et al.}[2022) 3.5631 119.2813 0.9291 0.8644 0.2622

T ACE (Ours) 0.0505 0.0160 0.9436 0.9184 0.2833

)

% Instruction-guided
HIVE (Zhang et al.,[2024) 0.1092 0.0380 0.8519 0.7500 -
InstructPix2Pix (Brooks et al.,[2023) 0.1122 0.0371 0.8524 0.7428 0.2764
MagicBrush (Zhang et al.[[2023a) 0.0625 0.0203 0.9332 0.8987 0.2781
UltraEdit (Zhao et al.|[2024) 0.0575 0.0172 0.9307 0.8982 -
ACE (Ours) 0.0507 0.0165 0.9453 0.9215 0.2841

Global Description-guided

SD-SDEdit (Meng et al.,|2021) 0.1616 0.0602 0.7933 0.6212 0.2694
Null Text Inversion (Mokady et al.|[2022) 0.1057 0.0335 0.8468 0.7529 0.2710
GLIDE (Nichol et al.[[2022) 11.7487 1079.5997 0.9094 0.8494 0.2252
Blended Diffusion (Avrahami et al.}[2022) 14.5439 1510.2271 0.8782 0.7690 0.2619
ACE (Ours) 0.0778 0.0290 0.9124 0.8611 0.2843

£ ACE (Ours w/ LC) 0.0768 0.0285 0.9136 0.8635 0.2819

E]

ol Instruction-guided

E HIVE (Zhang et al.|[2024) 0.1521 0.0557 0.8004 0.6463 0.2673
InstructPix2Pix (Brooks et al.}[2023) 0.1584 0.0598 0.7924 0.6177 0.2726
MagicBrush (Zhang et al.}|2023a) 0.0964 0.0353 0.8924 0.8273 0.2754
UltraEdit (Zhao et al.|[2024) 0.0745 0.0236 0.9045 0.8505 -
ACE (Ours) 0.0773 0.0293 0.9128 0.8661 0.2855
ACE (Ours w/ LC) 0.0761 0.0284 0.9140 0.8668 0.2809

4.2 QUALITATIVE EVALUATION

In our qualitative evaluation, we present a comparison of our method with SOTA approaches across
various tasks, including ControlNet (Zhang et al., 2023b)), InstructPix2Pix (Brooks et al., [2023)),
MagicBrush (Zhang et al., [2023a)), CosXL (StabilityAl, 2024), SEED-X Edit (Ge et al., 2024a),
UltraEdit (Zhao et al.,[2024)), StyleBooth (Han et al.|[2024), SDEdit (Meng et al.,|2021), LoRA (Hu
et al., 2022), SD-Inpaint (Al [2022b), LaMa (Suvorov et al., 2022), IP-Adapter (Ye et al., [2023)),
InstantID (Wang et al.l [2024b), FaceChain (Liu et al., 2023b)), AnyText (Tuo et al.| 2023), UDift-
Text (Zhao & Lian, 2024). In Fig.[5] we present qualitative comparisons between our single ACE
model and 16 other methods across 12 subtasks. Overall, our method not only addresses a diverse
range of tasks but also performs superior compared to task-specific methods. Additionally, we also
show some extra tasks that the comparison methods do not perform well in the last three lines. Please
see appendix [Hl for more examples of qualitative evaluation.

4.3  QUANTITATIVE EVALUATION

Evaluation on Existing Benchmarks. We first compare our method with baselines on the Mag-
icBrush benchmark. Results are present on Tab. [I] For single-turn image editing, ACE significantly
outperforms other methods under an instruction-guided setting while demonstrating comparable per-
formance under a description-guided setting. For each setting of multi-turn image editing, we first
employ the same inference way as MagicBrush, performing independent and continuous edits on a
single image. The results show that our approach has significant advantages. Furthermore, we con-
struct a long sequence using the historical information from each editing round, achieving a certain
improvement in performance compared to not using it. This also demonstrates the effectiveness of
LCU and architecture design.

