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Appendix / Supplemental Material

Due to space limitations in the main text, additional details are presented in the supplementary
material. Specifically:

* Sec. A: We provide more information about the imaging principle, process and potential of
the sensor.

* Sec. B: We provide further details on dataset collection.

* Sec. C: We delve into more specifics about the controllable ISP.

* Sec. D: We describe the characteristics of the methods compared in the Benchmark.
* Sec. E: We provide more metrics of the methods compared in the Benchmark.

* Sec. F: We discuss additional points of discussion.

A  HYBRID SENSOR IMAGING PROCESS, PRINCIPLES AND POTENTIAL

This section describes the imaging process and working principles of the hybrid vision sensor (HVS)
used in this paper. The HVS combines quad Bayer pattern-based RGB imaging with event-based
sensing, enabling high temporal resolution and high dynamic range. The following subsections elab-
orate on the Quad Bayer structure, event generation principles, and rolling shutter readout process.

A.1 QUAD BAYER PATTERN AND RGB IMAGING

The hybrid sensor utilizes a quad Bayer pattern, as shown in Fig. 1, where each group of four
pixels consists of three color pixels (red, green, and blue) and one event pixel. Let I 4y represent
the RAW image captured by the sensor, with pixel intensity values denoted as Igaw (z,y). For
the RGB pixels, the values correspond to the photonic response of the sensor to incoming light,
represented by:

Ircp(7,y) = Krcp - ®(7,y) + Nras, (1)
where ®(z,y) is the incident light intensity, K rep is the sensitivity coefficient, and Nrgp is the
noise term.

The quad Bayer pattern increases the effective resolution of the sensor by allowing demosaicing
algorithms to interpolate missing color information. Additionally, the rolling shutter mechanism is
used to sequentially expose rows of the sensor, resulting in temporal offsets across the frame. This
is illustrated in Fig. 10.

A.2 EVENT GENERATION PRINCIPLES

In addition to RGB imaging, the hybrid sensor includes event pixels that detect changes in lumi-
nance. These event pixels operate in the logarithmic domain and generate an event F(z,y,t,p)
whenever the change in logarithmic intensity exceeds a predefined threshold 6. The mathematical
model for event generation is as follows:

AL(IC, Y, t) = log(‘[(xv Y, t)) - log(I(x, Yyt — At))a )
17 if AL(z7y7 t) > 97
-1, ifAL(z,y,t) < -0,

where I(x,y,t) is the light intensity at pixel (z,y) and time ¢, At is the sampling interval, and
p € {—1, 1} represents the polarity of the event (indicating an increase or decrease in luminance)

E(z,y,t,p) = { 3)

High Temporal Resolution: The event generation process is asynchronous and occurs indepen-
dently at each pixel, triggered only when a significant luminance change is detected. This enables
extremely high temporal resolution, as events can be recorded at microsecond-scale intervals. Let
ftemporal TEprEsent the temporal resolution of event recording, which depends on the sampling in-

terval At: )

= 4
ftemporal At ( )
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(a) Color Image (b) Color Image w Smaller Aperture

(c) Short-term Events (d) Short-term Events

(e) Long-term Events (f) Long-term Events

Figure 9: In fast-motion scenarios and low-light conditions, real-world data demonstrates the advantages of
events in achieving higher temporal resolution and greater dynamic range. For example, in the fast-motion
scene, the color checker in (a) exhibits blurred edges, while the corresponding short-term event frame shows
sharper edges, capturing motion more accurately. In low-light conditions, (b) illustrates the limitations of
traditional RGB imaging, where details are lost due to insufficient lighting. However, as shown in (d) and (f),
the event data captures motion effectively even under low light. Nevertheless, it is also evident that events
exhibit increased noise levels in low-light conditions, as highlighted in (f). Our data opens the possibility for
future low-light enhancement and deblurring in the RAW domain via events.

This high temporal resolution allows the sensor to effectively capture rapid motion and high-speed
dynamics that traditional RGB cameras, limited by frame rates, cannot resolve. For example, a
rolling ball or moving object creates a continuous stream of events corresponding to pixel-level
luminance changes, enabling precise tracking of motion trajectories in real-time. This characteristic
is particularly advantageous for motion deblurring and temporal interpolation tasks.

High Dynamic Range (HDR): The logarithmic domain operation of the event pixels inherently
provides a high dynamic range. Unlike traditional RGB sensors, which saturate under bright light-
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Figure 10: The camera utilized for data collection features a rolling shutter mode. The horizontal
axis in the figure represents time, and the vertical axis represents each row. Our sensor outputs both
APS frames and EVS events concurrently, with both being aligned in space and time. Specifically,
the APS frames are captured using a rolling shutter exposure method. In the diagram, the red lines
represent the rolling shutter pattern; the solid red line corresponds to the start of the rolling shutter
exposure, and the dashed line signifies the end of the exposure.The blue straight line represents
events.

ing conditions or lose detail in shadows, event pixels respond to relative changes in luminance rather
than absolute intensity. Let I, and I,,;, represent the maximum and minimum detectable inten-
sities, respectively. The dynamic range D R can be expressed in decibels (dB) as:

DR = 20log,, <Imaz) . 5
I min

Because events are triggered by logarithmic intensity changes, the sensor is capable of detecting

changes over a wide range of luminance levels, from very dark to extremely bright conditions. This

property enables effective operation in scenarios with challenging lighting conditions, such as low-

light environments or scenes with high contrast between bright and shadowed regions.

