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A OVERVIEW

• Section B: Additional experiments.

• Section C: Related work.

• Section D: Additional implementation details.

B ADDITIONAL EXPERIMENTS

Cross-modal Retrieval on More Modalities. To verify the potential of Point-Bind to align multi-
modalities, we conduct cross-modal retrieval between 3D and more modalities, i.e., video, depth,
and infrared data. We utilize the following work of ImageBind (Girdhar et al., 2023), Language-
Bind (Zhu et al., 2023a), as guidance, and pre-train Point-Bind under the same paradigm. By align-
ing 3D with the image space of LanguageBind, Point-Bind achieves a unified space with multi-
modalities including video, depth, and infrared data. As shown in Figure 1, with the 3D car/person
as input, Point-Bind effectively retrieves corresponding video, depth, and infrared data with the same
semantics. This indicates the superior cross-modal understanding capacity of our approach.
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Figure 1: Additional Visualization of Cross-modal Retrieval. We visualize the cross-modal re-
trieval between 3D and three new modalities, i.e., video, depth, and infrared data. Note that, for these
modalities, we utilize LanguageBind (Zhu et al., 2023a) as the guidance for pre-training Point-Bind.

Quantitative Results of Any-to-3D Genration. Besides text-to-3D generation, we quantitatively
demonstrate the efficacy of Point-Bind on any-to-3D generation in Table 1. We generate the 3D
mesh conditioned on multi-modalities and their embedding-space arithmetic, i.e., directly combin-
ing embeddings from different modalities to guide 3D generation. We adopt different settings for
different modalities. For audio-to-mesh generation, we only generate objects of the car, airplane,
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[Truck Sound]
“A Chair”

[Car Horn]
“An Airplane”

Text-to-3D: Audio-to-3D: Image-to-3D: Point-to-3D:

Figure 2: Any-to-3D Generation based on CLIP-Forge (Sanghi et al., 2021). Besides ISS (Liu et al.,
2022), our Point-Bind is generalized to combine any text-to-3D models for any-to-3D generation.

“Color the 
airplane in red.”

“Change the material 
to wooden.”

[Pure Yellow Image]

Figure 3: 3D Editing with Multi-modal Instructions. Within the joint 3D embedding space of
Point-Bind, we can effectively edit input 3D point clouds with multi-modal instructions, e.g., lan-
guage or image.

Table 1: Quantitative Results of Any-to-
3D Generation. We report the Fréchet In-
ception Distance (FID) and Fréchet Point
Distance (FPD) scores for comparison.

Source Modality FID (↓) FPD (↓)

Audio 166.97 30.46
Image 95.77 19.41
Point Cloud 86.14 20.13
Image + Text 86.79 26.13
Point Cloud + Text 88.78 26.39
Point Cloud + Image 87.03 21.19

and boat categories considering the limited class num-
ber. We sample 10 audio clips per category from ESC-
50 dataset (Piczak, 2015) as input. The airplane take-
off sound, car horn, and sea wave sound are selected
to generate the airplane, car, and boat categories, re-
spectively. For image-to-mesh generation, we sam-
ple 10 images corresponding to ShapNet’s 13 cate-
gories from ImageNet dataset (Deng et al., 2009) as
the 2D prompt. For point-to-mesh synthesis, we sam-
ple 10 point clouds per category from the ShapeNet
dataset (Chang et al., 2015) as prompt. Compared to
text-to-3D generation, the results in Table 1 suggest
that Point-Bind can also achieve satisfactory genera-
tion quality with other modalities as conditions.

Any-to-3D Generation with CLIP-Forge (Sanghi et al., 2021). Besides ISS (Liu et al., 2022),
we also adopt the decoder of CLIP-Forge and show the examples of any-to-3D generation powered
by Point-Bind in Figure 2. For text, audio, and point cloud prompts, our approach can all produce
satisfactory 3D meshes. This demonstrates that Point-Bind generalizes well and can guide other 3D
generation models conditioned on multi-modalities.

