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1 Quality Observables: detailed definitions

We detail here the different observables used to quantify the quality of the generated samples.

1.1 Log-likelihood (LL)

The likelihood is the most difficult observable to compute. In practice, the Annealed Importance
Sampling (AIS) method [1] is often used, since, as soon as Nv & 30, an exact enumeration of all the
RBM’s states becomes impossible. Some recent works have dedicated large efforts to understand
this object [2], from which we can extract a generic method to compute a reasonable estimate. First,
let us recall that AIS is based on a simulated annealing process where a configuration is gradually
brought from temperature T = ∞ to T = 1 using a set of bridging distributions. We therefore
define a temperature schedule: {βk ≡ 1/Tk} such that 0 = β0 < β1 < ... < βK = 1. For each
temperature, we define the transition operator, Tk(v′,v) to bring a configuration v to v′ varying
the temperature according to the temperature schedule. In our case it is done using MC sampling
layer-wise. In our experiment, we use as bridging distributions the following

pk(v,h) =
1

Zk
exp(−βkE(v,h)). (1)

For the rest, we follow [2], using a set of NI initial configurations, and Nβ equally-spaced interme-
diate temperatures to compute the estimation of the partition function.

In our work, we used a set of Nβ ∈ [104, 105] temperatures uniformly distributed in this interval
(depending on the system size). Then, results are averaged over NI ∈ [1000, 10000] realizations.

1.2 Energy

Given a trained model, we can compare the mean energy

E[s, τ ;w, b, c] = −
∑
ia

viwiaha −
∑
i

bivi −
∑
a

caha, (2)

of the generated and original samples, namely, ERBM and ED. In a perfect set-up, ERBM should be
larger to ED at the begining of the generation sampling (when initialising at random) and converge
to ED at long times after equilibration. In practice, one observes that ERBM goes below ED at long
sampling times if the machine was trained out of equilibrium. In order to quantify the generated
sample quality, we find useful to track the error in the energy, EE, as the mean squared error (MSE)
between both measures.

1.3 Error of the second moment

Firstly, we compute the averaged covariance matrix of the data representation sites Cij =

Cov(vi, vj) (with (· · · ) the average over Ns independent samples). This matrix can be computed
either using the original dataset, in which case we call it CD

ij , or the generated dataset, then called
CRBM
ij . Once having both matrices, we estimate the distance between both kinds of Cij at each
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combination i, j through the MSE (which is equivalently the square of the Frobenius norm between
the two matrices)

E(2) ≡ 2

Nv(Nv − 1)

∑
i<j

(
CRBM
ij − CD

ij

)2
. (3)

1.4 Error of the third moment

Similarly, we can compute the MSE of the third moment of the data representation sites Cijk =

(vi −mi)(vj −mj)(vk −mk), with mi = vi. We will refer to this error as E(3) and it was not
shown in the main-text. Since the number of moments scales as ∼ O(N3

v ), we shall focus only on
the most active sites: the ones where the empirical frequency mi is as close as possible to 0.5. In
practice, we took the 50 more active sites. The expression is given by

E(3) =
6

Nv(Nv − 1)(Nv − 2)

∑
i<j<k

(
CRBM
ijk − CD

ijk

)2
. (4)

1.5 Power spectrum density

For images, we compute the average power spectrum at fixed distance r of both a set of generated
images and of the original dataset. In practice, we compute the logarithm of the module of the
Fourier coefficient at a fixed distance d in Fourier space

P (d) = log
(
〈‖Akl‖2〉(k,l)|k2+l2=d2

)
, (5)

where Akl are the image’s discrete 2D Fourier transform elements. Again, we compare the values
obtained with the generated dataset with those of the real dataset through the MSE. We will refer to
this error as EPSD which is defined as:

EPSD =
∑
d

[
P (d)RBM − P (d)D

]2
. (6)

1.6 Adversarial Accuracy Indicator

A recent indicator has been introduced in Ref. [3] for measuring the resemblance and the “privacy”
of data drawn from a generative model with respect to the training set that has been used to train
the model. This metric is based on the idea of data nearest neighbors. We begin by defining two
sets containing each one Ns samples: (i) a “target” set containing only generated samples T ≡
{s(m)
RBM}

Ns
m=1 and (ii) a “source” set containing only samples from the dataset S ≡ {s(m)

D }Ns
m=1.

