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Abstract

Distributed Deep Learning (DDL) is essential for large-scale Deep Learning (DL)1

training. Synchronous Stochastic Gradient Descent (SSGD) 1 is the de facto DDL2

optimization method. Using a sufficiently large batch size is critical to achieving3

DDL runtime speedup. In a large batch setting, the learning rate must be increased4

to compensate for the reduced number of parameter updates. However, a large5

learning rate may harm convergence in SSGD and training can easily diverge.6

Recently, Decentralized Parallel SGD (DPSGD) has been proposed to improve7

distributed training speed. In this paper, we find that DPSGD not only has a runtime8

benefit, but also a significant convergence benefit over SSGD in the large batch9

setting. Based on a detailed analysis of DPSGD learning dynamics, we find that10

DPSGD introduces additional landscape-dependent noise that automatically adjusts11

the effective learning rate to improve convergence. In addition, we theoretically12

show that this noise smooths the loss landscape, hence allowing a larger learning13

rate. This result also implies that DPSGD can greatly simplify learning rate tuning14

for tasks that require careful learning rate warmup (e.g, Attention-Based Language15

Modeling). We conduct extensive studies over 18 state-of-the-art DL models/tasks16

and demonstrate that DPSGD often converges in cases where SSGD diverges when17

training is sensitive to large learning rates. Our findings are consistent across three18

different application domains: Computer Vision (CIFAR10 and ImageNet-1K),19

Automatic Speech Recognition (SWB300 and SWB2000) and Natural Language20

Processing (Wikitext-103); three different types of neural network models: Convo-21

lutional Neural Networks, Long Short-Term Memory Recurrent Neural Networks22

and Attention-based Transformer Models; and two optimizers: SGD and Adam.23

1 Introduction24

Deep Learning (DL) has revolutionized AI across application domains: Computer Vision (CV)25

[29, 14], Natural Language Processing (NLP) [50], and Automatic Speech Recognition (ASR) [15].26

Stochastic Gradient Descent (SGD) is the fundamental optimization method used in DL training.27

Due to massive computational requirements, Distributed Deep Learning (DDL) is the preferred28

mechanism to train large scale Deep Learning (DL) tasks.29

The degree of parallelism in a DDL system is dictated by batch size: the larger the batch size, the more30

parallelism and higher speedup can be expected. However, large batches require a larger learning31

rate and overall they may negatively affect model accuracy because (1) large batch training usually32

converges to sharp minima which do not generalize well [24], and (2) large learning rates may violate33

the conditions (i.e., the learning rate should be less than the reciprocal of the smoothness parameter)34

required for convergence in nonconvex optimization theory [11]. Although training longer with large35

batches can lead to better generalization [18], doing so gives up some or all of the speedup we seek.36

1In the literature, SSGD is also called "Centralized Synchronized Stochastic Gradient Descent". In this paper,
we use these two terms interchangeably.
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Figure 1: SSGD (red) does not converge when the learning rate needs to be large (e.g., large batch
setting or a short warmup period). Figure 1a shows model accuracy (higher is better), while Figure 1b
and Figure 1c show heldout loss (lower is better). Injecting Gaussian noise (blue) does not enable
SSGD to escape poor local minima. In contrast, DPSGD (green) converges using the same hyper-
parameter setup. The detailed task descriptions and training recipes are given in Sections 4.3 and 4.5.
BS denotes Batch-Size.

Through meticulous hyper-parameter design (e.g., learning rate schedules) tailored to each specific37

task, SSGD-based DDL systems have enabled large batch training and shortened training time for38

some challenging CV tasks [12, 54] and NLP tasks [55] from weeks to hours or less. However, it is39

observed that SSGD with large batch size leads to large training loss and inferior model quality for40

ASR tasks [58], as illustrated in Figure 1b (red curve). Here, we found for other types of tasks (e.g.41

CV and NLP) and DL models, large batch SSGD has the same problem (Figures 1a and 1c).42

Several SSGD variants have been proposed to address large batch training problems: (1) local43

SGD, i.e., SGD-based algorithms with periodic averaging, where learners conduct global averaging44

after multiple steps of gradient-based updates [13, 36, 64]; (2) SSGD based algorithm with second-45

order statistics, including adaptive gradient algorithms [55, 54] and algorithms for exploring the46

information from the gradient covariance matrix [51]; and (3) SSGD-based algorithms on a smoothed47

landscape [35, 9], in which specifically designed loss landscape smoothing algorithms are used. All48

of these approaches require global synchronization and/or global statistics collection, which makes49

them vulnerable to stragglers.50

Decentralized algorithms, such as Decentralized Parallel Stochastic Gradient Descent (DPSGD) [33],51

are surrogates for SSGD in machine learning. Unlike SSGD, where each learner updates its weights52

by taking a global average of all learners’ weights, DPSGD updates each learner’s weights by taking53

a partial average (i.e., across a subset of neighboring learners). In contrast to the existing variants54

of SSGD, DPSGD requires no additional calculation and no global synchronization. Traditionally55

DPSGD is a second-choice to SSGD, and is used only when the underlying computational resources56

are less homogeneous (i.e., a high latency network or computational devices running at different57

speeds). Little thought has been given to the question of whether there are any convergence benefits58

for DPSGD, especially in the large batch setting.59

In this paper, we find that DPSGD [33] greatly improves large batch training performance, as60

illustrated by the green curves in Figure 1. Since DPSGD only uses a partial average of neighboring61

learners’ weights, each learner’s weights differ from the weights of other learners. The differing62

weights between learners are an additional source of noise in DPSGD training. The key difference63

between SSGD, SSGD with Gaussian noise (denoted as "SSGD∗" in this paper) and DPSGD is the64

source of noise during the update, and this noise directly affects performance in deep learning. This65

naturally motivates us to ask Why does decentralized training outperform synchronous training in the66

large batch setting? More specifically, we try to understand whether these performance differences67

are caused by differences in noise. We answer this question from both theoretical and empirical68

perspectives. Our contributions are:69

• We analyze the dynamics of DDL algorithms, including both SSGD and DPSGD. We show,70

both theoretically and empirically, that the intrinsic noise in DPSGD automatically adjusts71

the effective learning rate when the batch size is large to help convergence. Note that the72

intrinsic noise comes completely for free in the DPSGD algorithm, and we show that it has73
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a loss-landscape smoothing effect. Guided by our theoretical results, we also investigate74

training tasks where careful learning rate warmup schemes are required (e.g., Transformer75

models) [56, 42, 52] and find that DPSGD can work with a much shorter learning rate76

warmup period thus simplifying hyper-parameter tuning.77

• We conduct extensive empirical studies of 18 CV, ASR, and NLP tasks with state-of-the-art78

CNN, LSTM, and Transformer models. Our experimental results demonstrate that DPSGD79

consistently outperforms SSGD, across application domains and Neural Network (NN)80

architectures in the large batch setting, without any hyper-parameter tuning. To the best of81

our knowledge, DPSGD is the only generic algorithm that can improve SSGD large batch82

training and shorten learning rate warmup period for this many models/tasks. Furthermore,83

unlike other solutions, DPSGD does not require global synchronization.84

The remainder of this paper is organized as follows. Section 2 details the problem formulation85

and learning dynamics analysis of SSGD, SSGD∗, and DPSGD; Section 3 and Section 4 detail the86

empirical results; Section 5 discusses related work; and Section 6 concludes the paper.87

2 Analysis of stochastic learning dynamics in SSGD and DPSGD88

We first formulate the dynamics of an SGD based learning algorithm with multiple (n > 1) learners89

indexed by j = 1, 2, 3, ...n following the same theoretical framework established for a single90

learner [3]. At time (iteration) t, each learner has its own weight vector w⃗j(t), and the average91

weight vector w⃗a(t) is defined as: w⃗a(t) ≡ n−1
∑n

j=1 w⃗j(t). Each learner j updates its weight vector92

according to the cross-entropy loss function Lµj(t)(w⃗) for minibatch µj(t) that is assigned to it at93

time t. The size of the local minibatch is B, and the overall batch size for all learners is nB. Two94

multi-learner algorithms, SSGD and DPSGD, are described below.95

(1) Synchronous Stochastic Gradient Descent (SSGD): In the synchronous algorithm, each learner96

j ∈ [1, n] starts from the average weight vector w⃗a and moves along the gradient of its local loss97

function Lµj(t) evaluated at the average weight w⃗a:98

w⃗j(t+ 1) = w⃗a(t)− α∇Lµj(t)(w⃗a(t)), (1)
where α is the learning rate.99

(2) Decentralized Parallel SGD (DPSGD): In the DPSGD algorithm [33], each learner j computes100

the gradient at its own local weight w⃗j(t). The learning dynamics follows:101

w⃗j(t+ 1) = w⃗s,j(t)− α∇Lµj(t)(w⃗j(t)). (2)
where w⃗s,j(t) is the starting weight set to be the average weight of a subset of “neighboring" learners102

of learner-j, which corresponds to the non-zero entries in the mixing matrix 2 defined in [33] (note103

that w⃗s,j = w⃗a if all learners are included as neighbors).104

By averaging over all learners, the learning dynamics for the average weight w⃗a for both SSGD and105

