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1 MNIST RUNTIME COMPARISON

Figure 1: MNIST Compression and Classification time comparison In the Compression comparison
figure on the left, the difference between OTC and our compression time is remarkable on MNIST.
Also, for the smallest compression ratio with the best performance the classification time is less than
half of baseline classification time.

2 FURTHER EMPIRICAL STUDY ON ρ

ρ := E(XV ,C)∼D

[
P (XV |C)

P (XV )

]
where P (XV ) is the marginal probability and P (XV |C) is the conditional probability of node
attributes given class variable i.e.

P (XV |C) =
∑
c

P (XV |C = c)π(c) where π(c) is prior probability of class c

To clarify what it means to have ρs with different percentages, we should consider their multiplication
with the compression ratio as the ratio of the nodes that we tag as sensitive. But these sensitive nodes
may or may not overlap with the ones that we compress using optimal transport (OT) in Algorithm 1.
The final result of both ρ and OT compressed graph would have the proportion out of nodes equal to
the compression ratio. To illustrate this look at Figure 2.
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Figure 2: Relation between compressed graph, sensitive nodes, and OT. The final compressed graph
should embrace all sensitive nodes, but might not have some OT without ρ.

Table 1: The table below the performance of our method with different ρ ratios for different compres-
sion ratios on CIFAR-10 dataset

ρ% Acc@0.2 Acc@0.3 Acc@0.4 Acc@0.5 Acc@0.6 Acc@0.7 Acc@0.8

20 0.507±0.031 0.522±0.033 0.536±0.032 0.53±0.034 0.527±0.034 0.523±0.027 0.525±0.025
40 0.505±0.031 0.52±0.034 0.531±0.035 0.53±0.034 0.525±0.031 0.528±0.031 0.526±0.028
60 0.507±0.034 0.512±0.040 0.523±0.038 0.523±0.033 0.525±0.030 0.534±0.032 0.528±0.026
80 0.505±0.035 0.506±0.045 0.518±0.038 0.522±0.032 0.528±0.030 0.536±0.030 0.528±0.026

3 MI ESTIMATOR

An attributed graph consists of both a graph and a collection of node features. consider both the
topology of the graph and a set of feature attributes that are attached to each node. In this section,
we calculate the mutual information between an attributed graph and its class label, under certain
conditional independence assumptions on the node attributes and edges. Let g : (0,∞) → R be a
convex function with g(1) = 0. Given graph GV with fixed set of vertices V = {v1, . . . , vk} and
features set XV = {Xv1 , . . . , Xvk}, the mutual information between (GV , XV ) and class variable
C with prior probability πC is given by

I(GV , XV ;C) = EPG,πC

[
g

(
P (GV , XV , C)

P (GV , XV )πC

)]
= EPG,πC

[
g

(
P (GV , XV |C)

P (GV , XV )

)]
, (1)

where PG := P (GV , XV ) and πC is the prior probability of class C. We assume that the random
node attributes are independent when conditioned on C – i.e. P (XV |C) =

∏
v∈V

P (Xv|C).

We also assume that conditioned on the class label and the attributes of the incident nodes, the indicator
random variable for each edge is independent of everything else. In other words, conditioned on the
class label, the graph is distributed according to a latent position vector model (see, e.g., Athreya
et al. (2021)). In (1) P (GV , XV |C) = P (XV |C)P (GV |XV , C) and

P (GV , XV , C) = πCP (GV , XV |C) = πCP (XV |C)P (GV |XV , C)

= πC ·
∏
v∈V

P (Xv|C) ·
∏

Eu,v∈GV

u,v∈V

P (Eu,v|Xu, Xv, C) ·
∏

Eu,v /∈GV

u,v∈V

(1− P (Eu,v|Xu, Xv, C)). (2)

In order to investigate information monotonicity, we first propose a new estimator for MI and apply it
to summarized graphs.
Estimator Î(GV , XV ;C):
Let Pu,v := P (Xu, Xv) be the joint probability of random node features Xu and Xv for u, v ∈ V .
Consider N i.i.d samples

{
(Xu, Xv)

}N
n=1

drawn from joint probability Pu,v with adjacency values
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eu1,v1
, . . . , euN ,vN from adjacency matrices A1, . . . , AN . Note that eu,v takes values either 0 or 1.