Then, for each sample m in T , we compute the minimum euclidean distance to a sample in S,
that is dTS(m) = minn

∥∥∥s
(m)
RBM − s

(n)
D

∥∥∥. In other words, we look for the “nearest neighbor” of
our generated sample in the original dataset. We can do exactly the same calculation the other
way around, and look for the generated sample that resembles more to a sample in the original set,
and compute dST (m). Finally, we can also measure the minimum distance from a sample m to
a different sample in the same set, thus obtaining dSS(m) and dTT (m). Once having all these 4
distances, we can estimate the frequency at which we find the nearest neighbors of a data point in
the same set that already contained that point, that is

AS =
1

Ns

Ns∑
m

1 (dSS(m) < dST (m)) and AT =
1

Ns

Ns∑
m

1 (dTT (m) < dTS(m)) . (7)

It is clear that if the generated samples were statistically indistinguishable form real ones, these two
measures should converge to the value of a random guess 0.5 when Ns −→ ∞. Furthermore, AS
close to 1 means that the generated samples are very dissimilar to the true ones while, if close to
zero, means that the generated samples are that close to the true ones that we are overfitting the
dataset. On the other way around, whenever AT is close to one, we can affirm that the generated
samples are all very close to each others, which can be related to a lack of diversity in the target set or
because the generated samples are very far away from the true ones. If close to zero, it reflects again
overfitting. In the main text article, for simplicity, we use the MSE estimate of the two indicators:

EAA ≡ (AS − 0.5)2 + (AT − 0.5)2. (8)
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1.7 Entropy

Our last indicator to compare the true and the generated datasets is the entropy. Here, we will
approximate the entropy of a given set of data by its byte size when compressed using gzip. We
therefore define the entropy of Ns samples from the true dataset as Ssrc and we compare it to the
entropy of a set of the same size where half of the samples are drawn from the true dataset while the
other half is taken from the generated configurations. We refer to this entropy as the cross entropy
Scross. We compare these 2 quantities through

∆S =
Scross

Ssrc
− 1 (9)

When ∆S is large, it means that the generated samples are less “ordered” than the samples coming
from the source. On the contrary, if small, it means that the generated samples lack diversity (as
compared to the original dataset).

1.8 Frechet Inception Distance score

For image datasets, we can also use other typical estimators such as the Frechet Inception Distance
score (FID) [4]. The FID metric compares the distribution of the activation variables of a neural
network (typically Inception v3 trained on the ImageNet) when fed with real or generated images.
As we show in Figs. 4 and Fig. 19, this estimator behaves qualitatively in the same way than the
estimators discussed in the main-text.

2 Details of the RBM used for the training of MNIST

2.1 RBMs details

All the RBMs that have been used to learned the MNIST dataset have been trained with the following
parameters. First of all, only the first 10000 images of MNIST where used, threshold (for the
mapping to black/white) at the value 0.5. The test set consisted of 1000 other images. Parameters
of the network and learning procedure:

• Number of hidden nodes: Nh = 500.

• Learning rate: α = 0.01.

• Minibatch size: nmb = 500.

• No `2 regularization of momentum.

• The gradient is centered according to Ref.[5].

• The visible biases are initialized to match the empirical frequency of the training dataset:

ηi = log

(
m̄i

1− m̄i

)
where m̄i =

1

M

∑
m

s
(m)
i . (10)

• The number of Markov chains used to estimate the negative term of the gradient was always
equal to nmb.