DPSGD can be written formally the same way as:106

w⃗a(t+ 1) = w⃗a(t)− αg⃗a, (3)
where g⃗a = n−1

∑n
j=1 g⃗j is the average gradient and g⃗j is the gradient from learner-j. The difference107

between SSGD and DPSGD is the weight at which g⃗j is computed: g⃗j ≡ ∇Lµj(t)(w⃗a(t)) is108

computed at w⃗a for SSGD; g⃗j ≡ ∇Lµj(t)(w⃗j(t)) is computed at w⃗j for DPSGD. The deviation of109

the weight for learner-j from the average weight is defined as δw⃗j ≡ w⃗j − w⃗a. It is easy to see that110

δw⃗j(t+ 1) = w⃗s,j(t)− w⃗a(t)− α[⃗gj(t)− g⃗a(t)], which depends on gradients at different points on111

the loss landscape.112

2.1 Understanding DPSGD from the Optimization Perspective113

The main difference between DPSGD and SSGD is that the stochastic gradients are calculated at114

different weights in DPSGD, while SSGD’s stochastic gradient is calculated at the same weight.115

Intuitively, DPSGD explores more space than SSGD, which may help explain the empirical success116

of DPSGD. We formalize this intuition into the following theorem, which shows that DPSGD is117

optimizing a smoother landscape than SSGD.118

2This is also called the “gossip matrix” in the literature, e.g., [27].
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Theorem 1. Denote Ft by the filtration generated by all the random variables until the t-th iteration.119

Suppose n is large enough that
∥∥∥ 1

n

∑n
i=1 ∇Lµi(t)(w⃗i(t))− 1

n−1

∑n−1
i=1 ∇Lµi(t)(w⃗i(t))

∥∥∥ ≤ ϵ120

almost surely, and assume δw⃗i(t)|Ft−1
i.i.d.∼ N (0, σ2

wI) with i = 1, . . . , n − 1. Then from the121

(t − 1)-th iteration to t-th iteration, SSGD and DPSGD are doing one step of stochastic gradient122

descent on two different functions L(w⃗) and L̃(w⃗) ≡ Eδw⃗i(t) [L(w⃗ + δw⃗i(t)) | Ft−1], respectively.123

The DPSGD loss L̃(w⃗) is smoother than the SSGD loss L(w⃗) if L(w⃗) is Lipschitz continuous.124

Remark: The proof of Theorem 1 can be found in Appendix A. Here, we briefly mention its125

implications. A function f is defined as ls-smooth if ∥∇f(x)−∇f(y)∥ ≤ ls∥x− y∥ for any x, y,126

where ls is the smoothness parameter of f . The landscape of the function f is smoother when ls127

is smaller. Assume L(w⃗) is G-Lipschitz continuous, i.e., |L(w⃗) − L(v⃗)| ≤ G∥w⃗ − v⃗∥, then by128

using Lemma 2 of [39], we know that the DPSGD landscape L̃(w⃗) is 2G
σw

-smooth. According to the129

convergence theory of SGD and DPSGD for nonconvex functions [11, 33, 12], the largest learning130

rate one can choose to guarantee convergence is 1
ls

. For SSGD with the original loss landscape L, ls131

can be very large (even close to +∞ due to the nonsmooth nature of the ReLU activation) while ls of132

the smoothed loss function L̃ for DPSGD is much smaller. This explains why we can use a larger133

learning rate in DPSGD as the landscape DPSGD sees has a smaller gradient-Lipschitz constant ls134

than that in SSGD.135

It is important to note that ls of the smoothed loss function L̃ in DPSGD depends on the standard136

deviation σw of weights from different learners. Since σw depends on the loss landscape and changes137

with time (see Fig. 2(b)), the smoothing effect in DPSGD is self-adjusting – it is strong in the138

initial stage of training when the loss landscape is rough and becomes weaker as training progresses139

when the loss landscape becomes smoother. Our theoretical result suggests that this self-adjusting140

smoothing effect is responsible for DPSGD’s convergence with a large learning rate in the large batch141

size setting. Next, we elaborate on this insight and verify it in a simple network for classification142

using the MNIST dataset.143

Note that the Theorem 1 is only a one-step analysis. People may be interested in extending the144

analysis to trajectory-based analysis. We provide a sketch here. If we consider the perturbed objective145

L̃(w) = Eδ [L(w + δ)], where δ comes from the intrinsic noise of DPSGD, then we can utilize the146

descent lemma as shown in [11] to prove that DPSGD can converge to a stationary point of L̃(w) in147

polynomial time. However, without the inherent noise of DPSGD, the landscape is rough and that is148

the reason why SSGD diverges. SSGD may not be able to converge to the stationary point of L(w)149

(since the large learning rate in large batch setting makes the descent lemma not applicable in this150

case) or L̃(w) (since there is no noise and landscape-smoothing effect in SSGD, so SSGD does not151

optimize the smoothed landscape). This is also consistent with our empirical evidence.152

2.2 DPSGD Introduces a Landscape-Dependent Self-Adjusting Learning Rate that Helps153

Convergence154

To understand the implication of the smoothing effect in DPSGD (Theorem 1) for learning dynamics,155

we define an effective learning rate αe ≡ αg⃗a · g⃗/||⃗g||2 by projecting the weight displacement vector156

∆w⃗a ≡ αg⃗a onto the direction of the gradient g⃗ ≡ ∇L(w⃗a) of the original loss function L at w⃗a.157

The learning dynamics, Eq. 3, can be rewritten as:158

w⃗a(t+ 1) = w⃗a(t)− αeg⃗ + η⃗⊥, (4)

where the “noise” term η⃗⊥ ≡ −αg⃗a + αeg⃗ describes the random weight dynamics in directions159

orthogonal to g⃗. The noise term has zero mean ⟨η⃗⊥⟩µ = 0 and the noise strength is characterized by160

its variance ∆(t) ≡ ||η⃗⊥||2.161

The effective learning rate αe is related to the noise strength: α2
e = (α2||⃗ga||2 −∆)/||⃗g||2, which162

indicates that a higher noise strength ∆ leads to a lower effective learning rate αe. The DPSGD noise163

∆DP is larger than the SSGD noise ∆S by an additional noise term ∆(2)(> 0) that originates from164

the difference of local weights (w⃗j) from their mean (w⃗a): ∆DP = ∆S +∆(2), see Appendix B for165
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details. By expanding ∆(2) w.r.t. δw⃗j , we obtain the average ∆(2) over minibatch ensemble {µ}:166

⟨∆(2)⟩µ ≡ α2⟨||n−1
n∑

j=1

[∇Lµj (w⃗j)−∇Lµj (w⃗a)]||2⟩µ

≈ α2
∑
k,l,l′

HklHkl′Cll′ ,

(5)

where Hkl = ∇2
klL is the Hessian matrix of the loss function and Cll′ = n−2

∑n
j=1 δwj,lδwj,l′ is167

the weight covariance matrix. From Eq. 5 and the dependence of αe on ∆, it is clear that the effective168

learning rate in DPSGD depends directly on the loss landscape (H) and indirectly via the weight169

variance, σ2
w = Tr(C), which decreases as the loss landscape becomes smooth (see Fig. 2(b)).170

It is important to stress that the noise η⃗⊥ in Eq.4 is not an artificially added noise. It is intrinsic to171

the use of minibatches (random subsampling) in all SGD-based algorithms (including SSGD and172

DPSGD). The noise is increased in DPSGD due to the weight difference among different learners173