3D Editing with Multi-modal Instructions. Besides the any-to-3D generation, our approach can
further enable 3D editing with multi-modal instructions, as visualized in Figure 3. For example,
given a 3D airplane, we can provide a language instruction, “Color the 3D shape in red”, or a
pure yellow picture as the visual instruction. Then, we respectively feed them into Point-Bind’s 3D
encoder and ImageBind’s text or image encoder. Due to the joint embedding space, the generative
decoder can incorporate their semantics and output the airplane in red/yellow. Likewise, given an
ordinary 3D bench, we can provide instructions like “Modify the material to wooden”. The model
can correspondingly generate a wooden chair. Therefore, benefiting from the emergent capacity of
Point-Bind, we can simply achieve any-to-3D generation and editing, exhibiting favorable training
efficiency and generalization capability.
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What do you know about this scene 
with the provided materials?

In this scene , a person is 
sitting on a couch with a 
guitar in hands. The person is 
also wearing a necklace, which adds 
to the overall aesthetic of the 
scene. The scene suggests that 
the person might be a 
musician or a performer, 
possibly preparing to play 
the guitar or simply posing 
for a photo. 

Please give me a detailed 
explanation of this scene.

[ Audio of Rain]

The image shows a scene of a tree 
with a large leafy plant 
growing on it, surrounded by 
a downpour of rain. The tree 
appears to be covered in a dense 
layer of leaves, which are being 
soaked by the rain. The leaves are 
falling from the tree, creating a 
waterfall-like effect. The presence 
of the rain and the falling leaves 
adds a sense of tranquility and 
beauty to the scene.

[ Audio of Guitar]

Please elaborate on the details of this scene.

The scene features a large bowl filled
with a delicious meal, which appears to
be a rice and vegetable dish. The
bowl is placed on a dining
table, and there are several
pieces of broccoli scattered
around the table. The table is
also adorned with a fork and a spoon,
suggesting that the meal is ready to
be enjoyed. The combination of rice,
vegetables, and utensils indicates that
this is a well-prepared meal, perfect
for a satisfying dining experience.

What do you know about this scene 
with the provided materials?

The image features a person's
hand reaching out to open a
door, possibly a wooden
door, with a key. The person is
positioned on the left side of the
door, and their hand is close to
the doorknob. The scene appears
to be a close-up view of the
person's hand and the key,
emphasizing the action of
unlocking the door.

[ Audio of
Wood Door Creak ]

Can you explain this scene in detail?

It features a young boy standing in a
library, surrounded by numerous books.
He is holding a book in his hands,
possibly reading or looking at it. The
books are arranged in various positions,
with some placed on shelves and others
on the floor. The bookshelf setting
suggests a learning environment, like
library, where the boy is engaged
in reading or exploring the vast
collection of books available.

Please give me a detailed 
explanation of this scene.

The image depicts a room with a fireplace 
and a ladder leaning against the wall.  
The ladder is positioned near the fireplace, 
which has a chimney.  The room appears 
to be in a state of disrepair, with a 
broken window and a collapsed ceiling.  The 
fireplace is surrounded by debris, including 
books and papers scattered around the floor.  
The overall atmosphere of the room 
suggests that it has been abandoned or 
neglected for a long time.

Figure 4: Additional 3D Question-answering Examples of Point-LLM. Point-LLM can effec-
tively generate detailed responses and conduct superior cross-modal reasoning, based on the given
multi-modal instructions.

Table 2: Comparison to ULIP by Teacher Models with The Same Image Encoder: ViT-H.