• The number of MCMC steps used for the negative chains is indicated by the variable k,
and vary in the different experiments.

• For the indicators, we used Ns = 1000 samples.

2.2 Computer load

All the RBM’s trainings were done on NVIDIA GPU RTX 3090, using the pytorch library [6]. The
runtime in MNIST ranges from less than an hour when k = 10 to ∼ 2 days when k = 104, for
reaching a number of updates tage = 200000. The generation sampling of new configurations is
done on CPU (Intel(R) Xeon(R) @ 2.60GHz). Typical analysis were several minutes long for each
tage, which the exception of the time auto-correlation functions that required some few hours to
complete.
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A B

Figure 1: Evolution of the log-likelihood (LL) on the dataset along the learning. In A we show the
LL measured during the training of RBMs with the Rdm-k scheme, as function of the number of
parameters updates, tage. We include data for RBMs trained with different values of k. In B we
compare (for several values of k) the LL obtained with different schemes as function of the product
tage · k, which is proportional to the total learning time.

3 Additional results for MNIST

3.1 Rdm-k scheme

We show the evolution of LL on the dataset during the learning process using the Rdm-k scheme for
different values of k in fig. 1-A, and compared with other training schemes in fig. 1-B.

We illustrate on the fig. 2 the samples that we obtain at different sampling times, tG, for the older
RBM we have trained with the Rdm-100 scheme.

We clearly see that during the learning process, the RBM memorized in its structure the dynamics
followed to train it, and that the equilibrium configurations do not match the dataset density distri-
bution. We stress here that the number of MCMC steps used to estimate the negative term of the LL
gradient, k, is rather large in this case (k = 100, for sure larger than the common values used in the
literature) and yet, we start to observe out-of-equilibrium effects quite quickly during the learning.

We show on fig. 3 and fig. 4 the evolution of the quality observables measured during the sampling
stage for various values of k. As described in the main-text: when k is small in comparison to the
mixing time the system enters quickly in the OOE regime, developing a peak of performance at
tG ∼ k. For the case k = 100, we show in fig. 5, the evolution of the position of this peak (its
position in the time axis in fig. 5-A and its height in fig. 5-B) with the RBM’s age. We can see that
the position of the best quality peak converges quite early to tG ∼ k, but the overall quality of the
generated samples at that time continues improving with the number of parameter updates during
the training even if the LL of the dataset, LD, does not improve anymore at these values of tage, as
is shown in fig. 1. Furthermore, the quality of the generated samples at this peak does not change
much with the value of k used to estimate the negative term of the gradient, as shown in fig. 6-A.
And not only, already with some few k steps, we can generate samples that are much better than
those generated with CD-k or PCD-k using much larger values of k (see fig. 6-B).

We further compare the evolution of the quality estimator EPSD along 2 sampling runs initialized
either at random or at the dataset in fig. 7. We highlight the time, ttherm, at which both simulations
converge to the equilibrium value. These are the times that were plotted as function of tage in fig.3-C
in the main-text.

3.2 Relaxations of equilibrium and OOE models

In the main-text, the mixing times were estimated through the equilibrium magnetization time-
autocorrelation function ρ(t). At that point, we mentioned that we could only properly estimate
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Rdm-100 random start Rdm-100 dataset start

Figure 2: We show some examples of the images we generate at different steps of the data generation
sampling of an RBM trained with the Rdm-100 scheme for tage = 199876 parameter updates.
Samples generated at the same number of MCMC steps are grouped together in rows and the value
of tG is given in the top left corner of each row. Runs initialized at random configurations are
shown on the left panel, and on the dataset on the right. Each column follows the evolution of a
Markov chain initialized from random or from the dataset and iterated for almost 200000 steps.
We see that at tG = 118 ∼ k = 100, we obtain nice samples having a fair representation of all
digits. For lower number of MCMC steps, the chain didn’t converge yet to numbers (in the case of
random initialization) and, for longer ones, almost all samples are vertical ones (for both kinds of
initialization) which clearly dominate the learned equilibrium distribution.
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Figure 4: We show some extra estimators of the generated sample quality as function of the sampling
time: the energy of the generated ERBM and original ED datasets, the error in the energy EE , and
the FID score.