(δw⃗j). The noise strength ∆ varies in weight space via its dependence on the loss landscape, as174

explicitly shown in Eq. 5. However, besides its landscape dependence, SGD noise scales inversely175

with the minibatch size B [3]. With n synchronized learners, the noise in SSGD scales as 1/(nB),176

which is too small to be effective for a large batch size nB. A main finding of our paper is that the177

additional landscape-dependent noise ∆(2) in DPSGD can make up for the small SSGD noise when178

nB is large and help enhance convergence in the large batch setting.179

The landscape dependent smoothing effect in DPSGD (shown in Sec. 2.1) indicates that αe in DPSGD180

is reduced at the beginning of training when the landscape is rough. To demonstrate effects of the181

landscape-dependent self-adjusting learning rates, we did detailed analysis in numerical experiments182

using the MNIST dataset. In this experiment, we used n = 5 learners with each learner a fully183

connected network with two hidden layers (50 units per layer) and we used w⃗s,j = w⃗a for DPSGD.184

We focused on the large batch setting using nB = 2000 and a large learning rate α = 1. As shown185

in Fig. 2(a), DPSGD converges to a solution with a low loss (2.1% test error), but SSGD fails to186

converge.187

0 500 1000 1500 2000

10
-1

10
1

0.5

1

0 500 1000 1500 2000
10

-2

10
1

(a) (b)

Figure 2: (a) Comparison of different multi-learner algorithms, DPSGD (green), SSGD (red), and
SSGD∗ (blue) for a large learning rate α = 1. The adaptive learning rate allows DPSGD to converge
while SSGD fails to converge. A fine-tuned SSGD∗ also converges but to an inferior solution. (b) The
effective learning rate for DPSGD αe(DPSGD) is self-adaptive to the landscape – it is reduced in
the beginning of training when gradients are large and recovers to ∼ α when the gradients are small.
The weight variance σ2

w(t) has the opposite landscape-dependence as αe and decreases with training
time.

To understand the convergence in DPSGD, we computed the effective learning rate (αe) and the188

weight variance (σ2
w) during training. As shown in Fig. 2(b) (upper panel), the effective learning rate189

αe is reduced in DPSGD during early training (0 ≤ t ≤ 700). This reduction of αe is caused by the190

stronger noise ∆(2) in DPSGD (see Fig. 4 in Appendix B), which is essential for convergence when191

gradients are large in the beginning of the training process. In the later stage of the training process192

when gradients are smaller, the landscape-dependent DPSGD noise decreases and αe automatically193

increases back to be ≈ α to allow fast convergence. From Eq. 5, the landscape-dependent noise in194
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AlexNet VGG VGG-BN
bs=256 Baseline 56.31/79.05 69.02/88.66 70.65/89.92
lr=1x lr=0.01 lr=0.1
bs=2048 SSGD 54.29/77.43 67.67/87.91 70.36/89.58
lr=8x DPSGD 53.71/76.91 67.28/87.58 69.76/89.31
bs=4096 SSGD 0.10/0.50 0.10/0.50 65.39/86.51
lr=16x DPSGD 52.53/76.01 66.44/87.20 68.86/88.82
bs=8192 SSGD 0.10/0.50 0.10/0.50 0.10/0.50
lr=32x DPSGD 49.01/73.00 65.00/86.11 63.55/85.43

Table 1: ImageNet-1K Top-1/Top-5 model accuracy (%) comparison for batch size 2048, 4096 and
8192. All experiments are conducted on 16 GPUs (learners), with batch size per GPU 128, 256 and
512 respectively. Bold text represents the best model accuracy achieved given the specific batch size
and learning rate. The batch size 256 baseline is presented for reference. bs stands for batch-size, lr
stands for learning rate. Baseline lr is set to 0.01 for AlexNet and VGG11, 0.1 for the other models.
In the large batch setting, we use learning rate warmup and linear scaling as prescribed in [12].
For rough loss landscape like AlexNet and VGG, SSGD diverges when batch size is large whereas
DPSGD converges.

DPSGD depends on the weight variance. As shown in Fig. 2(b) (lower panel), the weight variance195

σ2
w has a time-dependent trend that is opposite to αe: σ2

w is large in the beginning of training when196

the landscape is rough and decreases as training progresses and the landscape becomes smoother.197

To show the importance of the landscape-dependent weight variance, we used SSGD∗, which injects198

a Gaussian noise with a constant variance to weights in SSGD, i.e., by setting δw⃗j
i.i.d.∼ N (0, σ2

0I)199

with a constant σ2
0 . We found that SSGD∗ fails to converge for most choices of noise strength σ2

0 .200

Only by fine tuning σ2
0 can SSGD∗ converge, but to an inferior solution with much higher loss and201

test error (5.7%) as shown in Fig. 2(a).202

Finally, in addition to helping convergence, we found that the landscape-dependent noise in DPSGD203

can also help find flat minima with better generalization in the large batch setting (see Appendix C204

for details).205

3 Experimental Methodology206

We implemented SSGD and DPSGD using PyTorch, OpenMPI, and NVidia NCCL. We ran exper-207

iments on a cluster of two 8-V100-GPU x86 servers. For CV tasks, we evaluated on CIFAR-10208

(50,000 training samples, 178MB) and ImageNet-1K (1.2 million training samples, 140GB). For209

ASR tasks, we evaluated on SWB-300 (300 hours training data, 4,000,000 samples, 30GB) and210

SWB-2000 (2000 hours training data, 30,000,000 samples, 216GB). For the NLP task, we evaluated211

on Wikitext-103(103 million tokens, 180MB). In all, we evaluate 18 state-of-the-art NN models: 15212

CNN models, 2 6-layer bi-directional LSTM models, and 1 16-layer GPT-2 transformer model. We213

summarize the model sizes and training times in Table 6 of Appendix D. Also refer to Appendix D for214

hardware configuration, software implementation, dataset and Neural Network (NN) model details.215

4 Experimental Results216

All the large batch experiments are conducted on 16 GPUs (learners). Batches are evenly distributed217

among learners, e.g., with sixteen learners, each learner uses a local batch size that is one sixteenth218

the overall batch size. A learner randomly picks a neighbor with which to exchange weights in each219

DPSGD iteration [59].220

4.1 SSGD and DPSGD Comparison on CV Tasks (CIFAR-10 and ImageNet-1K)221

On ImageNet-1K we test 6 CNN models – AlexNet, VGG11, VGG11-BN, ResNet-50, ResNext-50222

and DenseNet-161. Among them, AlexNet and VGG have rougher loss landscapes and can only223

work with smaller learning rates, while VGG11-BN, ResNet-50, ResNext-50, and DenseNet-161224

have smoother loss landscapes thanks to the use of BatchNorm or Residual Connections, and thus225

can work with larger learning rates. We use the same baseline training recipe prescribed in [4]:226
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SWB-300
bs2048 bs4096 bs8192

SSGD 1.58 10.37 10.37
DPSGD 1.59 1.60 1.66

SWB-2000
bs2048 bs4096 bs8192

SSGD 1.46 1.46 10.37
DPSGD 1.45 1.47 1.47

Table 2: Heldout loss comparison for SSGD and
DPSGD, evaluated on SWB-300 and SWB-2000.
There are 32000 classes in this task, a held-out
loss 10.37 (i.e. ln32000) indicates a complete diver-
gence. bs stands for batch size.

Figure 3: SSGD diverges when the learning rate
warmup period is 75 iterations while DPSGD con-
verges with a warmup period as short as 25 itera-
tions. (Wikitext103, GPT-2)
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batch size 256, initial learning rate 0.01 for AlexNet and VGG-11 and 0.1 for the other 4 models,227

learning rate anneals by 0.1 every 30 epochs, 100 epochs in total. To study the model performance228

in the large batch setting, we follow the large batch size learning rate schedule prescribed in [12]:229

learning rate warmup for the first 5 epochs and then learning rate linear scaling w.r.t batch size.230

For example, in the AlexNet batch-size 8192 experiment, the learning rate is gradually warmed-up231

from 0.01 to 0.32 in the first 5 epochs, annealed to 0.032 from epoch 31 to epoch 60, annealed to232

0.0032 from epoch 61 to epoch 90, and annealed to 0.00032 from epoch 91 to epoch 100. SSGD and233

DPSGD achieve comparable model accuracy in the large batch setting (see Table 10 in Appendix E.6).234

Most noticeably, when batch-size increases to 8192, SSGD diverges with AlexNet, VGG11, and235

VGG11-BN whereas DPSGD converges as shown in Table 1. Figure 9 in Appendix E.6 details the236

model accuracy progression versus epochs in each setting. Please see our detailed analysis of DPSGD237

vs SSGD on CIFAR-10 tasks throughout Appendix E.1 to Appendix E.5 where we document the238

DPSGD and SSGD comparison and loss landscape visualization (contour 2D projection and Hessian239