Method Teacher Model Image Encoder Accuracy

ULIP OpenCLIP (Ilharco et al., 2021) ViT-L 60.4%
ULIP OpenCLIP (Ilharco et al., 2021) ViT-H 73.2%
Point-Bind ImageBind (Girdhar et al., 2023) ViT-H 76.3%

Additional Comparison and Analysis with ULIP. The teacher model of Point-Bind, Image-
Bind (Girdhar et al., 2023), has different pre-training settings with ULIP’s (Xue et al., 2022) teacher
model, SLIP (Mu et al., 2021). In this paragraph, we compare Point-Bind and ULIP with the same
pre-trained teacher models. We first reproduce a ULIP model also pre-trained by CLIP’s ViT-H
image encoder, which is the same as ImageBind’s image encoder. Note that, ImageBind freezes the
ViT-H image encoder and text encoder of OpenCLIP during its pre-training. That is, ImageBind
and OpenCLIP share the same weights in their image and text encoders. As shown in Table 2, for
zero-shot classification on ModelNet40 (Wu et al., 2015), although the ULIP’s performance can be
improved by the ViT-H image encoder, our approach still performs better via a joint multi-modal
embedding space.

Generalizability of Point-Bind with Techniques from JM3D (Wang et al., 2023a).
JM3D (Wang et al., 2023a) proposes two delicate approaches to enhance the multi-modal pre-
training of 3D models: Structured Multimodal Organizer (SMO) and Joint Multi-modal Alignment
(JMA). SMC adopts multi-view rendered images and hierarchical text for more comprehensive rep-
resentation, and JMA aims to achieve better mult-modal synergy by generating joint vision-language
features. We also add the two techniques in JM3D into our Point-Bind for the image and text modal-
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Table 3: Performance(%) of Point-Bind with JM3D (Wang et al., 2023a) and CG3D (Wang
et al., 2023a) on 3D Zero-shot Classification and Cross-modal Retrieval Tasks.

Method Zero-shot Cls. 3D → 3D 2D → 3D 3D → 2D Text → 3D

Point-Bind 78.0 63.2 34.6 42.8 64.5
Point-Bind w JM3D 78.4 64.1 35.5 43.9 64.7
Point-Bind w CG3D 78.2 63.5 34.3 43.2 64.8

ities within ImageBind (Girdhar et al., 2023), and evaluate on two benchmarks: 3D zero-shot clas-
sification and cross-modal retrieval on ModelNet40 (Wu et al., 2015). As shown in Table 3, the
capabilities of Point-Bind are well enhanced by integrating SMO and JMA, indicating the impor-
tance of more comprehensive vision-language guidance.

Generalizability of Point-Bind with Techniques from CG3D (Hegde et al., 2023).
CG3D (Hegde et al., 2023) shares a similar contrastive learning paradigm with ULIP, and introduces
learnable visual prompts for CLIP’s image encoder for better adaption of 2D rendered images. For
our Point-Bind, we also add learnable visual prompts to the image encoder of ImageBind, and re-
port the results in Table 3. On both benchmarks, the prompting approach from CG3D can improve
the performance of Point-Bind, which demonstrates the effectiveness of fine-tuning the pre-trained
image embeddings.

Additional 3D Question-answering Examples. We provide more 3D question-answering ex-
amples in Figure 4, showing the 3D instruction-following and multi-modal reasoning capacity of
Point-LLM. As shown, given a 3D shape with a 2D image or audio, Point-LLM effectively enables
LLaMA (Touvron et al., 2023) injected with multi-modal semantics, and responds with cross-modal
understanding and reasoning. Additionally, as shown in Figure 5, we show more examples of Point-
LLM for straightforward question answering, e.g., “How to start it?”, “What is the purpose of this
thing?”. Our model can respond with precise answers that correspond to the input point cloud.

Examples of Indoor Scene Understanding. We further implement a scene-level variant of our
model, termed Point-LLMScene. We focus on the understanding of indoor scenes on ScanNet (Dai
et al., 2017), and show the qualitative examples in Figure 6. Specifically, to obtain the scene-
level understanding capacity, we fine-tune our object-level Point-LLM by an existing 3D question-
answering dataset (Wang et al., 2023c) constructed from ScanRefer (Chen et al., 2020). We add
three MLP layers with residual connections between Point-Bind’s 3D encoder and the LLM, which
is responsible for learning the scene-level 3D geometries. We only enable the new MLP layers
to be trainable, while keeping other components frozen to preserve the pre-trained cross-modal
knowledge. As shown, our model can respond with detailed and reasonable answers that correspond
to the input 3D scene and target object.