We define a dependence graph G(0) as a directed multi-partite graph, consisting of two sets of nodes
Wu and Zv, with cardinalities denoted as |Wu| and |Zv| respectively and with the set of all edges
EG(0) . We map each point in the sets Xu = {Xu1, . . . , XuN}, and Xv = {Xv1, . . . , XvN}, to the
nodes in new sets Wu and Zv respectively, using the hash function H . Then let H(x) = H2(H1(x)),
where the vector valued hash function H1 : Rd 7→ Zd is defined H1(x) = [h1(x), . . . , h1(xd)],
for x = [x1, . . . , xd] and h1(xi) = ⌊xi+b

ϵ ⌋, for a fixed ϵ > 0, and random variable b ∈ [0, ϵ]. The
random hash function H2 : Zd 7→ F is uniformly distributed on the output F = {1, 2, . . . , F} where
for a fixed tunable integer cH , F = cHN . Define

Ne
iujv = #{(Xun , Xvn) s.t. H(Xun) = iu, H(Xvn) = jv and eun,vn = 1}, (3)

which is the number of joint collisions of the nodes (Xun , Xvn) at the pair (wiu , zjv ). Let Niu ,
Niujv be the number of collisions at the vertices (wiu), and (wiu , zjv ) respectively, where

Niujv = #{(Xun
, Xvn) s.t. H(Xun

) = iu, H(Xv) = jv}, (4)

By using Ne
iujv

, Niujv , and Niu we define reiujv :=
Ne

iujv

N , riujv :=
Niujv

N , riu :=
Niu

N , and the
following ratios,

reiujv :=
Ne

iujv

N
, riujv :=

Niujv

N
, riu :=

Niu

N
, and (5)

P̂iu,jv (.|c) :=
∏
u∈V

rciu ·
∏

u,v∈V

re,ciujv

rciujv

(
1−

re,ciujv

rciujv

)
, P̂iu,jv (.) :=

∏
u∈V

riu ·
∏

u,v∈V

reiujv
riujv

(
1−

reiujv
riujv

)
(6)

where rciu is riu with class label c. Further re,ciujv
and rciujv are reiujv and riujv with samples from

class label c. Let pc = Nc

N , where Nc is total number of sample with class label c. We propose a
Hash-based estimator of I(GV , XV ;C) in (1) denoted by Î(GV , XV ;C) as follows:

Î(GV , XV ;C) =
∑
c

pc ·
∑

iu,u∈V

P̂iu,jv (.) · g

(
P̂iu,jv (.|c)
P̂iu,jv (.)

)
. (7)

In particular, we use g(x) = x log x. Note that
∑

iu,u∈V

:=
∑

iv1 ,iv2 ,...iv|V |

=
∑
iv1

∑
iv2

. . .
∑
iv|V |

, where

|V | is cardinality of vertices of . Summed in (7) is over all edges in dependence graph G(0) having
non-zero ratios. An important point on the proposed estimator is that for all vertex pairs u, v ∈ V
we have re,ciujv

̸= 0 and reiujv ̸= 0. This is coincident with using a dependence graph in MI estimator
as the nodes and edges with zero collisions do not show up in the dependence graph. In practice if
there exist a pair (u, v) such that Ne

iu,jv
= 0 , we eliminate the node from collision counts. Note that

this estimator is inspired by Noshad et al. (2019) and the convergence rate for this estimator will be
investigated in the future as it requires a fundamental study.

4 INFORMATION MONOTONICITY VIOLATION

The theoretical ramification of information non-monotonicity is that there exist certain data dis-
tributions for which the MI measure does not monotonically increase as the flow cost decreases.
Empirically, it is important to investigate how common these distributions are (in other words, do
they arise in practice?), how badly non-monotone they are, and how much this affects classification
test accuracy. We leave the answers to these questions to the future but to initiate the investigation we
ran an experiment to compare MI defined in (1) between Ours and OTC methods.

Figure 3 demonstrates the MI values using the MI estimator (described above in Section 3) and shows
that our method outperforms OTC for smaller compression ratios but not for large ones which is a
potential future investigation. We applied noise injection that is averaging over features of graph
node neighbors randomly to provide a complex classification problem. We observe that our method
outperforms OTC over accuracy and has higher MI after compression, however, this is slightly
violated when the compression starts to grow.
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Figure 3: MI Comparison for Synthetic Dataset MI is shown for different compression ratios with
each point color showing the performance on Synthetic data (100 samples and 50 nodes)

Figure 4: NYC Grid map Each square of the grid shows the nodes of graphs in NYC dataset. The
attributes of the nodes are the total time of the trips inside that region. There is an undirected edge
between two Nodes if there was any trip between them.
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