2D projection), which show that DPSGD usually leads to much flatter optima than SSGD, and thus240

better generalization in the large batch setting.241

Summary For rough loss landscapes like AlexNet and VGG, DPSGD converges whereas SSGD242

diverges in the large batch setting.243

4.2 SSGD and DPSGD Comparison on ASR tasks244

Unlike CV tasks where CNNs and their residual connection variants are the dominant models, ASR245

tasks overwhelmingly adopt RNN/LSTM models that capture sequence features. Furthermore, Batch-246

Norm is known not to work well in RNN/LSTM tasks [31]. Finally, there are over 32,000 different247

classes with wildy uneven distribution in our ASR tasks due to the Zipfian characteristics of natural248

language. All in all, ASR tasks present a much more challenging loss landscape than CV tasks to249

optimize over.250

For the SWB-300 and SWB-2000 tasks, we follow the same learning rate schedule proposed in [57]:251

we use learning rate 0.1 for baseline batch size 256, and linearly warmup the learning rate w.r.t the252

baseline batch size for the first 10 epochs before annealing the learning rate by 1√
2

for the remaining253

10 epochs. For example, when using a batch size 2048, we linearly warmup the learning rate to 0.8254

by the end of the 10th epoch before annealing. Table 2 illustrates heldout loss for SWB-300 and255

SWB-2000. In the SWB-300 task, SSGD diverges beyond batch size 2048 and DPSGD converges256

well until batch size 8192. In the SWB-2000 task, SSGD diverges beyond batch size 4096 and257

DPSGD converges well until batch size 8192. Figure 10 in Appendix E.7 details the heldout loss258

progression versus epochs.259

Summary For ASR tasks, SSGD diverges whereas DPSGD converges to baseline model accuracy in260

the large batch setting.261

4.3 Noise-injection and Learning Rate Tuning262

In 6 out of 17 studied CV and ASR tasks, a large batch setting leads to a complete divergence in263

SSGD: EfficientNet-B0, AlexNet, VGG11, VGG11-BN, SWB-300 and SWB-2000. As discussed in264
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AlexNet VGG11 VGG11-BN

lr∗=32x SSGD 0.10/0.50 0.10/0.50 0.10/0.50
DPSGD 49.010/73.00 65.004/86.11 63.546/85.43

lr=16x SSGD 0.10/0.50 0.10/0.50 70.11/89.47
DPSGD 49.26/73.14 62.046/83.98 69.108/89.07

lr=8x SSGD 46.40/70.25 45.32/70.61 69.54/89.22
DPSGD 47.78/71.89 56.52/79.92 68.98/88.78

lr=4x SSGD 41.77/66.44 50.20/74.83 68.61/88.57
DPSGD 42.18/66.96 48.52/73.33 67.98/88.22

Table 3: ImageNet-1K learning rate tuning for AlexNet VGG11, VGG11-BN with batch-size 8192.
Bold text in each column indicates the best top-1/top-5 accuracy achieved across different learning
rate and optimization method configurations for the corresponding batch size. DPSGD consistently
delivers the most accurate models. *The learning rate 1x used here corresponds to batch size 256
baseline learning rate, and we still adopt the same learning rate warmup, scaling and annealing
schedule. Thus 32x refers to linear learning rate scaling when batch size is 8192. By reducing learning
rate to 16x, 8x and 4x, SSGD can escape early traps but still lags behind compared to DPSGD in
most cases.

SWB-300 SWB-300 SWB-2000
(bs4096) (bs8192) (bs 8192)

lr∗=1.6/3.2 SSGD 10.37 10.37 10.37
DPSGD 1.60 1.66 1.47

lr=0.8/1.6 SSGD 10.37 10.37 10.37
DPSGD 1.65 1.73 1.48

lr=0.4/0.8 SSGD 1.76 10.37 1.51
DPSGD 1.77 1.80 1.52

lr=0.2/0.4 SSGD 1.92 2.05 1.58
DPSGD 1.94 2.00 1.59

Table 4: Decreasing learning rate for SWB-300 and SWB-2000 (bs stands for batch-size). Bold text in
each column indicates the best held-out loss achieved across different learning rate and optimization
method configurations for the corresponding batch size. DPSGD consistently delivers the most
accurate models. *learning rate 1.6 is used for bs4096 and learning rate 3.2 is used for bs8192. We
still adopt the same learning rate warmup, scaling and annealing schedule (baseline learning rate is
0.1 for batch size 256).

Section 2, the intrinsic landscape-dependent noise in DPSGD effectively helps escape early traps (e.g.,265

saddle points) and improves training by automatically adjusting the learning rate. In this section, we266

demonstrate these facts by systematically adding Gaussian noise (the same as the SSGD∗ algorithm267

in Section 2) and decreasing the learning rate. We find that SSGD might escape early traps but still268

results in a much inferior model compared to DPSGD.269

Noise-injection In Figure 1, we systematically explore Gaussian noise injection with mean 0 and270

standard deviation (std) ranging from 10 to 0.00001 via binary search (i.e. roughly 20 configurations271

for each task). We found in the vast majority of the setups, noise-injection cannot escape early272

traps. In EfficientNet-B0, only when std is set to 0.04, does the model start to converge, but to a273

very low accuracy (test accuracy 22.15% in SSGD vs 91.13% in DPSGD). In the SWB-300 case,274

when std is 0.01, SSGD shows an early sign of converging for the first 3 epochs before it starts to275

diverge. In the AlexNet, VGG11, VGG11-BN, and SWB-2000 cases, we didn’t find any configuration276

that can escape early traps. Figure 1 characterizes our best-effort Gaussian noise tuning and its277

comparison against SSGD and DPSGD. A plausible explanation is that Gaussian noise injection278

escapes saddle points very slowly, since Gaussian noise is isotropic and the complexity for finding279

local minima is dimension-dependent [10]. Deep Neural Networks are usually over-parameterized280

(i.e., high-dimensional), so it may take a long time to escape local traps. In contrast, the heightened281

landscape-dependent noise in DPSGD is anisotropic [3, 8] and can drive the system to escape in the282

right directions.283

Learning Rate Tuning To make otherwise-divergent SSGD training converge in the large batch284

setting, we systematically tune down the learning rates. Table 3 and Table 4 compare the model quality285

trained by SSGD and DPSGD using smaller learning rates in the large batch setting, for ImageNet and286
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ASR tasks. Table 9 in Appendix E.3 illustrates the similar learning rate tuning effort for CIFAR-10287

tasks. As we can see, by using a smaller learning rate, SSGD can escape early traps and converge,288

however it consistently lags behind DPSGD in the large batch setting. Morever, DPSGD does not289

depend on such an exhaustive learning rate tuning to achieve convergence. DPSGD can simply follow290

the learning rate warm-up and linear scaling rules [12] whereas SSGD requires much more stringent291

learning rate tuning. This implies DPSGD practitioners enjoy a much larger degree of freedom when292

it comes to hyper-parameter tuning in the large batch setting than the SSGD practitioners.293

Summary By systematically introducing landscape-independent noise and reducing the learning rate,294

SSGD could escape early traps (e.g., saddle points), but results in much inferior models compared to295

DPSGD in the large batch setting.296

4.4 DPSGD and SSGD Runtime Comparison297

In Appendix F, we detail runtime comparison between DPSGD and SSGD and demonstrate DPSGD298

consistently runs faster than SSGD. We also compare DPSGD with LAMB[55], a state-of-the-art299

optimizer specifically designed for synchronous large-batch training, demonstrating that DPSGD can300

avoid straggler problems in distributed training.301

4.5 SSGD and DPSGD Comparison on NLP tasks (Wikitext-103)302

For NLP tasks such as Masked Language Modeling (MLM) [6, 50], a careful learning rate warmup303

scheme needs to be designed so that learning rate grows from 0 to a desired learning rate gradually.304

Too short a warmup period often leads to divergence and practitioners need to restart training, which305

wastes huge computational resources[42, 52, 56]. We test our theory by finding the shortest viable306

learning rate warmup period for SSGD and DPSGD. We use the hyper-parameter settings prescribed307

in [52], warmup learning rate 0 to 2.5 × 10−4 in the first 64000 samples (i.e., 250 iterations of308

batch size 256) and then cosine-annealing to zero on top of an Adam optimizer. We then shorten the309

learning rate warmup period and check convergence. Figure 3 and Table 5 show that SSGD diverges310

when the learning rate warmup period is shorter than 100 iterations, while DPSGD converges with a311

warmup period as short as 25 iterations. Figure 1c shows that injecting independent random noise into312

SSGD (in the same fashion as Section 4.3) does not help SSGD escape early training traps. These313

experiments corroborate our theory that DPSGD can leverage loss landscape noise to self-adjust the314

learning rate.315

Warmup(iters) 250 100 75 50 25 15
SYNC 3.09 3.07 7.26 7.26 7.26 7.26
DPSGD 3.08 3.053 3.06 3.08 3.09 7.26

Table 5: Validation loss comparison when shortening the learning rate warmup period. DPSGD
can converge with a much shorter warmup. All experiments are conducted on 16 GPUs (learners).
Wikitext-103, GPT-2 model, 200 epochs training in total.