Practical Implications: The combination of high temporal resolution and high dynamic range
makes the hybrid sensor particularly well-suited for applications involving fast motion or extreme
lighting conditions. As illustrated in Fig. 9, events accurately capture motion details even in low-
light scenarios while preserving high-frequency temporal information. These unique characteristics
complement the RGB output, enhancing the performance of hybrid sensor ISP tasks such as motion
deblurring, HDR reconstruction, and low-light enhancement.

A.3 ROLLING SHUTTER AND TEMPORAL ALIGNMENT

The RGB output of the hybrid sensor follows a rolling shutter exposure mechanism, as shown in
Figure 10. In this method, each row of the sensor is exposed sequentially, introducing temporal
offsets between rows. Let tgq,¢(7) and te,,q(r) represent the start and end times of exposure for row
r, respectively. The effective exposure time for row r is given by:

Teacp(r) = tend(r) - tstart (T) (6)
To achieve temporal alignment between the RGB and event streams, the event data are synchronized
with the rolling shutter exposure times. Both events and frames have unified timestamps to ensure

time alignment. This alignment is critical for event-guided ISP tasks, where temporal information
from events complements the spatial information in RGB frames.

A.4 POTENTIAL BENEFITS OF EVENTS FOR DIFFERENT TASKS IN ISP

Demosaicing: Task Objective: Reconstruct the full-resolution RGB image Ir¢ g (z, y) from incom-
plete color samples in the quad Bayer pattern. Benefits of Events: High temporal resolution events
provide precise edge information via spatial gradients VE(x,y,t):

OFE OF
VE(x7y7t) = (317’ ay) )
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guiding interpolation along edges and reducing artifacts like color fringing. The high dynamic range
aids in preserving details across varying luminance levels.

Denoising: Task Objective: Reduce noise Ngpgp in RAW image Ipaw (z,y) to enhance image
quality. Benefits of Events: Events, triggered by significant luminance changes AL(x,y,t) > 6,
help differentiate signal from noise. By weighting the denoising process with event activity
E(z,y,1):
Tienvised (2, y) = Iraw (x,y) — w(x,y) - Nrap(z,y),

where w(x,y) = f(E(x,y,t)), we suppress noise while preserving details in dynamic regions.
White Balancing: Task Objective: Adjust image colors to render neutral whites under varying
illumination. Benefits of Events: Using event rate rg(z,y) = AA—f, we detect illumination changes
and adjust white balance coefficients Kwg:

Iwp(z,y) = Kws - [raw (7, y),

enabling real-time adaptation to lighting variations due to the high dynamic range and temporal
resolution of events.

Color Correction: Task Objective: Map image colors to a standard color space for accurate rep-
resentation. Benefits of Events: Events highlight regions with significant luminance shifts, indi-
cating potential color deviations. Incorporating event information into the color correction matrix
Mcc(E):

Icorrected(xa y) = MCC(E((E, Y, t)) : IWB (fE, y)v
allows dynamic adjustment for scene changes, enhancing color fidelity, especially in scenes with
rapid motion or high contrast.

In summary, the hybrid sensor enables simultaneous RGB and event data acquisition, leveraging the
strengths of both modalities. The RGB data provide high spatial resolution, while the event data
capture motion and high-frequency changes with low latency and high dynamic range. This unique
combination not only enhances the traditional ISP process but also opens up significant potential
for advanced imaging applications. This combination facilitates advanced imaging tasks, including
motion deblurring, and low-light enhancement in future, as show in Fig. 13.

B MORE DETAILS ABOUT DATASET COLLECTION

In Fig. 11, we present additional samples from our dataset, showcasing the diversity and richness of
the collected data. The figure includes examples of RAW images, their corresponding high-quality
RGB frames, and the associated event streams. These examples highlight the variety of scenes
captured, encompassing urban environments with buildings, natural landscapes with vegetation, in-
tricate textures, vibrant flowers, and more.

To ensure accurate color representation, each scene includes an image featuring a color card, which
is systematically used for color calibration and estimation during the dataset processing. This ap-
proach enhances the reliability and usability of the dataset for ISP tasks.

In Fig. 13, we present additional data collection scenarios, encompassing various scenes and dif-
ferent weather conditions. We used LabelMe (Russell et al., 2008) to annotate the positions of
the ColorChecker, specifically marking four points: cyan, white, brown, and black. Fig. 15 shows
our annotation interface. All annotated location information is stored in JSON format and forms a
one-to-one correspondence with the image.