Evaluation on ACE Benchmark. We conduct a comprehensive human evaluation using our bench-
mark to assess the performance of generated images, employing image scoring as the evaluation
metric. Specifically, we score each image considering two aspects: prompt following and image
quality. The prompt following metric measures the image compliance with text instructions or text
descriptions, and is categorized into five levels. The image quality metric encompasses various as-
pects such as generated color, details, layout, and visual appeal, and is scored on a scale from 1 to 5.
Considering the broad capabilities of our method, we compare it with several common approaches
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Table 2: User study results on ACE benchmark. For each method in every supported task, we
evaluate both prompt following and image quality, reporting the two scores in a single cell, separated

by a “/”. “-” means this task does not exist or is not supported by the current method.

Txt2img Controllable Semantic Element Repainting

= 5 — = = = - -
g = = 35 % = i) = g

Sle g 2 4|y 2 By 2% % ¢

5 3 S < =4

= S a4 a4 &£|& & S| =& 2 &£ |= 8

[ ] L] L]
Global Editing

SD1.5 (AI}2022a) 3.3/22 - - - - - - - - - -
SDXL (StabilityAlL |2022) 4.1/2.8 - - - - - - - - - - - -
CtrINet (Zhang et al.||2023b) - 2.5/2.03.8/2.41.9/2.02.9/1.9| - - - - - - - - -
StyleBooth (Han et al.;|2024) - - - - - - 3326 - - - - - - -
IP-Adapter (Ye et al.|[2023) - - - - - 2022 - 1.7/2.5 - - - - - -
InstantID (Wang et al.}|2024b) - - - - - 2527 - - - - - - - -
FaceChain (Liu et al.,[2023b) - 2.03.0 - - - -

SDEdit (Meng et al.}|12021)
IP2P (Brooks et al.}[2023)
MB (Zhang et al.}[2023a)
SEED-X (Ge et al.}[2024b)
CosXL (StabilityAl} [2024)
UltraEdit (Zhao et al.|[2024)
ACE (Ours)

1.4/1.9 1.3/1.8 1.1/1.6 1.2/1.4
1.9/2.0 1.7/2.0 1.5/2.3 1.4/1.4
1.3/1.8 1.3/1.7 1.3/1.9 1.1/1.3
1.6/2.1 1.7/2.0 1.7/2.2 1.5/1.5
4.1/2.9 4.1/2.8 2.6/2.9 3.7/2.1
1.7/2.2 1.2/1.8 1.3/2.3 1.1/1.3
4.6/2.7 4.5/2.8 4.8/2.9 4.1/2.3

1.3/2.1 1.1/1.7 1.5/2.1
2312424252224
24023 1.4/2.02.2/2.3
2.0/2.72.2/2.5 2.1/2.7
2.9/3.13.2/3.0 3.2/2.9
23/252.1/2.4 2.6/2.5
2.8/2.82.4/2.6 2.1/2.5

1.1/22 1.1/1.7 1.5/2.1 1.1/2.0
1.1/2.6 1.3/2.6 2.0/2.4 1.5/2.4
1.5/2.42.2/2.53.1/222.1/2.4
1.3/2.6 2.1/2.6 1.9/2.6 2.5/2.4
1.4/2.71.0/2.9 2.8/2.5 1.1/3.1
1.7/2.6 1.1/2.7 2.7/12.3 1.5/2.6
2.8/2.7 4.4/2.9 2.6/2.4 3.9/2.5

Local Editing

3.6/2.8 45128
2.6/2.6 1.6/2.72.2/2.5
2.9/2.7 1.9/2.5 2.6/2.2

1.6/2.33.0/2.4
3.6/2.6
3.0/2.13.2/2.1

LaMa (Suvorov et al.}[2022)
SDInpaint (AI}[2022b)
CtrINet (Zhang et al.|[2023b)

AnyText (Tuo et al.[2023) - - - - - - - - 13.527 - - - - -
UDiffText (Zhao & Lian}[2024) - - - - - - - - [3.627 - - - - -

UltraEdit (Zhao et al.|[2024) - 1.4/1.91.2/1.81.220 - - - - |1.1/2.8 1.2/2.9 2.9/2.5 1.4/2.5|1.1/1.7 1.1/2.1
ACE (Ours) - 4.8/2.6 4.3/2.5 4.8/2.6 - - - - |4.5/2.94.5/2.9 3.7/2.5 4.3/2.5|4.4/2.7 4.6/2.8

and some experts designed for specific tasks. We engaged 5 professional designers as evaluators to
carry out these assessments. For each task, the data is evenly distributed among the evaluators in an
anonymous manner, and scores are aggregated for analysis.