C RELATED WORK

Multi-modality Learning. Compared to single-modal approaches, multi-modal learning aims to
learn from multiple modalities simultaneously, achieving more robust and diverse representation
learning. Numerous studies have proved its efficacy, involving 2D images, videos, texts, and au-
dio (Desai & Johnson, 2021; Fang et al., 2021; Nagrani et al., 2022), and enhance the cross-modal
performance for downstream tasks (Lin et al., 2021b; Ramesh et al., 2021; Botach et al., 2022; Guo
et al., 2023c), and video-text-audio integration for text generation (Lin et al., 2021a). The represen-
tative vision-language pre-training, CLIP (Radford et al., 2021), effectively bridges the gap between
2D images and texts, which encourages further exploration of cross-modality learning. Recently,
ImageBind (Girdhar et al., 2023) successfully aligns six modalities in a joint embedding space, un-
leashing the power for emergent zero-shot cross-modal capabilities. However, ImageBind fails to
investigate its efficacy on 3D point clouds. In the 3D domain, most existing cross-modal works
introduce vision-language alignment (Zhang et al., 2022b; Xue et al., 2022; Afham et al., 2022; Guo
et al., 2023a; Chen et al., 2023) into 3D point clouds, and mainly focus on open-world recognition
tasks, which ignore the potential of multi-modal semantics for wider 3D applications. In this paper,
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How to start it?

To start the car, you would typically press the accelerator 
pedal down while holding the brake pedal down 
simultaneously. This will engage the car's starter motor, which 
will turn the engine over, and the car will start to move.

What is the purpose of this thing?

The purpose of this thing is to transport passengers from 
one location to another. In this scene, a white and black jet 
airplane is on the runway, preparing to take off. It is a large 
commercial airplane, which means it is designed to carry a 
significant number of passengers and their luggage. The airplane 
serves as a mode of transportation for people to travel 
long distances quickly and efficiently, connecting various 
cities and countries around the world.

How to use it?

To use the bathtub, you would first fill it with water to the 
desired level. Once the tub is filled, you can sit or lay 
down in it, taking care to avoid splashing water outside 
the tub. The bathtub is designed to provide a comfortable and 
relaxing experience, allowing you to soak in the warm water and 
enjoy the hydrotherapy benefits. It is essential to ensure that 
the water level is not too high, as it can pose a risk of slipping or 
falling. Additionally, it is important to keep the area around the 
bathtub clean and dry to prevent any potential damage or 
accidents.

What thing in real life is shaped like this? 

Please give me some examples.

There are several examples of real-life objects that are shaped 
like a cone or pyramid. Some examples include: 1. Pyramids: 
The most famous example is the Pyramids of Giza, which are 
triangular pyramids built by the ancient Egyptians as tombs for 
their pharaohs. 2. Volcanoes: Volcanoes, especially those that 
have recently erupted, can have a cone-like shape. The cone is 
formed as lava or pyroclastic cone material is ejected from the 
volcano's vent. 3. Mountains: Many mountains have a pyramid-
like shape, with a wide base and a narrow peak. Examples 
include Mount Fuji in Japan, Mount Kilimanjaro in 
Tanzania, and the Pyramidion on the Pyramid of Giza.

What is this?

What do people usually put on it?

How to decorate it?

This is a small side table or nightstand, typically used to 
hold items such as a bedside lamp, a phone, a glass of 
water, or a small book. You can decorate it by placing a small 
tray or a decorative plate on top of it to hold items. You can also 
use a decorative box or a small shelf to store additional items. In 
the image, the nightstand is currently empty, so you could add 
a decorative lamp, a small vase with flowers, or other 
decorative items to enhance its appearance.