A B

Figure 5: For RBMs trained with the Rdm-100 scheme, we show in A, the sampling time tG at
which we observe the best generation performance in the estimators shown in fig. 3 (that is, the
position of the “best quality peak”), as function of the age of the RBM. In B we show the value
reached by these estimators at the times shown in A, also versus the tage.

it in the k = 104 RBMs because poorly trained RBMs displayed extremely slow dynamics. In fact,
these very slow relaxations prevented us to thermalize the system for most of the tage studied in
the low k models. We can further elaborate this argument by studying the relaxations from con-
figurations at different times. In particular, we consider two different RBMs (both trained with the
Rdm-k scheme for the same number of updates tage = 40620): one using k = 10 and the other
with k = 10000. Indeed, at that age, the Rdm-10000 RBM has learned the equilibrium model and
the Rdm-10 RBM encodes a strongly OOE model, as discussed in the main-text. In order to charac-
terize the relaxations of both models, we recompute the time-autocorrelation function discussed in
the main-text. However, this time, we explicitly compare the magnetization at time t+ tw, with the
magnetizations at time tw,

ρ(t, tw) =
Cm(t, tw)

Cm(tw)
, where Cm(t) =

1

Nv

∑
i

(mi(t+ tw)− m̄i)(mi(tw)− m̄i) (11)

We refer to tw as the “waiting” time. Clearly, equilibrium is reached when ρ(t, tw) does not depend
on tw anymore. We show in fig.8-A and B, the relaxations of the Rdm-10 and Rdm-10000 models,
respectively. Clearly, the relaxations of the Rdm-10 model are far slower than those of the Rdm-
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A B

Figure 6: A We show the height of the best performance peak (for RBMs trained with the Rdm-k
scheme) for the EAAI (on the test set) and EPSD estimators, as function of the machine’s age for
different values of k (the same curves were already shown in fig. 5 in the case k = 100). We
observe so little improvement of the generative performance with k at the best performance peak.
In B, we show the minimum of the values measured for these two estimators during the sampling of
RBMs trained with the CD-k (dashed lines and empty symbols) and PCD-k (continuous lines and
full symbols) scheme as function of tage and for several values of k. In this case, the quality of the
generated samples improves notably with k and even worsen over tage (something not observed in
the Rdm scheme). For the sake of comparison, we also show the values obtained with the Rdm-50
scheme (in black, already shown in A), displaying remarkable better generation performances only
comparable with the RBMs trained with k = 1000.

10000. Showing the former, actually, forever aging effects extremely similar to those observed in
spin glasses.

3.3 CD-k scheme

In the CD case on fig. 10, we see that for small k, the system enters quickly in the OOE regime.
However in that case, the interaction between the initial condition and the dynamics lead to a behav-
ior hard to predict: the peak of best performance, if it exists, moves with the age of the machine, and
the general performance are not good. When k = 1000 we observe quite a good performance. This
is due to the fact that at the beginning of the learning this number of MCMC steps is sufficiently
high to decorrelate from the initial condition. As tage increases, the dataset is presumably a better
initial condition than taking a random one, and the length of the MC chain is probably enough to
thermalise correctly. This agrees with the fact that k = 1000 is comparable to the highest values of
the mixing time tα shown in the main-text. We should still remark that in that case, tG needs to be
very large if one wants to generate equilibrium configurations during the sampling.

In fig. 9 we illustrate the behavior of CD-100 both when sampling using the dataset as initial
condition or starting from random ones. It is clear that the configurations visited when starting
from random almost never reach a digit (even with k = 100). When initialized at the dataset,
and as explained before, the system explore nearby configurations (we can see that the chains do
not decorrelate from the original digit) until it manages forget the initial configuration and starts to
sample spurious states (which are definitely not numbers).