As shown in Tab.[2] we compare our approach across multiple global editing tasks and local editing
tasks. The prompt following score and image quality score are presented together, separated by a “/”
pattern. The bold numbers represent the best, and the underlined numbers indicate the second best.
Our method achieves the highest prompt following scores in 7 of 12 global editing tasks and 8 of 10
local editing tasks, which demonstrates that ACE fully understands the intention of the instruction
and is able to correctly generate an image that meets the instruction. Furthermore, ACE achieves
the best image quality scores in 5 of 10 global editing tasks and 7 of 10 local editing tasks. These
results indicate that ACE excels at generating high aesthetic images across various image editing
tasks. Nonetheless, our method performs unsatisfactorily in certain tasks, such as general editing
and style editing. One possible reason is that images generated by methods using larger models,
such as those producing 1024-resolution images based on the SDXL model, are more preferred by
evaluators compared to those produced by our model, which has a size of 0.6B parameters and an
output resolution of around 512.

5 CONCLUSION

We propose ACE, a versatile foundational generative model that excels at creating images, and
following instructions across a wide range of generative tasks. Users can specify their generation
intentions through customized text prompts and image inputs. Furthermore, we advance the explo-
ration of capabilities within interactive dialogue scenarios, marking a significant step forward in the
processing of long contextual historical information in the field of visual generation. Our work aims
to provide a comprehensive generative model for the public and professional designers, serving as a
productivity enhancement tool to foster innovation and creativity.
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Hong, You Wu, Jixuan Chen, Yuwei Wang, and Sheng Yao for their data contributions, and Lianghua
Huang, Kai Zhu, and Yutong Feng for their discussions, suggestions, and the sharing of resources.

10



Published as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, et al. Phi-3 Technical Report: A Highly Capable Language
Model Locally on Your Phone. arXiv preprint arXiv:2404.14219, 2024.

Runway AI. Stable Diffusion v1.5 Model Card, https://huggingface.co/runwayml/
stable-diffusion-v1-5,2022a.

Runway AL Stable Diffusion Inpainting Model Card, https://huggingface.co/
runwayml /stable-diffusion—-inpainting, 2022b.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
et al. PaLM 2 Technical Report. arXiv preprint arXiv:2305.10403, 2023.

Anthropic. Introducing  Claude, https://www.anthropic.com/index/
introducing-claude., 2023a.

Anthropic. Claude 2. Technical report, https://www—files.anthropic.com/
production/images/Model—-Card-Claude—-2.pdf, 2023b.

Anthropic.  The Claude 3 Model Family: Opus, Sonnet, Haiku, https://www-cdn.
anthropic.com/de8ba9b0lc9ab7cbabf5c33b80b7bbc618857627/Model__
Card_Claude_3.pdf, 2024.

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended Diffusion for Text-driven Editing of
Natural Images. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 18208—18218, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao
Liu, Chengqgiang Lu, Keming Lu, et al. Qwen Technical Report. arXiv preprint arXiv:2309.16609,
2023.

Rumeysa Bodur, Erhan Gundogdu, Binod Bhattarai, Tae-Kyun Kim, Michael Donoser, and Loris
Bazzani. iEdit: Localised Text-guided Image Editing with Weak Supervision. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 7426-7435, 2024.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. InstructPix2Pix: Learning To Follow Image
Editing Instructions. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 18392-18402, 2023.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, et al. Language Models are Few-Shot Learn-
ers. arXiv preprint arXiv:2005.14165, 2020.

John Canny. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach.
Intell., pp. 679-698, 1986.

Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. OpenPose: Realtime
Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach.
Intell., 43(1):172-186, 2021. ISSN 0162-8828, 2160-9292, 1939-3539.