Table 5: Size Comparison of Related Datasets. The resolution of MIPI datasets is not uniform.

Dataset Resolution Scale Real-World Events Tasks Publication
Ours 2248 x 3264 3373 Yes Yes Hybrid Sensor ISP -
MIPI 2040 x 1356 800 No No Hybrid Sensor ISP CVPR 2024
ISPW 1368 x 1824 197 Yes No ISP ECCV 2022
NR2R 3464 x 5202 150 Yes No ISP CVPR 2022
DeepISP 3024 x 4032 110 Yes No ISP IEEE TIP 2018
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Figure 11: More samples in our dataset, from left to right: RAW, Good RGB frame and corresponding events..

20



Published as a conference paper at ICLR 2025

Shé‘oqﬂows bu1ld1ngsc]_o S
S tyslgan o Frruk‘tﬁreumd
overgast (. peach - E rL.ch')l’)'ag
pedestrian traffic 4 fruits )
mango
P Callbratl‘on tables fgottai%e
palm architecture = €
] rape g
g ugmmp é . V% : omngvﬁ
S jereenesveired ° . street a raingrid
s'reflective tiles

Figure 12: Use ChatGPT to identify the main scenes in the dataset and count their proportions.

B.1 DISCUSSION ON DATASET DIVERSITY

By including diverse real-world scenarios, our dataset provides a robust foundation for training and
benchmarking Event-ISP algorithms. To better demonstrate the diversity of the image content of
our dataset, we apply ChatGPT-40 to generate a detailed caption for each video and summarize the
key elements, lighting conditions, and texture details in the dataset. The scene and object lighting
in the dataset are also summarized by ChatGPT, as shown in the Fig. 12. The conversation with
ChatGPT is shown in Fig. 14. The summarized key elements, lighting conditions, atmosphere, and
other observations across all images are:

* Key Elements:
— (1) Architecture and Urban Design: Modern multi-story buildings; reflective glass
panels; paved open areas; streetlights, and signs.

— (2) Landscaping and Natural Elements: Landscape greenery including trees, shrubs,
and grass; specific plants and flowers; wet surfaces in rain.

— (3) Objects and Tools: Everyday items like fruits on a table and hydrant-like structures
with signs; workspace equipment and office tools.

* Lighting Conditions:
— (4) Natural Light: Most outdoor scenes feature skies, providing diffused, soft natural
lighting, either in bright or dim scenarios.

— (5) Artificial Light: Indoor scenes utilize artificial lighting, resulting in muted tones
and soft shadows.

— (6) Reflections and Textures: Wet surfaces and glossy materials in outdoor images
amplify reflective textures and subtle lighting nuances.

¢ Other Observations:

— (7) Attention to Detail: Fine textures, like foliage, building surfaces, and small ob-
jects.

— (8) Balanced Composition: Images consist of balanced structured urban elements
with natural greenery.

B.2 DISCUSSION ON DATASET SCALE

To further demonstrate the adequacy of our dataset, we provide a comparative analysis with the most
related datasets in Table 5. Our dataset contains 3,373 images with a resolution of 2248 x 3264 pixels
(approximately 7.3 million pixels per image). Compared to MIPI, which includes only 800 images
with resolutions around 2K (e.g., 2040 x 1356), our dataset is over four times larger and is based
on real-world data rather than simulated data. This difference makes our dataset more representative
and applicable for real-world ISP tasks.

It is worth noting that the MIPI dataset, despite its smaller scale, has already been demonstrated
to support the training of large networks such as Transformers (Xu et al., 2024b). Therefore, our
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larger dataset is even better suited for training and testing ISP models, offering greater potential for
comprehensive research.

In addition to MIPI, we also consider prior ISP datasets such as ISPW (Shekhar Tripathi et al., 2022),
which contains 197 groups of images, some of which have higher resolutions (e.g., 4480 x 6720).
NR2R (Li et al., 2022) and DeepISP (Schwartz et al., 2018) as traditional ISP datasets have no more
than 200 images for training. But both have high resolution. However, the total image count in
ISPW is significantly smaller than our dataset, and it does not incorporate event data.

The scale of our dataset not only ensures a sufficient number of samples but also provides high-
resolution data, enabling effective training and testing for ISP tasks. Additionally, the dataset in-
cludes diverse scenes, lighting conditions, and event streams, which further enhance its applicability
to hybrid sensor ISP research.

In summary, our dataset provides a comprehensive resource for ISP research. Its real-world nature
distinguishes it from existing datasets and makes it particularly well-suited for event-guided ISP
tasks. Moreover, we are committed to the long-term maintenance of this dataset and plan to expand
it in the future to accommodate larger and more complex tasks.