3.4 PCD-k scheme

Let us finish with the PCD case. We give a glance of the sample generation process of a RBM
trained with PCD-100 in fig. 12. We have considered two possible starts for the MC chain: random
and dataset, and for both cases, it seems clear that we need at least 10000 sampling MCMC steps to
start to sample good digits that are also uncorrelated initialization of the chains. We quantify these

9



Figure 7: Evolution of EPSD during the sampling of RBMs trained with MNIST data and with the
Rdm-k scheme for different values of k (different cells) and different tages (coded by colors). In
continuous lines, we show the measures obtained with runs initialized at random, and in dashed
lines, those from runs initialized at the dataset. We highlight with a circle, the point at which both
measures merge to the same constant curve. The k = 104 curve was included in fig. 3-B of the
main-text.

A B

Figure 8: We show the two-time-autocorrelation function of the magnetizations, ρ(t, tw), defined
in Eq. 11, during the sampling of two RBMs: either trained with Rdm-10 (in A) or Rdm-10000 (in
B). Both RBMs were trained for a fixed number of updates tage = 40642 (or 40643) and we code
by colors the value of the waiting time tw used to compute ρ(t, tw). In A, the longer we wait, the
slower the relaxation for all the tw considered. In B, curves above tw > 500 converge to the same
relaxational curve, which coincides with the one showed for that age in fig.3-A of the main-text.

10



CD-100 random start CD-100 dataset start

Figure 9: Same experiment shown in fig. 2, but this time sampling an RBM trained with the CD-100
scheme for tage = 199876 parameter updates. Even with k = 100, RBMs trained with the CD-k
scheme are not able to create digits from scratch, as shown in the random initialization Markov
chains. If instead, the chains are initialized at the dataset, they remain close to the original digit for
at least t ∼ 3000 MCMC steps, without decorrelating from the initial condition. For larger times,
the machine does not generate digits anymore.

observations by looking at the evolution of the quality observables with the sampling time (see fig.
11). In this case, the PCD approximation scheme does a good job, the permanent chain manages to
keep the RBM at quasi-equilibrium during all the learning, which is consistent with the observation
that RBM’s parameters change really slowly during the learning. In fact, we see almost no memory
effects in the dynamics, even for small k. Yet, it is important to remark that the time needed to
obtain equilibrated samples from scratch is quite high. In addition, the quality of the best generated
samples using this training scheme are significantly worse than those obtained in the OOE regime
of Rdm-k Also the AAI score on the test set is not as good as for the Rdm-k scheme unless we reach
MCMC chains of k = 1000, as shown in fig. 6-B.

3.5 Comparisons between different training schemes

We have shown that different training schemes generate RBMs that display different generation
sampling dynamics (when trying to create digits from scratch just through the sampling of their
Gibbs equilibrium distribution). Indeed, the evolution of the quality estimators for Rdm-k, CD-k
and PCD-k are shown in Figs. 3, 10 and 11 respectively. For the Rdm case, we see that that by
increasing k we reach equilibrium for larger tage, but eventually we end up in the OOE regime as
the mixing time keeps increasing with the number of LL gradient updates. For CD, it seems that for
k = 10, 100, the RBM enters in an uncontrolled OOE regime, while when k = 1000, the machine

11



Figure 10: Evolution of the quality estimators along the sample generation for MNIST database for
RBMs trained using the CD-k approach and with different values of k.

seems to have a nice equilibrium behavior (to confirm such behavior one should quantify the mixing
time). Finally, in PCD, when k ≥ 100 we observe that the machine ends up in a good equilibrium
regime where the quality of the generated samples increase with k. Again, the mixing time should be
controlled to confirm this conclusion. Still, we can also observe that the best generation performance
is not necessarily reached on this equilibrium regime. Indeed, we can observe in fig. 6 that RBMs
running on the OOE regime generates far better samples than CD or PCD for short values of k, and
very similar for large k. In fact, in fig. 6-B, we show the minimum value measured in two quality
estimators as function of tage for the different schemes, showing that the Rdm-50 runs create samples
as good as PCD-1000 ones at long tage (despite being the training of the former 20 times faster).
For shorter values of tage, the quality of the samples generated by the Rdm-50 RBMs, always that
of overpasses CD or PCD-1000.