5 Related Works316

Please see Appendix G317

6 Conclusion318

In this paper, we find that in the large-batch and large-learning-rate setting, DPSGD yields comparable319

model accuracy when SSGD converges; moreover, DPSGD converges when SSGD diverges. We then320

investigate why DPSGD outperforms SSGD for large batch training. Through detailed analysis on321

small-scale tasks and an extensive empirical study of a diverse set of modern DL tasks, we conclude322

that the landscape-dependent noise, which is strengthened in the DPSGD system, self-adjusts the323

effective learning rate according to the loss landscape, helping convergence. This self-adjusting324

learning rate effect is a mere by-product of the inherent loss-landscape-dependent-noise of the325

DPSGD training algorithm and requires no additional computation, no additional communication326

and no additional hyper-parameter tuning. The theory was originally developed to understand why327

DPSGD outperforms SSGD in the large batch setting for CV and ASR tasks. The same theory can be328

also verified in NLP tasks where when a carefully designed learning rate warmup scheme is required.329
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A Proof of Theorem 1540

We first start to compare the learning dynamics of DPSGD and SSGD respectively. For DPSGD, we541

have542

w⃗a(t+ 1) = w⃗a(t)− α · 1
n

n∑
i=1

∇Lµi(t)(w⃗i(t)), (6)

where n is the number of machines, i = 1, . . . , n is the index of the machine, w⃗i(t) is the weight of543

the model at the t-th iteration on i-th machine, w⃗a(t) =
1
n

∑n
i=1 w⃗i(t), L is the loss function, µi(t)544

denotes the minibatch sampled from the i-th machine at the t-th iteration, and α is the learning rate.545

In contrast, SSGD’s update rule is546

w⃗a(t+ 1) = w⃗a(t)− α · 1
n

n∑
i=1

∇Lµi(t)(w⃗a(t)). (7)

Define δw⃗i(t) = w⃗a(t)− w⃗i(t). Let us consider following fact: Given the realization of µi(t− 1),547

w⃗i(t)’s are mutually independent, and any n − 1 random variables selected from {δw⃗i(t)}ni=1 are548

mutually independent due to
∑n

i=1 δw⃗i(t) = 0.549

When n is sufficiently large, we have the surrogate minibatch gradient with batch size550

n − 1 ( 1
n−1

∑n−1
i=1 ∇Lµi(t)(w⃗i(t))) to be ϵ-close to the minibatch gradient with size n551

( 1n
∑n

i=1 ∇Lµi(t)(w⃗i(t))), and hence can be regarded as approximate minibatch gradient with batch552

size n− 1, which are sampled i.i.d. from {δw⃗i(t)}n−1
i=1 | Ft−1. Once we have the independence, we553

can find that both (6) and (7) are doing SGD update, with different objective functions. In addition,554

assuming {δw⃗i(t)}n−1
i=1 | Ft−1 are i.i.d. Gaussian distribution is also reasonable due to the central555

limit theorem and the fact that n is sufficiently large.556

Then at the t-th iteration, (6) is using one step of SGD to optimize L(w⃗) directly, while (7) is using557

one step of SGD to optimize a smoothed version of L, which is Eδw⃗i(t) [L(w⃗ + δw⃗i(t)) | Ft−1].558

Suppose L(w⃗) is G-Lipschitz continuous, by using Lemma 2 of [39], we know that the landscape559

DPSGD is trying to optimize over is L̃(w⃗) is 2G
σw

-smooth.560

B Appendix for the Noise Analysis561

To understand the origin of the noise term η⃗ in DPSGD, we decompose the gradient g⃗j for an562

individual learner-j:563

g⃗j = g⃗0 + δg
(1)
j + δg

(2)
j

= ∇Lµ(w⃗a) + [∇Lµj (w⃗a)−∇Lµ(w⃗a)]

+ [∇Lµj (w⃗j)−∇Lµj (w⃗a)], (8)

where the first term g⃗0 ≡ ∇Lµ(w⃗a) in the right hand side of Eq. 8 is the gradient of the loss564

function over the “superbatch" µ defined as the sum of all the minibatches for different learners at565

a given iteration: µ(t) =
∑n

j=1 µj(t); the second term δg
(1)
j ≡ ∇Lµj (w⃗a) −∇Lµ(w⃗a) describes566

the gradient difference (fluctuation) between a minibatch µj and the superbatch µ; the third term567

δg
(2)
j ≡ ∇Lµj (w⃗j) − ∇Lµj (w⃗a) represents the difference (fluctuation) of the gradients at the568

individual weight w⃗j and at the average weight w⃗a. Note that δg(2)j = 0 in SSGD as the gradients569

are taken at the average weight w⃗a for all learners. By taking the average of Eq. 8 over j, we570

have: g⃗a = g⃗0 + δg
(1)
a + δg

(2)
a with δg

(i)
a = n−1

∑n
j=1 δg

(i)
j (i = 1, 2). Here, δg(1)a vanishes after571

averaging over all minibatch. δg(0)a is due to superbatch-superbatch difference and δg
(2)
a comes from572

weight-weight difference in DPSGD. The gradient fluctuation has zero mean and its variance given573

by: ∆(2) ≡ α2||δg⃗(2)a ||2. Finally, the noise strength in DPSGD ∆DP can be expressed as:574

∆DP ≡ ||η⃗||2 = ∆S +∆(2), (9)

where ∆S ≡ α2(||⃗g0||2 − (g⃗0 · g⃗)2/||⃗g||2) is the SSGD noise strength which is equivalent to the575

noise strength in a single-learner SGD algorithm with a superbatch (size nB). The ∆(2) term only576
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exists in DPSGD. In general, this additional contribution makes the learning noise larger in DPSGD577

than that in SSGD, although noise strength also depends on g⃗a, g⃗0, etc., which may be different for578

different algorithms.579

In Fig. 4, we calculated these two noise components of DPSGD for the experiment shown in Fig. 2.580

Due to the large batch size we used in the experiment, ∆S is very small during the training process.581

However, the additional landscape-dependent noise ∆(2) in DPSGD can make up for the small SSGD582

noise when nB is large and adaptively adjust the effectively learning rate αe according to the loss583

landscape to help convergence. This additional landscape dependent noise in SGD is also responsible584

for finding flat minima with good generalization performance as shown in Fig. 5 in Appendix C.585

0 200 400
10
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10
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10
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10
0

Figure 4: The noise in DPSGD can be decomposed into the SSGD noise ∆S evaluated at the mean
weight w⃗a plus an additional noise ∆(2)(> 0). The additional DPSGD noise ∆(2) ≫ ∆S in the
beginning of the training before it decreases to become comparable to ∆S .