C MORE DETAILS ABOUT CONTROLLABLE ISP

The MATLAB demo code of the Controllable ISP is provided in the end of the appendix.In this
section, we will elucidate further details in comment.

Fixed Pattern Noise: Practically, we capture pure black images (with the lens cap on) using dif-
ferent exposure times. The black frames captured with identical exposure times are averaged to
obtain the fixed pattern noise. This noise indicates the potential deviations of some pixels, devia-
tions which, if not addressed, can be exacerbated. The physical meaning of this noise is that even
without optics, these pixels will have intensity output due to dark current.

Sensor Value Range: Typically in the hardware design of sensors, the green channel will obtain a
larger value than the red and blue channels, as shown in Fig. 16. Therefore, when capturing a cloudy
sky (which appears white to the human eye), the green channel may reach its maximum value due to
overexposure, while the red and blue channels do not, resulting in a pinkish hue in the sky. In such
cases, we artificially set the overexposure. The specific operation is to use 95% of the preset value
of the sensor when normalizing the 8-bit values, setting the maximum value to 242 (255 x 0.95) for
normalization.

D MORE DETAILS ABOUT BENCHMARK METHODS

In this section we explain in more detail the methods of the benchmark in the main paper.

(1) Full Pipeline ISP employs CNN architectures to streamline traditional ISP processes such as
demosaicing, white balancing, and denoising, enabling a direct conversion from RAW images to
RGB outputs in an end-to-end manner. This innovative approach has catalyzed extensive research,
leading to the development of sophisticated models such as ReconfigISP (Yu et al., 2021), Merging-
ISP (Chaudhari et al., 2021), PyNet (Ignatov et al., 2020b), PyNetCA (Kim et al., 2020), InvertISP
(Xing et al., 2021), and MV-ISPNet (Ignatov et al., 2020a). In our benchmark, we selected several
models from a reputable open-source paper for comprehensive evaluation. Specifically, we chose
MV-ISPNet, which secured first place at AIM 2020, demonstrating its robustness. Alongside, we
included PyNet and its enhanced variant, PyNetCA, which incorporates attention layers for more
in-depth analysis. Additionally, we incorporated InvertISP, known for its proven ability to adeptly
handle various scenarios.

InvertISP (Xing et al., 2021): InvertISP is a pipeline with a specially designed reversible structure
for both rendering RGB images from RAW and to inversely recover the RAW data from RGB
images. It uses a series of reversible affine coupling layers and 1 x 1 convolutional layers to build
a single reversible neural network that can map from RAW data to sSRGB data, and can inversely
restore RAW data from compressed RGB images.
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Figure 13: More dataset scenes and labels. Our dataset encompasses various indoor and outdoor scenes,
captured under different weather conditions, including cloudy and sunny days. The initial segments of our
videos include a ColorChecker, which has been annotated using LabelMe (Russell et al., 2008).

MYV-ISPNet (Ignatov et al., 2020a): MV-ISPNet is a multi-level wavelet ISP network based on U-
Net. It takes advantage of the Multi-level Wavelet CNN (MWCNN) and Residual Channel Attention
Network (RCAN) architectures, minimizes information loss through residual groups and discrete
wavelet transforms, and combines multiple loss functions and self-integration methods to improve
image quality.

PyNet (Ignatov et al., 2020b): PyNet utilizes a stack of CNN layers with different resolution level
to process the image, which allows the network to learn a more diverse set of features, ranging from
global brightness / color to local texture enhancement.

23



Published as a conference paper at ICLR 2025

-
You are an advanced image captioning model designed to generate highly detailed @
descriptions of images. Your task is to analyze and describe the input image with as
much detail as possible. .....

The video frames showcase diverse scenes with a balance of urban structures and
natural greenery under outdoor lighting conditions. This diversity supports ISP
tasks such as exposure correction, dynamic range optimization, and texture
preservation. Fine details in textures, like foliage and patterned pavements, aid in
testing denoising, sharpening, and color correction. ...

\_
f )

o

This set of images depicts an outdoor urban street scene in three frames. The left
frame highlights a color calibration chart held in the foreground, while the middle
and right frames focus on the street, featuring trees, road signs, and a black fence
with yellow hazard stripes. The lighting is bright and diffused, likely under
overcast weather, creating a neutral atmosphere. ......

J

AA
VA4
Finally, T would like to ask you to summarize these video frames and give an
evaluation of their diversity.

J

Based on the provided images, this dataset demonstrates notable diversity in\
terms of scene types, lighting conditions, and object interactions. It spans a wide
range of settings, including indoor environments (e.g., tabletop arrangements with
fruits and artificial lighting), outdoor urban landscapes (e.g., plazas, streets, and
modern architectural surroundings), and varying weather conditions (e.g., overcast
skies and wet surfaces). The inclusion of a color calibration chart across many
scenes ensures consistency for imaging tasks like color correction while allowing
varied backgrounds, textures, and contextual elements to be captured. The
dataset's diversity is further enhanced by a mix of natural and artificial objects,
different lighting scenarios (diffused, dim, or bright), and varying structural
details (from smooth pavements to reflective glass fagades). Overall, the dataset
provides a well-rounded foundation for evaluating models under realistic and
controlled conditions, balancing calibration with environmental complexity.