4 Results for a Human Genome dataset

In this case we considered the population genetics’ dataset of Ref. [7]. This dataset corresponds to
a sub-part of the genome of a population of 5008 individuals, for which the alteration or not of a
given gene is indicated by a {0, 1} variable. A total of 805 genes are reported. For our study, the
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PCD-100 random start PCD-100 dataset start

Figure 12: We show some examples of the images we obtain at different steps during the data
generation sampling of an RBM trained with the PCD-100 scheme for tage = 199876 parameter
updates following the same procedure discussed in fig. 9.

dataset was separated into 4500 samples for the train set and 500 for the test set. For this dataset,
the following parameters of the RBM were used:

• Number of hidden nodes: Nh = 100

• Learning rate: α = 0.01

• Minibatch size: nmb = 250

• For the indicators, we used all the training set Ns = 4500 (and only 500 for measurement
involving the test set).

• the rest is the same as for MNIST.

We observe for this dataset qualitatively the same behavior as for MNIST. We show on fig. 13 a
figure similar to fig. 3 in the main text for this dataset. We observe, again, two clear regimes: the
equilibrium and the OOE. The equilibrium regime is observed for almost all the RBMs trained with
tage . 3000 updates (except for the Rdm-10 RBM), and the OOE regime, for older machines. It
is quite remarkable that the samples generated by RBMs of age tage = 2862, reproduce quite well
the dataset’s 2 and 3 points-correlations (as shown in the E(2) and the E(3) observables), but display
quite poor values for EAAI. The fact that all the RBMs with k > 10 reproduce essentially the
same curves with time, tells us that the relaxation time is rather low below this age, surely over 10
MCMC steps and below 50. However, beyond this age, the mixing time grows drastically, clearly
overpassing the 104 steps since none of our RBMs describe the equilibrium dynamics for any of the
blue lines. Yet, even in the OOE regime, we are still able to generate very good samples (as reflected
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Figure 14: All three images: histogram (as heatmap) of the scatter plot along the first two eigenvec-
tors ofw of the dataset. From left to right: the red dots correspond to the scatter plot of 1000 samples
generated by the RBM at respectively at tG = 10, 102, 103 Monte Carlo steps. The RBM has been
trained using the Rdm-100 scheme, and the best match between the projections of the original and
generated dataset are observed precisely at tG ∼ k = 100.

in all the quality observables) as long as we limit the generation sampling to tG ∼ k MCMC steps
for each RBM (just as observed in the MNIST’s case).

Finally, we believe that this sudden and brutal growth of the mixing time with tage is related to
the structure of this dataset: the MCMC simulations get trapped in some relative maxima of the
LL, and it takes extremely large times to escape from them. To illustrate this, we can project the
samples either on the first principal directions or, on the left-eigenvectors of wia as discussed in [8].
We show in fig. 14, the projection of the dataset along the directions of the first two eigenvectors
of the dataset (being each the horizontal and vertical axis, respectively), and the projection of the
generated samples at 3 different sampling times. The original dataset is shown as a heatmap of the
point density, and the generated dataset as red dots. We clearly show that at tG = k, the generated
samples provide a very good cover of the dataset density. At the opposite, after very few updates,
it didn’t spread correctly, and after too many updates, the samples cluster into a small subset of the
data density distribution.