C Appendix for the effect of DPSGD noise in help finding flat minima with586

better generalization587

To demonstrate the effect of the additional noise in DPSGD for finding flat minima, we consider a588

numerical experiment with a smaller learning rate α = 0.2 for the MNIST dataset. We used n = 6589

and w⃗s,j(t) in DPSGD is the average weight of 2 neighbors on each side. In this case, both SSGD590

and DPSGD can converge to a solution, but their learning dynamics are different. As shown in Fig. 5591

(upper panel), while the training loss L of SSGD (red) decreases smoothly, the DPSGD training loss592

(green) fluctuates widely during the time window (1000-3000) when it stays significantly above the593

SSGD training loss. As shown in Fig. 5 (lower panel), these large fluctuations in L are caused by the594

high and increasing noise level in DPSGD. This elevated noise level in DPSGD allows the algorithm595

to search in a wider region in weight space. At around time 3000(batch), the DPSGD loss decreases596

suddenly and eventually converges to a solution with a similar training loss as SSGD. However,597

despite their similar final training loss, the DPSGD loss landscape is flatter (contour lines further598

apart) than SSGD landscape. Remarkably, the DPSGD solution has a lower test error (2.3%) than the599

test error of the SSGD solution (2.6%). We have also tried the SSGD∗ algorithm, but the performance600

(3.9% test error) is worse than both SSGD and DPSGD.601

To understand their different generalization performance, we studied the loss function landscape602

around the SSGD and DPSGD solutions. The contour plots of the loss function L around the two603

solutions are shown in the two right panels in Fig. 5. We found that the loss landscape near the DPSGD604

solution is flatter than the landscape near the SSGD solution despite having the same minimum605

loss. Our observation is consistent with [24] where it was found that SSGD with a large batch size606

converges to a sharp minimum which does not generalize well. Our results are in general agreement607

with the current consensus that flatter minima have better generalization [16, 17, 1, 2, 63]. It was608

recently suggested that the landscape-dependent noise in SGD-based algorithms can drive the system609

towards flat minima [8]. However, in the large batch setting, the SSGD noise is too small to be610
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WikiText-103 CIFAR10
GPT-2 EfficientNet-B0 VGG-19 ResNet-18 DenseNet-121 MobileNet

Size 201.58MB 11.11 MB 76.45 MB 42.63 MB 26.54 MB 12.27 MB
Time 320Hr 2.92 Hr 1.08 Hr 1.37 Hr 5.48 Hr 1.02 Hr

CIFAR10 SWB300 SWB2000
MobileNetV2 ShuffleNet GoogleNet ResNext-29 LSTM LSTM

Size 8.76 MB 4.82 MB 23.53 MB 34.82 MB 164.62 MB 164.62 MB
Time 1.96 Hr 2.46 Hr 5.31 Hr 4.55 Hr 26.88 Hr 203.21 Hr

ImageNet-1K
AlexNet VGG VGG-BN ResNet-50 ResNext-50 DenseNet-161

Size 233.08 MB 506.83 MB 506.85 MB 97.49 MB 95.48 MB 109.41 MB
Time 190.67 Hr 168.67 Hr 204.27 Hr 238.8 Hr 341.33 Hr 664.53 Hr

Table 6: Evaluated workload model size and training time. Training time is measured when running
on 1 V100 GPU. CIFAR-10 is trained with batch size 128 for 320 epochs. ImageNet-1K is trained
with batch size 256 for 100 epochs. SWB-300 and SWB-2000 are trained with batch size 128 for 16
epochs.

effective. The additional landscape-dependent noise ∆(2) in DPSGD, which also depends inversely611

on the flatness of the loss function (see Eq. 5), is thus critical for the system to find flatter minima in612

the large batch setting.613
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Figure 5: Comparison of different multi-learner algorithms, DPSGD (green), SSGD (red), and SSGD∗

(blue). For a smaller learning rate α = 0.2, both SSGD and DPSGD converge, however, DPSGD
finds a flatter minimum with a lower test error than SSGD. The fixed noise SSGD∗ has the worst
performance. See text for detailed description.

D Appendix for Experimental Methodology614

D.1 Software and Hardware615

We use PyTorch 1.6.0 (Torchvision 0.7.0) as the single learner DL engine. Our communication616

library is built with CUDA 11.0 compiler, the CUDA-aware OpenMPI 3.1.6, and g++ 8.5.0 compiler.617

Concurrency control of computation threads and communication threads is implemented via Pthreads.618

We run our experiments on a cluster of 8-V100 GPU servers. Each server has 2 sockets and 9 cores619

per socket. Each core is an Intel Xeon E5-2697 2.3GHz processor. Each server is equipped with 1TB620

main memory and 8 V100 GPUs. Between servers are 100Gbit/s Ethernet connections. GPUs and621
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CPUs are connected via PCIe Gen3 bus, which has a 16GB/s peak bandwidth in each direction per622

socket.623

D.2 Dataset and Models624

We evaluate on three types of DL tasks: CV, ASR and NLP. For CV task, we evaluate on CIFAR-10625

dataset [28], which comprises of a total of 60,000 RGB images of size 32 × 32 pixels partitioned626

into the training set (50,000 images) and the test set (10,000 images) and ImageNet-1K dataset [5],627

which comprises of 1.2 million training images (256x256 pixels) and 50,000 (256x256 pixels) testing628

images. We test CIFAR-10 with 10 representative CNN models [37]. The 10 CNN models are:629

(1) EfficientNet-B0, with a compound coefficient 0 in the basic EfficientNet architecture [49]. (3)630

VGG-19, a 19 layer instantiation of VGG architecture [46]. (4) ResNet-18, a 18 layer instantiation of631

ResNet architecture [14]. (5) DenseNet-121, a 121 layer instantiation of DenseNet architecture [20].632

(6) MobileNet, a 28 layer instantiation of MobileNet architecture [19]. (7) MobileNetV2, a 19 layer633

instantiation of [45] architecture that improves over MobileNet by introducing linear bottlenecks634

and inverted residual block. (8) ShuffleNet, a 50 layer instantiation of ShuffleNet architecture [62].635

(9) GoogleNet, a 22 layer instantiation of Inception architecture [48]. (10) ResNext-29, a 29 layer636

instantiation of [53] with bottlenecks width 64 and 2 sets of aggregated transformations. The detailed637

model implementation refers to [37]. Among these models, ShuffleNet, MobileNet, MobileNet-V2,638

EfficientNet represent the low memory footprint models that are widely used on mobile devices,639

where federated learnings is often used. The other models are standard CNN models that aim for640

high accuracy. We test 6 CNN models for ImageNet-1K, AlexNet [29], VGG11 [46], VGG11 with641

BatchNorm [21] VGG11-BN, ResNet-50 [14], ResNext-50 [53], and DenseNet-161 [20].642

For ASR tasks, we evaluate on SWB-300 and SWB-2000 dataset. The input feature (i.e. training643

sample) is a fusion of FMLLR (40-dim), i-Vector (100-dim), and logmel with its delta and double644

delta (40-dim ×3). SWB-300, whose size is 30GB, contains roughly 300 hour training data of over 4645

million samples. SWB-2000, whose size is 216GB, contains roughly 2000 hour training data of over646

30 million samples. The size of SWB-300 held-out data is 0.6GB and the size of SWB-2000 held-out647

data is 1.2GB. The acoustic model is a long short-term memory (LSTM) model with 6 bi-directional648

layers. Each layer contains 1,024 cells (512 cells in each direction). On top of the LSTM layers, there649

is a linear projection layer with 256 hidden units, followed by a softmax output layer with 32,000 (i.e.650

32,000 classes) units corresponding to context-dependent HMM states. The LSTM is unrolled with651

21 frames and trained with non-overlapping feature subsequences of that length. This model contains652

over 43 million parameters and is about 165MB large.653

For NLP task, we evaluate on wikitext-103 dataset [38]. The model architecture is GPT-2 [43], with654

16 attention layers, 256 sequence length, 10 attention heads, 410-dimension word embedding , and655

2100 hidden dimensions. The vocab size is 28996. Model size is 201.58 MB.656

Table 6 summarizes the model size and training time (on 1 V100 GPU) for evaluated tasks. CIFAR-10657

tasks train 320 epochs, ImageNet-1K tasks train 100 epochs, and all ASR tasks train 16 epochs.658

E Appendix for Results Section659

E.1 CIFAR-10 Single Learner Baseline660

For CIFAR-10 experiments, we use the hyper-parameter setup proposed in [37]: a baseline 128661

sample batch size and learning rate 0.1 for the first 160 epochs, learning rate 0.01 for the next 80662

epochs, and learning rate 0.001 for the remaining 80 epochs. Using the same learning rate schedule,663

we keep increasing the batch size up to 8192. Table 7 in Appendix E records test accuracy under664

different batch sizes. Model accuracy consistently deteriorates beyond batch size 1024 because the665

learning rate is too small for the decreased number of parameter updates.666

E.2 SSGD and DPSGD Comparison on CIFAR-10667

To improve model accuracy beyond batch size 1024, we apply the linear scaling rule (i.e., linearly668

increase learning rate w.r.t batch size) [14, 12, 60]. We use learning rate 0.1 for batch size 1024, 0.2669

for batch size 2048, 0.4 for batch size 4096, and 0.8 for batch size 8192 (except in EfficientNet-B0670

batchsize 8192, we use learning rate 0.7). Table 8 compares SSGD and DPSGD performance running671
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Batch Size
128 256 512 1024 2048 4096 8192

EfficientNet-B0 87.51 89.32 91.28 91.92 90.62 88.00 84.85
VGG-19 93.51 93.78 93.35 93.12 92.64 91.82 87.76
ResNet-18 95.44 95.26 95.08 94.59 94.96 92.98 91.24
DenseNet-121 95.06 95.27 95.42 95.11 94.81 93.09 92.34
MobileNet 89.53 90.96 92.39 92.24 91.22 89.54 86.59
MobileNetV2 90.52 92.93 94.17 94.99 93.71 91.97 89.81
ShuffleNet 90.4 92.27 92.82 93.15 91.94 90.59 87.81
GoogleNet 94.99 95.06 94.97 95.32 94.05 92.78 91.09
ResNext-29 95.35 95.66 95.31 95.42 94.24 93.00 91.06

Table 7: CIFAR-10 accuracy (%) with different batch size. Across runs, learning rate is set as 0.1
for first 160 epochs, 0.01 for the next 80 epochs and 0.001 for the last 80 epochs. Model accuracy
consistently deteriorates when batch size is over 1024. Bold text in each row represents the highest
accuracy achieved for the corresponding model, e.g., EfficientNet-B0 achieves highest accuracy at
91.92% with batch size 1024.