Figure 14: Describe the frames and generate a summary using ChatGPT.
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Figure 15: LabelMe annotation interface: We use LabelMe software to mark the four corners of a color card
in images, which are white, cyan, brown, and black respectively. In practice, the images annotated by LabelMe
are demosaiced from RAW format. While annotators can distinguish the colors, there are deviations in the
image’s inherent color representation.
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Figure 16: The distribution of colors on the color card in different frames under the same light
source.

PyNetCA (Kim et al., 2020): PyNetCA is an enhanced version of the original PyNet. It adopts an
inverted pyramid structure and considers both global and local features of the image through multi-
scale feature fusion and residual connection. With a channel attention module (CA) to emphasize
important channel features, and uses a sub-pixel reconstruction module (SRM) in the last layer to
improve upsampling efficiency and image quality through 1 x 1 convolution and sub-pixel shuffling
technology.

(2) Stage-wise ISPs:.Instead of replacing the entire ISP pipeline with a single neural network, stage-
wise learning based ISPs employ multiple specifically designed modules to perform different sub
tasks and organize them sequentially or in parallel order to generate the final output. Note that these
modules are sometimes trained independently in some models, in our experiment we only keep the
model structures and train them end-to-end.

CameraNet (Liang et al., 2021): CameraNet designs two sequential modules and trains them sep-
arately to perform different tasks. The Restore-Net component is trained for demosaicing, white
balancing and denoising while the Enhance-Net for sSRGB gamma mapping and detail adjustments.
The Pytorch version of CameraNet is not available, and therefore we experiments on a converted
version.

AWNet (Dai et al., 2020): AWNet employs two parallel UNet-based modules to capture global
and local content. The modules take in the original RAW image and a pseudo-demosaiced image
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generated from the RAW image, then the output of these two modules are averaged to produce the
final output.

(3) Image Enhancement Network Based ISPs:. Transformer-based models have demonstrated
high capabilities in image enhancement tasks (e.g., deblurring, super-resolution). Even though these
models are not specifically designed for ISP, a minor conversion (i.e. replacing the projector in the
output layer) could evoke their potentials in ISP tasks.

UNet (Ronneberger et al., 2015): UNet is a CNN-based model which has been widely adopted in
areas of image processing due to its high performance in dealing with various sizes of images and
modelling complex structures within them. In our experiment a UNet is trained to perform the task
of ISP.

Swin Transformer (Lu et al., 2024): Swin Transformer is a transformer based general-purpose
backbone for image processing. It produces a hierarchical representation with shifted windows
transformer blocks and brings greater efficiency by limiting self-attention computation to non-
overlapping local windows while also allowing for cross-window connection.

E BENCHMARKING METRICS

In addition to PSNR and SSIM, the inclusion of Natural Image Quality Evaluator (NIQE) (Zhang
et al., 2015) and Perceptual Index (PI) (Zhang et al., 2014) provides deeper insights into the percep-
tual quality and naturalness of images across various models, as shown in Table. 6, and Table. 7. The
ablation study analysis of the methods in these two tables, including a discussion of the best perfor-
mances, a comparison between event-based methods (eSL and EV-UNet) and pure RGB methods,
and the differences of these methods in indoor and outdoor scenes.

Best Performance Analysis: Indoor Scenes (Table. 6): Swin-Transformer exhibited excellent per-
formance in indoor scenes, achieving the lowest average NIQE (7.7104) and PI (7.2125) values.
This indicates its advantage in enhancing both image quality and perceptual quality. InvertISP
closely followed, with an average NIQE of 8.8646 and PI of 7.8543, demonstrating good natural
image quality. AWNet also showed balanced performance, with an average NIQE of 8.5311 and PI
of 7.9843. Outdoor Scenes (Table 7.): InvertISP performed the best in outdoor scenes, achieving
the lowest average NIQE (6.7187) and a relatively low PI (6.8720), especially excelling in complex
flower and building scenes. Swin-Transformer also demonstrated excellent performance in outdoor
scenes, with an average NIQE of 7.0284 and PI of 7.2255. eSL performed well in outdoor scenes,
achieving an average NIQE of 6.9509 and PI of 7.1445.