One famous classical work involving a grand piano is 
Sergei Rachmaninoff's "Piano Concerto No. 2 in C minor, 
Op. 18." This piece is considered a masterpiece of the Romantic 
era, widely recognized for its emotional depth, technical 
challenges, and the piano's prominent role in the composition. 
Another famous work is Maurice Ravel's "Gaspard de la 
nuit," a piano suite that features three movements, each with its 
own unique character and musical style. The suite is based on a 
story by French writer Aloysius Bertrand and is known for its 
imaginative nature, with the third movement, "Ballade," being 
particularly well-known for its haunting melody and harmonies.

Provide some famous classic works 

concerning this object.

𝐀𝐧𝐬𝐰𝐞𝐫	𝐨𝐟	𝐏𝐨𝐢𝐧𝐭-𝐋𝐋𝐌𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐈𝐧𝐩𝐮𝐭	𝟑𝐃	𝐎𝐛𝐣𝐞𝐜𝐭

Figure 5: Examples of Point-LLM for Straightforward Question Answering.

our Point-Bind develops a general 3D multi-modality model that aligns 3D point clouds with six
other modalities guided by ImageBind, allowing for more diverse 3D cross-modal understanding.

Large Models in 3D. Large-scale pre-trained models have achieved remarkable downstream per-
formance in language and 2D image processing. Inspired by this, many efforts have introduced

5



Under review as a conference paper at ICLR 2024

Instruction: 
What is the target object? Where is its exact location?

Share your thoughts on the room's overall design and ambiance.

Response: 
The object in question is a white monitor placed on top of a desk. It is located 
on the left of another monitor and to the right of a telephone. The monitor has a 
rectangular shape and is positioned on the left side of the desk.
The fact that the monitor is placed on top of a desk indicates its intended use as a 
workspace or study area. The presence of a telephone nearby suggests that the 
monitor may be used for communication or multitasking, allowing the user to easily 
access both the monitor and phone while working.
The surrounding objects, such as the keyboard, monitor, desk, cabinet, pillow, wall, 
bookshelf, and other miscellaneous objects, contribute to the overall functionality 
and organization of the workspace. The fact that the monitor is placed on the 
left of another monitor and to the right of the telephone suggests that 
the area is specifically designed for multitasking or work-related 
activities that require a combination of visual and auditory input.
Overall, the white monitor on the desk plays an important role in the functionality 
and productivity of the workspace, providing a reliable and efficient means of 
accessing information, data, or communication tools.

Instruction: 
Inspect the target object thoroughly and describe its details.

Response: 
The object in question is a black metal chair placed at the center of the 
room. Its placement in the middle suggests a central location within the 
space. Positioned next to a desk with a monitor, the chair serves as a seating 
option for someone working or studying at the desk. Its proximity to the desk also 
implies that it is likely used for a work or study purpose.
The presence of multiple other chairs in the room suggests that this is a shared 
space where multiple individuals may work or study. The chairs are arranged in a 
symmetrical pattern, creating a balanced and organized seating arrangement.
The presence of other objects, such as a desk, keyboard, computer, and 
wall, further indicates that this area serves as an office or workspace. The 
placement of the chair in front of the monitor and its proximity to the 
table indicate that it is likely used for computer work.
Overall, this setup suggests a well-organized and functional space for work or study. 
The arrangement of the chairs and other objects creates a comfortable and visually 
pleasing environment for individuals working or studying in the area. 

Instruction: 
Elaborate on the displayed target object with great details. 

What items are around this object?

Response: 
The described object is a rectangular white pillow placed on a bed. 
Positioned on the left side of a bookshelf, the pillow adds visual appeal and 
comfort to the surrounding area. The placement on the bed is appropriate, allowing 
the pillow to be used to rest people, and complement the overall interior design of 
the room or space.
In the 3D scene, the described pillow is surrounded by multiple other objects, 
such as books, a radiator, a backpack, a desk, and a chair. These items 
suggest that the scene is a living or working space, where books and desk-
related objects are commonly found.
The pillow provides a comfortable seating option for users, and as a decorative 
element, adding character and warmth to the area while complementing the 
surrounding objects in the room. It creates a cozy and inviting atmosphere for 
people who interact with the space, whether for relaxation or work purposes.