Caroline Chan, Frédo Durand, and Phillip Isola. Learning To Generate Line Drawings That Convey
Geometry and Semantics. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 7915-7925, 2022.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. PixArt-«: Fast Training of Diffusion Transformer
for Photorealistic Text-to-Image Synthesis. arXiv preprint arXiv:2310.00426, 2023a.

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. AnyDoor:
Zero-shot Object-level Image Customization. arXiv preprint arXiv:2307.09481, 2023b.

11


https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-v1-5
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://www.anthropic.com/index/ introducing-claude.
https://www.anthropic.com/index/ introducing-claude.
https://www-files. anthropic.com/production/images/Model-Card-Claude-2.pdf
https://www-files. anthropic.com/production/images/Model-Card-Claude-2.pdf
https://www-cdn.anthropic.com/ de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/ de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/ de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

Published as a conference paper at ICLR 2025

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. InternVL:
Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks. In IEEE
Conf. Comput. Vis. Pattern Recog., pp. 24185-24198, 2024.

Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul Choo. VITON-HD: High-Resolution
Virtual Try-On via Misalignment-Aware Normalization. In IEEE Conf. Comput. Vis. Pattern
Recog., pp. 14131-14140, 2021.

Alibaba Cloud. Tongyi Wanxiang, https://tongyi.aliyun.com/wanxiang, 2023.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. ArcFace: Additive Angular Margin
Loss for Deep Face Recognition. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 4690—4699,
2019a.

Jiankang Deng, Jia Guo, Debing Zhang, Yafeng Deng, Xiangju Lu, and Song Shi. Lightweight Face
Recognition Challenge. In Int. Conf. Comput. Vis., pp. 0-0, 2019b.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu,
Yehua Yang, Qingqging Dang, and Haoshuang Wang. PP-OCR: A Practical Ultra Lightweight
OCR System. arXiv preprint arXiv:2009.09941, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, et al. The Llama
3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling Rectified Flow
Transformers for High-Resolution Image Synthesis. In Int. Conf. Mach. Learn., 2024.

FLUX. FLUX, https://blackforestlabs.ai/, 2024.

Yuying Ge, Sijie Zhao, Chen Li, Yixiao Ge, and Ying Shan. SEED-Data-Edit Technical Report: A
Hybrid Dataset for Instructional Image Editing. arXiv preprint arXiv:2405.04007, 2024a.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and
Ying Shan. SEED-X: Multimodal Models with Unified Multi-granularity Comprehension and
Generation. arXiv preprint arXiv:2404.14396, 2024b.

Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng
Zhang, Houqiang Li, Han Hu, Dong Chen, and Baining Guo. InstructDiffusion: A Generalist
Modeling Interface for Vision Tasks. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 12709-
12720, 2024.

Zhen Han, Chaojie Mao, Zeyinzi Jiang, Yulin Pan, and Jingfeng Zhang. StyleBooth: Image Style
Editing with Multimodal Instruction. arXiv preprint arXiv:2404.12154, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In Int. Conf. Learn.
Represent., 2022.

Jiehui Huang, Xiao Dong, Wenhui Song, Hanhui Li, Jun Zhou, Yuhao Cheng, Shutao Liao, Long
Chen, Yiqiang Yan, Shengcai Liao, and Xiaodan Liang. ConsistentID: Portrait Generation with
Multimodal Fine-Grained Identity Preserving. arXiv preprint arXiv:2404.16771, 2024a.

Lianghua Huang, Di Chen, Yu Liu, Yujun Shen, Deli Zhao, and Jingren Zhou. Composer: Creative
and Controllable Image Synthesis with Composable Conditions. In Int. Conf. Mach. Learn., 2023.

Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
Zhou, Chao Dong, Rui Huang, Ruimao Zhang, and Ying Shan. SmartEdit: Exploring Com-
plex Instruction-based Image Editing with Multimodal Large Language Models. In IEEE Conf.
Comput. Vis. Pattern Recog., pp. 8362-8371, 2024b.

12


https://tongyi.aliyun.com/wanxiang
https://blackforestlabs.ai/

Published as a conference paper at ICLR 2025

Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and Kai
Chen. RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose. arXiv preprint
arXiv:2303.07399, 2023.

Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. SCEdit: Efficient and
Controllable Image Diffusion Generation via Skip Connection Editing. In IEEE Conf. Comput.
Vis. Pattern Recog., pp. 8995-9004, 2024.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In Int. Conf. Learn.
Represent., 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollér, and Ross Girshick.
Segment Anything. In Int. Conf. Comput. Vis., pp. 4015-4026, 2023.

KOLORS. KOLORS, https://github.com/Kwai-Kolors/Kolors) 2024.

Pengzhi Li, QInxuan Huang, Yikang Ding, and Zhiheng Li. LayerDiffusion: Layered Controlled
Image Editing with Diffusion Models. arXiv preprint arXiv:2305.18676, 2023.

Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang
Zhang, Xingchao Liu, Minbin Huang, Zedong Xiao, et al. Hunyuan-DiT: A Powerful Multi-
Resolution Diffusion Transformer with Fine-Grained Chinese Understanding. arXiv preprint
arXiv:2405.08748, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In Eur. Conf.
Comput. Vis., pp. 740-755, 2014.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: Marrying DINO with Grounded
Pre-Training for Open-Set Object Detection. arXiv preprint arXiv:2303.05499, 2023a.

Yang Liu, Cheng Yu, Lei Shang, Yongyi He, Ziheng Wu, Xingjun Wang, Chao Xu, Haoyu Xie,
Weida Wang, Yuze Zhao, Lin Zhu, Chen Cheng, Weitao Chen, Yuan Yao, Wenmeng Zhou, Jiaqi
Xu, Qiang Wang, Yingda Chen, Xuansong Xie, and Baigui Sun. FaceChain: A Playground
for Human-centric Artificial Intelligence Generated Content. arXiv preprint arXiv:2308.14256,
2023b.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In Int. Conf. Learn.
Represent., 2018.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. In Int. Conf.
Learn. Represent., 2021.

Midjourney. Midjourney, https://www.midjourney.com, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text Inversion for
Editing Real Images using Guided Diffusion Models. In IEEE Conf. Comput. Vis. Pattern Recog.,
pp. 60386047, 2022.

Davide Morelli, Matteo Fincato, Marcella Cornia, Federico Landi, Fabio Cesari, and Rita Cucchiara.
Dress Code: High-Resolution Multi-Category Virtual Try-On. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 22302234, New Orleans,
LA, USA, June 2022. IEEE. ISBN 978-1-66548-739-9. doi: 10.1109/CVPRW56347.2022.00243.
URL https://ieeexplore.ieee.org/document/9857214/.

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and

Xiaohu Qie. T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-
Image Diffusion Models. arXiv preprint arXiv:2302.08453, 2023.

13


https://github.com/Kwai-Kolors/Kolors
https://www.midjourney.com
https://ieeexplore.ieee.org/document/9857214/

Published as a conference paper at ICLR 2025

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing
with Text-Guided Diffusion Models. arXiv preprint arXiv:2112.10741, 2022.

OpenAl. DALL-E 2, https://openai.com/dall-e-2} 2022.

OpenAl. DALL-E 3, https://openai.com/dall-e-3} 2023a.

OpenAl. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774, 2023b.

OpenAl. Hello GPT-40, https://openai.com/index/hello-gpt—40/} 2024.

Openlmage.  Openlmage, https://storage.googleapis.com/openimages/web/
index.html, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, et al. Training language models to follow instructions
with human feedback. In Adv. Neural Inform. Process. Syst., pp. 27730-27744, 2022.

Yulin Pan, Chaojie Mao, Zeyinzi Jiang, Zhen Han, and Jingfeng Zhang. Locate, Assign,
Refine: Taming Customized Image Inpainting with Text-Subject Guidance. arXiv preprint
arXiv:2403.19534, 2024.

William Peebles and Saining Xie. Scalable Diffusion Models with Transformers. In Int. Conf.
Comput. Vis., pp. 4195-4305, 2023.

Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Car-
los Niebles, Caiming Xiong, Silvio Savarese, Stefano Ermon, Yun Fu, and Ran Xu. UniCon-
trol: A Unified Diffusion Model for Controllable Visual Generation In the Wild. arXiv preprint
arXiv:2305.11147,2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. arXiv
preprint arXiv:2103.00020, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. J. Mach. Learn. Res., pp. 1-67, 2020.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards Ro-
bust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-Dataset Transfer. IEEE
Trans. Pattern Anal. Mach. Intell., pp. 1623-1637, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE Conf. Comput. Vis. Pattern
Recog., pp. 10684-10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. In
IEEE Conf. Comput. Vis. Pattern Recog., pp. 22500-22510, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
imans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image Dif-
fusion Models with Deep Language Understanding. In Adv. Neural Inform. Process. Syst., 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W. Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa R. Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmar-
czyk, and Jenia Jitsev. LAION-5B: An open large-scale dataset for training next generation
image-text models. In Adv. Neural Inform. Process. Syst., 2022.

14


https://openai.com/dall-e-2
https://openai.com/dall-e-3
https://openai.com/index/hello-gpt-4o/
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html

Published as a conference paper at ICLR 2025

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
and Yaniv Taigman. Emu Edit: Precise Image Editing via Recognition and Generation Tasks. In
IEEE Conf. Comput. Vis. Pattern Recog., pp. 8871-8879, 2024.

Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent Y. F.
Tan, and Song Bai. DragDiffusion: Harnessing Diffusion Models for Interactive Point-based
Image Editing. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 8839-8849, 2024.

Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geip-
ing, Abhinav Shrivastava, and Tom Goldstein. Measuring Style Similarity in Diffusion Models.
arXiv preprint arXiv:2404.01292, 2024.

StabilityAl. Stable Diffusion XL Model Card, https://huggingface.co/stabilityai/
stable-diffusion-xl-base-1.0,2022.

StabilityAl. CosXL Model Card, https://huggingface.co/stabilityai/cosxl,
2024.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding. arXiv preprint arXiv:2104.09864, 2023.

Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
Zhou, Zipeng Qin, Yi Wang, Jifeng Dai, Yu Qiao, Limin Wang, and Hongsheng Li. JourneyDB:
A Benchmark for Generative Image Understanding. In Adv. Neural Inform. Process. Syst., 2023a.

Ya Sheng Sun, Yifan Yang, Houwen Peng, Yifei Shen, Yuqing Yang, Han Hu, Lili Qiu, and Hideki
Koike. ImageBrush: Learning Visual In-Context Instructions for Exemplar-Based Image Manip-
ulation. In Adv. Neural Inform. Process. Syst., 2023b.

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-Robust Large Mask Inpainting With Fourier Convolutions. In IEEE Winter Conf.
Appl. Comput. Vis., pp. 2149-2159, 2022.

Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, and Xuansong Xie. AnyText: Multilin-
gual Visual Text Generation and Editing. In Int. Conf. Learn. Represent., 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Adv. Neural Inform. Pro-
cess. Syst., 2017.

Haofan Wang, Matteo Spinelli, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. In-
stantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation. arXiv preprint
arXiv:2404.02733, 2024a.

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. InstantID: Zero-shot Identity-
Preserving Generation in Seconds. arXiv preprint arXiv:2401.07519, 2024b.

Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-ESRGAN: Training Real-World
Blind Super-Resolution with Pure Synthetic Data. In Int. Conf. Comput. Vis., pp. 1905-1914,
2021.

Zhizhong Wang, Lei Zhao, and Wei Xing. StyleDiffusion: Controllable Disentangled Style Transfer
via Diffusion Models. In Int. Conf. Comput. Vis., pp. 7677-7689, 2023.

Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. SmartBrush: Text and Shape
Guided Object Inpainting With Diffusion Model. In IEEE Conf. Comput. Vis. Pattern Recog., pp.
22428-22437, 2023.

Yunyang Xiong, Bala Varadarajan, Lemeng Wu, Xiaoyu Xiang, Fanyi Xiao, Chenchen Zhu, Xiao-
liang Dai, Dilin Wang, Fei Sun, Forrest Iandola, Raghuraman Krishnamoorthi, and Vikas Chan-
dra. EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything. In
IEEE Conf. Comput. Vis. Pattern Recog., pp. 16111-16121, 2023.