Comparison Between Event-Based Methods and Pure RGB Methods: eSL achieved good NIQE
and PI values in both indoor and outdoor scenes. In particular, in outdoor scenes, it obtained an av-
erage NIQE of 6.9509 and PI of 7.1445, which are close to the best performances. EV-UNet’s per-
formance was relatively average in both types of scenes. It had an average indoor NIQE of 10.6250
and PI of 9.2131; in outdoor scenes, it achieved an average NIQE of 8.2537 and PI of 7.8705. Pure
RGB Methods Swin-Transformer, as a pure RGB method, performed excellently in both indoor
and outdoor scenes. This indicates its good generalization ability when handling different scenes.
InvertISP, although a pure RGB method, performed outstandingly in outdoor scenes, especially in
improving image quality under complex lighting conditions. The event-based method eSL’s perfor-
mance in outdoor scenes was close to the best, which may be due to the advantage of event data in
capturing dynamic and high dynamic range scenes. EV-UNet’s performance was slightly inferior to
eSL, which may be related to its model structure or the degree to which it utilizes event data. Pure
RGB methods like Swin-Transformer and InvertISP performed outstandingly, indicating that even
without event data, excellent performance can be achieved through improved model structures and
algorithms.

Differences Between Indoor and Outdoor Scenes: Performance Differences: Most methods ex-
hibit better NIQE and PI values in outdoor scenes than in indoor scenes. This may be because
outdoor scenes have more complex lighting conditions and content, providing more information to
the models. Advantages of Event-Based Methods: Event-based methods display more significant
advantages in outdoor scenes, especially when handling rapid changes and high dynamic range en-
vironments. In such cases, event data can provide additional information to improve image quality.
Model Generalization Ability: Models like Swin-Transformer maintain consistently high perfor-
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Table 6: Comparison of Methods on HVS ISP Dataset indoor scenes. * refer to the results obtained
by the same model with different hyperparameters.

1-In-Fruit-2 3-In-ColChecker-40 4-In-RLChart-10 Average
Methods NIQE PI NIQE PI NIQE PI NIQE PI
PyNET 10.5604 8.9322 8.6510 7.8808 8.6960 7.9034 9.3024 8.2388
PyNET* 10.6142 9.0591 9.5254 8.4616 9.2743 8.2574 9.8046 8.5927
PyNetCA 9.5175 8.4227 9.5633 8.3391 10.0280 8.4848 9.7029 8.4155
InvertISP 9.6301 8.2957 7.7260 7.2639 9.2377 8.0033 8.8646 7.8543
MYV-ISPNet 10.8919 9.2025 9.6756 8.3477 9.3904 8.3674 9.9859 8.6392
CameraNet 771.8745 392.2881 771.8748 392.2880 771.8735 3922873 771.8743 392.2878
CameraNet* 667.3576 335.3488  667.356 335.3535 667.3693 335.3525 667.3644 335.3501
AWNet 9.0410 8.4831 8.8963 8.2489 7.6562 7.2208 8.5311 7.9843
Swin-Transformer 7.8467 7.3106 7.9101 7.2932 7.3744 7.0336 7.7104 7.2125
UNet 10.7405 9.3207 9.7168 8.6760 9.5778 8.5257 10.0117 8.8408
UNet* 11.5525 9.9720  10.3320 9.0237 10.7163 9.2440  10.8669 9.4132
eSL 8.9799 8.1130 8.5955 7.8486 8.9683 8.0099 8.8479 7.9905
EV-UNet 10.3218 9.2965 10.7447 9.1840  10.8084 9.1588  10.6250 9.2131

Table 7: Comparison of methods on HVS ISP dataset outdoor scenes. * refer to the results obtained
by the same model with different hyperparameters.

2-0UT-Tree-2 3-Out-Flower-2 4-Out-Building-1 Average
Methods NIQE PI NIQE PI NIQE PI NIQE PI
PyNET 8.9608 8.2063 8.4138 7.8977 8.0532 7.6866 8.4759 7.9302
PyNET* 9.3716 8.4749 9.2355 8.2926 9.1500 8.2384 9.2523 8.3353
PyNetCA 8.4343 7.8880 7.9795 7.6717 7.8525 7.6036 8.0888 7.7211
InvertISP 7.5380 7.3978 6.7139 6.9881 5.9043 6.2299 6.7187 6.8720
MV-ISPNet 8.1110 7.8820 7.4862 7.2422 7.4597 7.1434 7.6856 7.4225
CameraNet 771.8750 392.2857 771.8755 392.2860 771.8743 3922864 771.8749 392.2860
CameraNet* 667.3654 335.3526 337.3615 335.3509 667.3656 335.3555 667.3632 335.3525
AWNet 8.6385 8.3241 8.4038 8.1231 7.0224 7.4135 8.0216 7.9536
Swin-Transformer 7.4143 7.4885 7.2316 7.4287 6.4391 6.7594 7.0284 7.2255
UNet 8.8706 8.2537 8.2972 7.8604 8.2363 7.7737 8.4680 7.9626
UNet* 8.8747 8.2149 8.4267 7.9218 8.4236 8.0117 8.5750 8.0495
eSL 7.8569 7.7214 6.7929 7.0928 6.2029 6.6194 6.9509 7.1445
EV-UNet 8.5472 8.0862 8.1830 7.8198 8.0310 7.7055 8.2537 7.8705

mance in both indoor and outdoor scenes, demonstrating good generalization ability suitable for
various environments.