𝐈𝐧𝐬𝐭𝐫𝐮𝐜𝐭𝐢𝐨𝐧	 &	 𝐑𝐞𝐬𝐩𝐨𝐧𝐬𝐞	𝐨𝐟	𝐏𝐨𝐢𝐧𝐭-𝐋𝐋𝐌𝐈𝐧𝐩𝐮𝐭	𝟑𝐃	𝐒𝐜𝐞𝐧𝐞

Figure 6: 3D Scene Understanding Capability of Point-LLMScene.

2D and language large models, to assist in 3D learning. The prior PointCLIP series (Zhang et al.,
2022b; Zhu et al., 2022; Huang et al., 2022) project 3D point clouds into depth maps, and utilize
CLIP (Radford et al., 2021) for zero-shot recognition. Image2Point (Xu et al., 2022) instead con-
verts 2D pre-trained models into 3D space as a good network initialization. By contrastive learning,
ULIP series (Xue et al., 2022; 2023) and other works (Liu et al., 2023a; Hegde et al., 2023) pre-train
3D networks guided by the vision-language embedding space of CLIP. Another branch of work
employs CLIP to guide the text-conditioned generation of 3D objects (Jain et al., 2022a; Sanghi
et al., 2021; Xu et al., 2023a; Liu et al., 2023b) or stylized meshes (Mohammad Khalid et al., 2022;
Michel et al., 2021) by encoding descriptive textual input. Some works also adopt GPT-3 (Brown
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et al., 2020) to enhance the language-based understanding of 3D spatial geometry, such as Point-
CLIP V2 (Zhu et al., 2022) and ViewRefer (Guo et al., 2023b). Different from them, we utilize
ImageBind (Girdhar et al., 2023) to construct a joint embedding space between 3D point clouds
and multiple modalities. The derived Point-Bind can well leverage the multi-modal semantics for
general 3D cross-modal understanding, generation, and question answering. There are a couple of
very recent efforts that introduce LLMs into 3D, concurrent to our Point-LLM. Different from us,
they either project 3D data into multi-view images for encoding (Hong et al., 2023), or require large-
scale 3D instruction data for fine-tuning (Xu et al., 2023b; Wang et al., 2023b). More importantly,
they cannot generate responses conditioned on both 3D and multi-modal input. Thanks to the joint
embedding space of Point-Bind, our Point-LLM can discard the expensive 3D instruction tuning,
and respond via 3D multi-modal reasoning.

Pre-training in 3D. In recent years, significant progress has been made in supervised learning for
3D vision tasks (Qi et al., 2016; 2017; Qian et al., 2022a; Zhang et al., 2023b; Zhu et al., 2023b).
However, these approaches lack satisfactory generalization capabilities for out-of-domain data. To
address this, self-supervised learning has emerged as a promising solution to enhance 3D transfer
learning (Chen et al., 2023; Yu et al., 2022; Li et al., 2019; Poursaeed et al., 2020). Most self-
supervised pre-training methods employ an encoder-decoder framework to encode point clouds into
latent representations and then reconstruct the original data form (Sauder & Sievers, 2019; Wang
et al., 2021; Rao et al., 2020). Therein, Point-MAE (Pang et al., 2022) and Point-M2AE (Zhang
et al., 2022a) introduce masked autoencoders (He et al., 2021) into 3D point clouds pre-training,
achieving competitive results on different 3D tasks. Alternatively, cross-modal pre-training ap-
proaches are also leveraged to enhance the 3D generalization ability (Wang et al., 2022; Qian et al.,
2022b; Liu et al., 2021; Qi et al., 2023). For example, ACT (Dong et al., 2022) and I2P-MAE (Zhang
et al., 2023a) utilize pre-trained 2D transformers as teachers to guide 3D representation learning.
Inspired by previous works, we adopt collected 3D-image-text-audio pairs for self-supervised pre-
training, and regard ImageBind’s encoders as guidance for contrastive learning. In this way, the
Point-Bind is pre-trained to obtain a joint embedding space between 3D and multi-modality, allow-
ing for superior performance on different 3D downstream tasks.