5 Results for CelebA

This dataset corresponds to a total of 30000 faces of celebrity, in color and potentially in high-
resolution. In our case, we first downsized the dataset to a resolution of 128×128 in order to reduce
the computational time of the learning part. Since RBM are more suited to handle binary entries,
we then clipped the images’s pixels at a value of 0.3. For our study, we only considere a train set of
30000 samples. For this dataset, the following parameters of the RBM were used:

• Number of hidden nodes: Nh = 5000

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.

• the rest is the same as for MNIST.

We observe for this dataset qualitatively the same behavior as for MNIST, even though it is clearly
much harder to learn. Due to the learning time, we will show only the results for k = 50, 100, 500.
We show on fig. 15 the evolution of the sampling for our indicators and for many values of tage. We
also show on fig 16 sampling obtained for thr Rdm-100 machine for several values of tG, demon-
strating the RBM can indeed learn quite complex dataset.
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Figure 15: Evolution of the quality estimators during the generation sampling of CELEBA images,
for RBMs of different ages (tage coded by colors), and trained using the Rdm-k scheme with k =
50, 100 and 500 in different columns. The best generation performance is also observed clearly
around tG ∼ k, except for the PSD observable which is not able to characterize properly these
kinds of images. For this case, we remove the indicator on the third moment since it was too
computationally demanding.

6 Results for FashionMNIST

The FashionMNIST[9] dataset corresponds to a total of 60000 images of 28×28 pixels in grayscale.
The dataset represents various classes of clothers (shirts, pants, ...). For this dataset, we train the
RBM on input rescaled within [0, 1] but we didn’t discretize the values as we did for MNIST. The
following parameters were used for the training:

• Number of hidden nodes: Nh = 1000

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.
• During the training we used k = 100 Gibbs steps.
• the rest is the same as for MNIST.

We show on fig. 17 a subset of the dataset together with the generated images of the RBM. Then, we
show on fig. 19 the results of several indicators for this case, showing again the characteristic non-
equilibrium best-performance peak around tG ≈ k. Finally, we show visually how the generated
images evolve with the sampling time, up to a very long number of MCMC steps in fig. 18.

7 Results for Caltech101 Silhouettes

This dataset corresponds to a total of 8671 images of 28 × 28 pixels in black and one, correspond-
ing to the silhouette of various objects.. The dataset is made of binary input from which not pre-
treatment was made. The following parameters were used for the training:

• Number of hidden nodes: Nh = 500

17
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Figure 16: Faces generated by the RBMs starting from random initial conditions, trained with Rdm-
100 and up to tage = 360000. Each row represent a fixed number of sampling steps. We can see
at the beginning that very quickly the MC chains is able to generate very blurry faces. Then, when
tG ∼ O(100) it generates quite decent faces. Later, the chains seem to be biased toward more
obscure version of the faces.

Figure 17: Left: A subset of FashionMNIST showing 25 random samples. Right: 25 images
generated from the RBM trained of the FMNIST dataset. The RBM was trained up to tage = 200k
and extracted at tG = k = 100

18



Figure 18: Various samples obtained from the RBM at different values of tG. We see that when
tG = k we obtain quite good samples while for large sampling time the generated images over-
represent pants and shoes.

Figure 19: We show the evolution of several quality estimators for RBMs trained with k = 100 in 5
different datasets: FashionMNIST, NORB REDUX, CALTECH101 Silhouettes, CELEBA in colour
and CIFAR. Each dataset is shown in a different column.
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Figure 20: Left: A subset of FashionMNIST showing 25 random samples. Right: 25 images
generated from the RBM trained of the FMNIST dataset. The RBM was trained up to tage ≈ 200k
and extracted at tG = k = 100

Figure 21: Various samples obtained from the RBM at different values of tG. We see that when
tG = k we obtain quite good samples while for large sampling time the generated images over-
represent some shapes.

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.
• During the training we used k = 100 Gibbs steps.
• the rest is the same as for MNIST.

We show on fig. 20 a subset of the dataset together with the generated images of the RBM. Then,
we show on fig. 19 the results of several indicators for this case showing again the non-equilibrium
regime when tG ≈ k. Finally, we show how the samples evolves on fig. 21 when we let the sampling
for a large number of MC steps.