Impact of Hyperparameters on the Model: We observed that hyperparameters can have a im-
pact on model performance. For instance, adjustments to learning rate, batch size, or the choice
of optimizer often lead to measurable variations in results. As a benchmark study, we strive to en-
sure fair and unbiased evaluation across all methods by carefully tuning hyperparameters to achieve
reasonable performance. However, finding the optimal hyperparameters for each model remains a
challenging task, particularly given the computational costs and the inherent differences in how mod-
els respond to tuning. In practice, hyperparameter tuning often requires balancing empirical results
with theoretical insights, as exhaustive grid searches are rarely feasible. Despite these challenges,
we will provide all training codes to ensure transparency and reproducibility, while acknowledging
that further fine-tuning might yield even better results for some models.

In summary, the best-performing models vary across different scenes; however, Swin-Transformer
and InvertISP demonstrate excellent performance in both indoor and outdoor environments. The
event-based method eSL performs close to the best in outdoor scenes, confirming the effectiveness
of event data in complex scenes. Pure RGB methods can also achieve excellent performance by
improving model structures. However, in specific scenes, the introduction of event data may pro-
vide additional advantages. The performance differences of methods in indoor and outdoor scenes
suggest that model design and training need to consider scene characteristics to achieve the best
results.
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Figure 17: Event counts in indoor and outdoor scenes. We randomly selected an indoor scene and
an outdoor scene. The indoor scene has a strong periodic change, while the outdoor scene does not
have a strong periodic change.
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Figure 18: EV-UNet framework.

F MORE DISCUSSION

Impact of Indoor Light Flicker: As shown in Fig. 17, indoor light sources exhibit periodic flicker,
whereas outdoor light sources do not have this distinct periodic flicker. This issue has also been
noted in previous research (Xu et al., 2024a). Addressing this problem is crucial for enhancing
image quality. There are two potential solutions: first, applying data augmentation during data
input to enable the network to robustly handle flicker issues; and second, using temporal filtering
techniques to mitigate the flicker problem.

Network Structure of EV-UNet: EV-UNet integrates an event encoding branch into the existing
UNet architecture, adding the results of both encoders during the decoding process. Despite this
being a simple attempt, we observed that incorporating events can significantly enhance performance
in outdoor scenes. For more detailed visual results, please refer to Fig. 19 and Fig. 20.

Analysis of Overall and Scene-Specific Performance: The results in Tab. 8 reveal both overall
performance trends and context-specific strengths. For example, UNet demonstrates strong robust-
ness with an A11-Average PSNR of 29.97, performing well across diverse scenarios. Similarly,
MV-ISPNet excels in outdoor scenes, but its performance drops indoors. These findings underline
the need to consider scene specific impacts when applying ISP methods, as overall metrics do not
always reflect performance in individual contexts. Future research should focus on adapting ISP
methods to specific scenarios to ensure optimal outcomes across diverse settings.
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Table 8: Comparison of Methods on HVS ISP Dataset indoor and outdoor scenes.

Out-Average In-Average All-Average

Methods PSNRT SSIMtT L;] PSNRT SSIMt L;| PSNRT SSIMt Lil

PyNET 3247 09785 0.0180 11.97 0.7664 0.2412 2222 0.8725 0.1296
PyNET* 29.37  0.9652 0.0265 1736 0.8437 0.1494 23.37 0.9044 0.0880
PyNetCA 31.76 09762 0.0207 27.72 0.9431 0.0540 29.74 0.9596 0.0373
InvertISP 2759 09364 0.0281 2827 0.9392 0.0254 2793 0.9378 0.0268
MV-ISPNet 29.76  0.9662 0.0232 31.12 0.9664 0.0207 3044 0.9663 0.0219
CameraNet 11.36 0.2618 0.2266 13.04 0.2591 0.2013 1220 0.2605 0.2139
CameraNet* 1230 03953 0.2096 12.68 0.2672 0.2073 12.49 0.3312 0.2085
AWNet 17.04 09180 0.0879 27.03 0.9356 0.0567 22.04 0.9268 0.0723
Swin-Transformer 2524 09463 0.0354 2580 0.9481 0.0304 25.52 0.9472 0.0329
UNet 2451 09634 0.0354 1570 0.8913 0.1124 20.11 0.9274 0.0739
UNet* 28.17 0.9685 0.0265 31.76 0.9705 0.0188 29.97 0.9695 0.0226
eSL-Net 23.02 0.9294 0.0473 26.13 09464 0.0381 24.57 0.9379 0.0427
EV-UNet 30.11  0.9698 0.0225 26.04 0.9388 0.0640 28.08 0.9543 0.0432
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(a) Events (b) RAW (c) EV-UNet (d) Good RGB

Figure 19: More visualization results.
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(a) Events (b) RAW (c) EV-UNet (d) Good RGB