15


https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/cosxl

Published as a conference paper at ICLR 2025

Jiacong Xu, Zixiang Xiong, and Shankar P. Bhattacharyya. PIDNet: A Real-time Semantic Seg-
mentation Network Inspired by PID Controllers. In IEEE Conf. Comput. Vis. Pattern Recog., pp.
19529-19539, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
et al. Qwen2 Technical Report. arXiv preprint arXiv:2407.10671, 2024.

Yukang Yang, Dongnan Gui, Yuhui Yuan, Weicong Liang, Haisong Ding, Han Hu, and Kai Chen.
GlyphControl: Glyph Conditional Control for Visual Text Generation. In Adv. Neural Inform.
Process. Syst., 2023.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. IP-Adapter: Text Compatible Image Prompt
Adapter for Text-to-Image Diffusion Models. arXiv preprint arXiv:2308.06721, 2023.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid Loss for Language
Image Pre-Training. In Int. Conf. Comput. Vis., pp. 11975-11986, 2023.

Han Zhang, Weichong Yin, Yewei Fang, Lanxin Li, Bogiang Duan, Zhihua Wu, Yu Sun, Hao Tian,
Hua Wu, and Haifeng Wang. ERNIE-ViLG: Unified Generative Pre-training for Bidirectional
Vision-Language Generation. arXiv preprint arXiv:2112.15283, 2021.

Hua Zhang, Si Liu, Changqing Zhang, Wenqi Ren, Rui Wang, and Xiaochun Cao. SketchNet:
Sketch Classification with Web Images. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 1105—
1113, 2016a.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. MagicBrush: A Manually Annotated
Dataset for Instruction-Guided Image Editing. In Adv. Neural Inform. Process. Syst., 2023a.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. Joint Face Detection and Alignment
Using Multitask Cascaded Convolutional Networks. IEEE Sign. Process. Letters, pp. 1499-1503,
2016b.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding Conditional Control to Text-to-Image
Diffusion Models. In Int. Conf. Comput. Vis., pp. 3836-3847, 2023b.

Shu Zhang, Xinyi Yang, Yihao Feng, Can Qin, Chia-Chih Chen, Ning Yu, Zeyuan Chen, Huan
Wang, Silvio Savarese, Stefano Ermon, Caiming Xiong, and Ran Xu. HIVE: Harnessing Human
Feedback for Instructional Visual Editing. In IEEE Conf. Comput. Vis. Pattern Recog., pp. 9026—
9036, 2024.

Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin,
Tong Luo, Yaqian Li, Shilong Liu, Yandong Guo, and Lei Zhang. Recognize Anything: A Strong
Image Tagging Model. arXiv preprint arXiv:2306.03514, 2023c.

Haozhe Zhao, Xiaojian Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu, Minjia
Zhang, Qing Li, and Baobao Chang. UltraEdit: Instruction-based Fine-Grained Image Editing at
Scale. arXiv preprint arXiv:2407.05282v1, 2024.

Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
Yee K. Wong. Uni-ControlNet: All-in-One Control to Text-to-Image Diffusion Models. In Adyv.
Neural Inform. Process. Syst., 2023.

Yiming Zhao and Zhouhui Lian. UDiffText: A Unified Framework for High-quality Text Synthesis
in Arbitrary Images via Character-aware Diffusion Models. In Eur. Conf. Comput. Vis., 2024.

16



	Introduction
	All-Round Creator and Editor
	Problem Definition
	Tasks
	Input Paradigm

	Architecture

	Datasets
	Pair Data Collection
	Instructions

	Experiments
	Benchmarks and Metrics
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion
	Related Work
	Datasets Detail
	Text-guided Generation
	Low-level Visual Analysis
	Controllable Generation
	Semantic Editing
	Facial Editing
	Style Editing
	General Editing

	Element Editing
	Text Editing
	Object Editing

	Repainting
	Unconditional Inpainting
	Text-guided Inpainting
	Outpainting

	Layer Editing
	Reference Generation
	Multi-Reference Generation
	Reference-Guided Editing

	Multi-turn and Long-context Generation

	Benchmark Details
	Architecture Design
	Implementation Details
	More Experiments
	Application
	Workflow Distillation
	Chat Bot

	More Visualization
	Discussion