8 Results for smallNORB dataset

This dataset [10] corresponds to a total of 48600 images of 96× 96 pixels in grayshade dividing in
two sets of equals size (train and test). The images correspond to pictures of small toy taken under
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Figure 22: Left: A subset of FashionMNIST showing 25 random samples. Right: 25 images
generated from the RBM trained of the FMNIST dataset. The RBM was trained up to tage ≈ 200k
and extracted at tG = k = 100

different condition (light, angle ...). For the purporse of our work and to simplify the learning, we
gather all the possible samples (amongst the train and test sets) selecting only one type of lighting.
This reduced the dataset to 16300 images, which we refer to as NORB REDUX. The RBM was
trained on the gray shaded images using the following parameters:

• Number of hidden nodes: Nh = 2000

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.
• During the training we used k = 100 Gibbs steps.
• the rest is the same as for MNIST.

We show on fig. 22 a subset of the dataset together with the generated images of the RBM. Then,
we show on fig. 19 the results of several indicators for this case showing again the non-equilibrium
regime when tG ≈ k. Finally, we show how the samples evolves on fig. 23 when we let the sampling
for a large number of MC steps.

9 Results for CIFAR10 dataset

This dataset [11] corresponds to a total of 60k images of 10 classes of objects in color. The resolution
of each image is 32 × 32. Since the dataset is in color, the total number of input is 3 × 322. The
images correspond to pictures of celebrity. The RBM was trained on the colored images using the
following parameters:

• Number of hidden nodes: Nh = 1000

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.
• During the training we used k = 100 Gibbs steps.
• the rest is the same as for MNIST.

We show on fig. 24 a subset of the dataset together with the generated images of the RBM. Then,
we show on fig. 19 the results of several indicators for this case showing again the non-equilibrium
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Figure 23: Various samples obtained from the RBM at different values of tG. We see that when
tG ≈ k we obtain quite good samples while for large sampling time, the generated images are
sometime basd or only of a particular type.

Figure 24: Left: A subset of CIFAR10 showing 25 random samples. Right: 25 images generated
from the RBM trained of the CIFAR10 dataset. The RBM was trained up to tage ≈ 900k and
extracted at tG = k = 100

regime when tG ≈ k. Finally, we show how the samples evolves on fig. 25 when we let the sampling
for many MC steps.

10 Results for CelebA dataset

This dataset[12] corresponds to a total of more than 200k images of celebrity. For the purpose of
our work, we retain only 12000 images, which we downsample to 64× 64 pixels. Since the dataset
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Figure 25: Various samples obtained from the RBM at different values of tG. We see that when
tG = k = 100 we obtain samples with great variety while for large sampling time the generated
images get a very biased look.

Figure 26: Left: A subset of CELEBA showing 25 random samples. Right: 25 images generated
from the RBM trained of the CELEBA dataset. The RBM was trained up to tage ≈ 100k and
extracted at tG = k = 100.

is in color, the total number of input is 3× 642. The images correspond to pictures of celebrity. The
RBM was trained on the grayshaded images using the following parameters:

• Number of hidden nodes: Nh = 5000

• Learning rate: α = 0.01

• Minibatch size: nmb = 500

• For the indicators, we used Ns = 1000 samples.

• During the training we used k = 100 Gibbs steps.

• the rest is the same as for MNIST.

We show on fig. 26 a subset of the dataset together with the generated images of the RBM. Then,
we show on fig. 19 the results of several indicators for this case showing again the non-equilibrium
regime when tG ≈ k. Finally, we show how the samples evolves on fig. 27 when we let the sampling
for many MC steps.
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Figure 27: Various samples obtained from the RBM at different values of tG. We see that when
tG = k = 100 we obtain quite good samples while for large sampling time the generated images
over-represent more regulare images.
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