Figure 20: More visualization results.
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Listing 1: MATLAB ISP Code.

function ans_colors = RGBE_ISP (

raw_npz_file,

json_file,

has_known_colors,

known_colors,

gamma)

RGBE_ISP: ISP for RGBE data.
raw_npz_file: the raw data file.
json_file: the json file for color card.
has_known_colors: has known colors.
known_colors: the known colors.
gamma: gamma value.

fprintf (RGBE_ISP:\n’);

o° o o o° o° o°

fporintf (’ raw_npz_file :%s\n’, raw_npz_file);
fprintf (’ json_file :%s\n’, json_file);

% Read the raw data for black level calibration.
pth_blcraw = ’./rawdata/FixedPatternNoise.npy’;
img_blc = readNPY (pth_blcraw);

img_blc = double(img_blc) / 242.0;

3 get the file name

[pathstr, file_name, ext] = fileparts(raw_npz_file);
Read rge quad raw data.

o oo oo

242 = 255 % 0.95. The 0.95 is the saturation level.
img_quad = readNPY (raw_npz_file);
img_gquad = max (0, min (img_quad, 242));
img_quad = double (img_quad) / 242.0;
img_qgquad = img_qgquad - img_blc;
% clip the value to [0, 1]
img_gquad = max (0, min (img_qgquad, 1));
[height, width] = size (img_quad);
% demosaic the quad raw data.
% This function can be found in the following link.
% https://www.mathworks.com/matlabcentral/fileexchange/
5 116085—-quadbayer-cfa-modified-gradient-based-demosaicing
img_rgb = quad_bayer_demosaic_full (
img_qguad, height, width, ’grgb’, 0, 0);
if has_known_colors
colors = known_colors;
ans_colors = [];
else
vertex_pts = get_color_card_coords_from_json(json_file);
% check the vertex_pts has 4 points
if size(vertex_pts, 1) "= 4
disp(’Error: vertex_pts has not 4 points’);
return;
end
% get the colors from the image given 4 points’ location
% The vertex_pts is the 4 points of the color card.
[colors, coord] = checker2colors(
img_rgb, [4, 6], ’'mode’, ’auto’,
"show’, false, ’'vertex_pts’, vertex_pts);
% save colors to file

o

color_file = sprintf (’%s/%$s_colors.mat’, pathstr, file_name);

save (color_file, ’colors’);

% the colors will be reture value.

ans_colors = colors

% check NaN wvalue in colors. if has NaN value, return.

if any(isnan(colors))
disp(’Error: colors has NaN value’);
fprintf (' raw_npz_file: %$s\n’, raw_npz_file);
return;

end
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end
white balance
wb_multipliers = [
colors (21, 2) / colors(21, 1),
1.0,
colors (21, 2) / colors(21, 3)];
img_wb = img_rgb;
img_wb(:, :, 1) = img_wb(:, :, 1) % wb_multipliers(l);
img_wb(:, :, 3) = img_wb(:, :, 3) x wb_multipliers(3);

img_wb = max (0, min(img_wb, 1));

denoise using rgb BM3D with default parameter
randn (' seed’, 0);
sigma = 25;

[T, img_denoise] = CBM3D (1, img_wb, sigma);

color
The : sRGB from
the document of the color card,
3 treated as groundtruth sRGB under D65
srgb = [

112, 76, 60;
197, 145, 125;
87, 120, 155;
82, 106, 60;
126, 125, 174;
98, 187, 166;
238, 158, 25;
157, 188, 54;
83, 58, 106;
195, 79, 95;
58, 88, 159;
222, 118, 32;
25, 55, 135;
57, 146, 64;
186, 26, 51;
245, 205, O;
192, 75, 145;
0, 127, 159;
43, 41, 43;
80, 80, 78;
122, 118, 116;
161, 157, 154;
202, 198, 195;
249, 242, 238;
1i

srgb = srgb / 255.0;

snormlization

srgb = srgb ." 2.2; %sRGB to linear sRGB

colors_wb = colors .x wb_multipliers white balance correc
% compute the color correction matrix.

[cam2xyz, scale, 7, 7] = ccmtrain(colors_wb,

srgb, ’omitlightness’, true, ’preservewhite’, true,
"model’, ’linear3x3’, ’'targetcolorspace’, ’'sRGB’,
"whitepoint’, whitepoint (/d65"));

% apply the color correction matrix.

lin_srgb = apply_cmatrix(
img_denoise * (scale % 0.9),transpose (cam2xyz));

lin_srgb = max (0, min(lin_srgb, 1));
% gamma correction.
img_srgb = lin_srgb .~ gamma;

img_srgb = max (0, min(img_srgb, 1));
good_rgb_file = sprintf(
"%$s/%s_good_rgb.png’, pathstr, file_name);
imwrite (img_srgb, good_rgb_file);
fprintf ("DONE: %s’, good_rgb_file);
end
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