D ADDITIONAL IMPLEMENTATION DETAILS

Multi-modal Training of Point-Bind. To align 3D with multi-modalities, we adopt a pre-trained
I2P-MAE (Zhang et al., 2023a) as the 3D encoder of Point-Bind by default, and utilize the collected
3D-image-text-audio pairs for pre-training. We utilize a pre-trained ImageBind (Girdhar et al., 2023)
with a ViT-H (Dosovitskiy et al., 2020) image encoder. We only update the 3D encoder with the
newly added projection network, and freeze the encoders of other modalities in ImageBind. The
projection network is composed of two linear layers with an intermediate LayerNorm (Ba et al.,
2016). We train Point-Bind for 300 epochs with a batch size of 64, and adopt AdamW (Loshchilov
& Hutter, 2017) as the optimizer with a learning rate of 0.003.

3D Cross-modal Retrieval. We utilize ModelNet40 (Wu et al., 2015) to evaluate Point-Bind on
cross-modal retrieval tasks without training. The test set of ModelNet40 provides 2,468 samples
with two modalities, i.e., 2D images rendered from 3D meshes and corresponding 3D point clouds.
We adopt the Mean Average Precision (mAP) score as the criterion, which measures whether the
retrieved data belongs to the same class as the query data. We encode 3D point clouds with Point-
Bind and conduct four cross-modal retrieval tasks, i.e., 3D-to-3D, 2D-to-3D, 3D-to-2D, and text-to-
3D retrieval. For the text prompt, we adopt and separately encoder 64 prompt templates in ULIP
(Xue et al., 2022) on each category, and average them as the text embeddings. For the 2D image
prompt, we follow (Jing et al., 2021) to utilize multi-view images where the view number is ∈
{1, 2, 4}. We average the performance under the three view settings as the final result.

Any-to-3D Generation. We adopt Image as Stepping Stone (ISS) (Liu et al., 2022) to verify Point-
Bind’s ability of multi-modal feature alignment. We first optimize a projection layer that transfers
Point-Bind image features to ISS 3D shape space. Then, we generate 3D shapes from text fea-
tures based on the pre-trained projection layer and ISS decoder. The ShapeNet (V2) dataset(Chang
et al., 2015) with 13 object categories is utilized to train the model. We follow ISS and adopt a
text description set with four texts per category. To demonstrate 3D generation quality, we adopt
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FID, FPD, and CLIP R-precision as criteria. FID reflects the quality of rendered 2D images from
generated 3D shapes. FPD measures the quality of point clouds extracted from generated shapes
based on a pre-trained PointNet model (Qi et al., 2016) following ISS. Additionally, we further
adopt CLIP R-precision to evaluate the consistency between the text inputs and generated shapes.
We build a text description set, which contains our description prompts and 234 additional texts
from CLIP-Forge (Sanghi et al., 2021). Then, we perform per-shape CLIP-R-Precision to retrieve
the right description for each generated shape and calculate the retrieval accuracy. To give a com-
prehensive comparison, we mainly compare our approach to three text-to-mesh generation models,
CLIP-Forge (Sanghi et al., 2021), Dream Fields (Jain et al., 2022b), and ISS. Note that Dream Fields
can not synthesize 3D shapes directly, so we do not need to evaluate its FPD metric. In addition, two
baselines, GLIDE/LAFITE+DVR, which first create images and then generate 3D meshes are also
included. Following ISS, we first use GLIDE (Nichol et al., 2021) or LAFITE (Zhou et al., 2022) to
create 2D images and then generate 3D shapes via DVR (Niemeyer et al., 2020).
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