Eff-B0 VGG Res-18 Dense-121 Mobile MobileV2 Shuffle Google ResNext-29

bs=128 Baseline 87.51 93.51 95.44 95.06 89.53 90.52 90.40 94.99 95.35
lr=0.1
bs=1024 SSGD 91.92 93.12 94.59 95.11 92.24 94.99 93.15 95.32 95.42
lr=0.1 DPSGD 91.69 93.15 94.98 95.12 92.52 94.36 93.55 95.18 95.72
bs=2048 SSGD 91.69 92.64 94.96 95.11 91.72 94.24 92.91 94.76 94.19
lr=0.2 DPSGD 91.06 93.05 94.86 95.32 92.72 94.51 92.89 94.80 95.30
bs=4096 SSGD 91.62 92.68 94.30 94.72 91.68 94.25 92.67 94.36 93.21
lr=0.4 DPSGD 91.23 92.72 94.78 95.24 92.03 94.12 92.20 94.99 94.32
bs=8192 SSGD 10 87.11 92.70 92.79 91.10 93.22 92.09 93.72 92.38
lr=0.8 DPSGD 91.13 90.52 94.34 94.79 91.80 93.09 92.36 93.84 92.55

Table 8: DPSGD and SSGD comparison for CIFAR-10, batch size 2048, 4096 and 8192, with learning
rate set as 0.2, 0.4 and 0.8 respectively. All experiments are conducted on 16 GPUs (learners), with
batch size per GPU 128, 256 and 512 respectively. Bold texts represent the best model accuracy
achieved given the specific batch size and learning rate. When batch size is 8192, DPSGD significantly
outperforms SSGD. The batch size 128 baseline is presented for reference. bs stands for batch-size, lr
stands for learning rate.

with 16 GPUs (learners). SSGD and DPSGD perform comparably up to batch size 4096. When672

the batch size increases to 8192, DPSGD outperforms SSGD in all but one case. Most noticeably,673

SSGD diverges in EfficientNet-B0 when the batch-size is 8192. Figure 6 in Appendix E.4 details the674

model accuracy progression versus epochs in each setting. To better understand the loss landscape in675

SSGD and DPSGD training, we visualize the landscape with 2D contour projections and 2D Hessian676

projections in Appendix E.5, using the method from [32]. Results in Appendix E.5 demonstrate that677

DPSGD can often find flatter optima than SSGD for CIFAR-10 tasks, which is consistent with results678

for MNIST shown in Appendix C. Summary DPSGD outperforms SSGD for 8 out of 9 CIFAR-10679

tasks in the large batch setting. Moreover, SSGD diverges on the EfficientNet-B0 task. DPSGD is680

more effective at avoiding early traps and reaching better solutions than SSGD in the large batch681

setting.682

E.3 CIFAR-10 Hyper-Parameter Tuning683

By reducing learning rate in the CIFAR-10 batchsize 8192 case as shown in Table 9, SSGD can684

escape early traps but still lags behind DPSGD. Bold text in each column indicates the best accuracy685

achieved for that model across different learning rate and optimization method configurations. DPSGD686

consistently delivers the most accurate models.687

E.4 CIFAR-10 Training Progression688

Figure 6 illustrates SSGD and DPSGD comparison for CIFAR-10. SSGD and DPSGD perform689

comparably up to batch size 4096. When batch size increases up to 8192, DPSGD outperforms SSGD690

in all but one cases. Noticeably, SSGD diverges in EfficientNet-B0 when batch-size is 8192.691
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(a) CIFAR-10 convergence, bs=1024, lr=0.1
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(b) CIFAR-10 convergence, bs=2048, lr=0.2
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(c) CIFAR-10 convergence, bs=4096, lr=0.4
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(d) CIFAR-10 convergence, bs=8192, lr=0.8

Figure 6: CIFAR-10 SSGD DPSGD comparison for batch size 2048, 4096 and 8192, with learning
rate set as 0.2, 0.4 and 0.8 respectively. All experiments are conducted on 16 GPUs (learners), with
batch size per GPU 128,256 and 512 respectively. When batch size is 8192, DPSGD significantly
outperforms SSGD. bs stands for batch-size, lr stands for learning rate. The dotted black line
represents the bs=128 baseline.
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Eff-B0 VGG Res-18 Dense-121 Mobile MobileV2 Shuffle Google ResNext-29

lr=0.8 SSGD 10.00 87.11 92.7 92.79 91.10 93.22 92.09 93.72 92.38
DPSGD 91.13 90.52 94.34 94.79 91.80 93.09 92.36 93.84 92.55

lr=0.4 SSGD 88.61 91.06 91.98 93.42 91.13 93.11 91.54 92.85 89.70
DPSGD 89.80 91.93 93.91 94.32 91.38 93.14 91.68 93.49 92.79

lr=0.2 SSGD 88.03 90.51 92.13 92.98 88.38 91.68 90.14 92.44 91.31
DPSGD 87.69 91.59 93.30 94.28 89.18 92.52 90.13 93.41 91.79

Table 9: CIFAR-10 with batch size 8192. By reducing learning rate, SSGD can escape early traps
but still lags behind DPSGD. Bold text in each column indicates the best accuracy achieved for that
model across different learning rate and optimization method configurations. DPSGD consistently
delivers the most accurate models.
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Figure 7: CIFAR-10 2D contour plot. The more widely spaced contours represent a flatter loss
landscape and a more generalizable solution. The distance between each contour line is 0.005 across
all the plots. We plot against the model trained at the end of 320th epoch. VGG: VGG-19, ResN:
ResNet-18, DenseN: DenseNet-121, -S: -SSGD, -DP: -DPSGD

E.5 CIFAR-10 Loss Landscape Visualization692

To better understand the loss landscape in SSGD and DPSGD training, we visualize the landscape693

contour 2D projection and Hessian 2D projection, using the same mechanism as in [32]. For both694

plots, we randomly select two N -dim vectors (where N is the number of parameters in each model)695

and multiply with a scaling factor evenly sampled from -0.1 to 0.1 in a K × K grid to generate696

K2 perturbations of the trained model. To produce a contour plot, we calculate the testing data loss697

of the perturbed model at each point in the K ×K grid. Figure 7 depicts the 2D contour plot for698

representative models (at the end of the 320th epoch) in a 50× 50 grid. DPSGD training leads not699

only to a lower loss but also much more widely spaced contours, indicating a flatter loss landscape700

and more generalizable solution. For the Hessian plot, we first calculate the maximum eigen value701

λmax and minimum eigen value λmin of the model’s Hessian matrix at each sample point in a 4x4702

grid. We then calculate the ratio r between |λmin| and |λmax|. The lower r is, the more likely it is in a703

convex region and less likely in a saddle region. We then plot the heatmap of this r value in this 4x4704

grid. The corresponding models are trained at the 16-th epoch (i.e. the first 5% training phase) and705

the corresponding Hessian plot Figure 8 indicates DPSGD is much more effective at avoiding early706

traps (e.g., saddle points) than SSGD.707

E.6 ImageNet-1K Training Progression708

Figure 9 illustrates SSGD and DPSGD comparison for ImageNet-1K. Noticeably, SSGD diverges in709

AlexNet, VGG11, VGG11-BN when batch-size is 8192 while DPSGD converges.710

E.7 SWB Training Progression711

Figure 10 illustrates heldout loss comparison for SWB-300 and SWB-2000. In SWB-300 task, SSGD712

diverges beyond batch size 2048 and DPSGD converges well til batch size 8192. In SWB-2000 task,713

SSGD diverges beyond batch size 4096 and DPSGD converges well til at least batch size 8192.714

F Appendix: End-to-End Run-time Comparison and Advice for Practitioners715

End-to-End Run-time Comparison In all above-mentioned DPSGD and SSGD experiments we716

used the same number of epochs as in the well-tuned single-GPU baseline (i.e., the total computation717

cost is fixed). When computation cost is fixed, DPSGD inherently runs faster than SSGD because718

DPSGD requires less messages transmitted and tolerate high-latency network better [33]. Table 11719

records training time for each representative task (batch size 128 per GPU, 16 GPUs) on both low and720
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Figure 8: CIFAR-10 Hessian heatmap on a 4x4 grid. The lower value (i.e. a cooler color) indicates
the corresponding point is less likely in a saddle. We plotted against the models at the end of the 16th
epoch. DPSGD is much more effective at avoiding early traps (e.g., saddle points) than SSGD. VGG:
VGG-19, ResN: ResNet-18, DenseN: DenseNet-121, -S: -SSGD, -DP: -DPSGD

AlexNet VGG VGG-BN ResNet-50 ResNext-50 DenseNet-161
bs=256 Baseline 56.31/79.05 69.02/88.66 70.65/89.92 76.39/93.05 77.62/93.64 78.43/94.20
lr=1x lr=0.01 lr=0.1
bs=2048 SSGD 54.29/77.43 67.67/87.91 70.36/89.58 76.648/92.99 77.486/93.62 78.19/94.16
lr=8x DPSGD 53.71/76.91 67.28/87.58 69.76/89.31 76.094/92.82 77.236/93.60 77.28/93.64
bs=4096 SSGD 0.10/0.50 0.10/0.50 65.39/86.51 76.46/93.06 77.43/93.65 77.98/93.86
lr=16x DPSGD 52.53/76.01 66.44/87.20 68.86/88.82 75.784/92.82 77.24/93.54 77.73/93.81
bs=8192 SSGD 0.10/0.50 0.10/0.50 0.10/0.50 76.096/92.80 76.564/93.16 77.34/93.65
lr=32x DPSGD 49.01/73.00 65.00/86.11 63.55/85.43 75.618/92.75 77.162/93.42 77.22/93.61

Table 10: ImageNet-1K Top-1/Top-5 model accuracy (%) comparison for batch size 2048, 4096 and
8192. All experiments are conducted on 16 GPUs (learners), with batch size per GPU 128, 256 and
512 respectively. Bold texts represent the best model accuracy achieved given the specific batch size
and learning rate. The batch size 256 baseline is presented for reference. bs stands for batch-size, lr
stands for learning rate. Baseline lr is set to 0.01 for AlexNet and VGG11, 0.1 for the other models.
In the large batch setting, we use learning rate warmup and linear scaling as prescribed in [12].
For rough loss landscape like AlexNet and VGG, SSGD diverges when batch size is large whereas
DPSGD converges.

high latency networks. Other tasks and batch-size setups show the same trend: DPSGD runs faster721

than SSGD. Further note that for Eff-B0 (target accuracy 90%) and SWB-2000 (target heldout loss722

1.48), DPSGD reaches target model quality with twice the batch size as used in SSGD, all learning723

rates considered (Table 9 , Table 4). Thus DPSGD can effectively use 2X more GPUs. DPSGD724

achieves target accuracy for Eff-B0 in 0.067 hours and for SWB-2000 in 10.08 hours (64 GPUs). In725

contrast, SSGD achieves target accuracy for Eff-B0 in 0.19 hours and for SWB-2000 in 23.15 hours726

(32 GPUs).727

In addition, DPSGD is immune to stragglers, while approaches that require global synchronization728

suffer slowdowns. Figure 11 demonstrates when there is a learner running 5x slower than other729

learners, DPSGD converges much faster than LAMB[55], a state-of-the art SSGD based large-batch730

training solution, on the SWB300 task. This experiment demonstrates that even SSGD-variant algo-731

rithms (e.g., LAMB) can be designed to work for specific training tasks, DPSGD can simultaneously732

tackle the convergence problem and straggler-avoidance problem for the generic large batch training733

tasks.734

Summary DPSGD consistently runs faster than SSGD to reach target accuracy in the large batch735

setting.736

Eff-b0 Res-18 Dense-121 Mobile Google ResNext-29 SWB-2000
Single-GPU 2.92 1.37 5.48 1.02 5.31 4.55 203.21

Latency
(1µs)

SSGD 0.34 0.35 0.68 0.17 0.58 0.56 38.00
DPSGD 0.26 0.32 0.58 0.12 0.49 0.41 29.71

Latency
(1ms)

SSGD 0.46 0.82 0.96 0.30 0.84 0.94 96.31
DPSGD 0.27 0.32 0.58 0.13 0.50 0.42 29.85

Table 11: Time (hours) to complete training with batch size 128 per GPU and 16 GPUs in total
(CIFAR-10 and SWB-2000).
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(a) ImageNet-1K Top-1, bs=2048, lr=8x
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(b) ImageNet-1K Top-5, bs=2048, lr=8x
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(c) ImageNet-1K Top-1, bs=4096, lr=16x
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(d) ImageNet-1K Top-5, bs=4096, lr=16x
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(e) ImageNet-1K Top-1, bs=8192, lr=32x
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(f) ImageNet-1K Top-5, bs=8192, lr=32x

Figure 9: ImageNet-1K SSGD DPSGD comparison for batch size 2048, 4096 and 8192, with learning
rate set as 0.2, 0.4 and 0.8 respectively. All experiments are conducted on 16 GPUs (learners), with
batch size per GPU 128,256 and 512 respectively. When batch size is 8192, DPSGD significantly
outperforms SSGD. bs stands for batch-size, lr stands for learning rate. The dotted black line
represents the bs=256 baseline.

Advice for Practitioners In SSGD, when total batch size is fixed, the convergence behavior is the737

same regardless of the number of learners. In DPSGD, when the number of learners increases, the738

convergence could be harmed due to too much discrepancy between learners. In another word, we739

would like a system that has enough system noise so that it can help avoid early training traps but740

not too much noise so that model convergence is unaffected. In practice, we found that 16-learner741

setup usually yields the best convergence results in the DPSGD setting, which is consistent with742

research literature [33, 34]. To make use of a larger number of computing devices in DPSGD, we743

recommend a hierarchical system design [58] where we group nearby learners (e.g., on the same744

server) as one big super-learner and apply DPSGD algorithm only across super-learners. For example,745

on a 128 GPU cluster, we could group 8 learners as one big super-learner and we apply DPSGD746

among 16 super-learners. In addition, we also recommend in each iteration, each (super)-learner747

selects a random neighbor to communicate to further improve convergence. Please refer to [59] for748

the detailed analysis of how randomized communication improves DPSGD convergence.749

G Related Work750

To increase parallelism in DDL, one must increase batch size, which often leads to a deteriorating751

model accuracy [61, 30]. Meticulous task-specific learning rate tuning for large batch training exists752

in CV training [12, 54], NLP training [55] and ASR training [57]. Among them, layer-wise adaptive753
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Figure 10: Heldout loss w.r.t epochs for SWB-300 and SWB-2000. Dotted black lines indicate the
batch size 256 heldout loss baseline.
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Figure 11: LAMB (a state-of-the-art SSGD based solution) and DPSGD comparison when there is a
straggler that runs 5x slower than other learners in the system. SWB-300 task, batch size 4096, x-axis
is running time and y-xais is the held-out loss.

learning rate tuning schemes [54, 55] rely on the Adam optimizer [25], which may diverge on some754

simple convex functions [44]. In particular, [54, 55] requires every learner to see other learner’s755

gradients to calculate the large minibatch gradient, [9] optimizes both original loss function and756

the sharpness of the minimization, [35] calculates extra-gradient information and [51] leverages757

the covariance matrix of gradients noise. Furthermore, all above-mentioned approaches require758

global synchronization and suffer from the straggler problem: one slow learner can slow down759

the entire training process.The noise in the stochastic gradient plays an important role in terms760

of generalization performance in deep learning. Keskar et al. [24] show that large batch training761

procedures usually find sharp minima with poor generalization performance. This phenomenon is762

analyzed from different perspectives, including PAC-Bayesian learning theory [40, 41, 7], stochastic763

differential equation [22], Bayesian inference [47] and optimization theory [26]. There are several764

efforts trying to design algorithms to find flat minima that generalize better than SGD [2, 23].765
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