
Ground-Displacement Forecasting from Satellite Image Time Series via a
Koopman-Prior Autoencoder

Supplementary Material

6. Dataset

6.1. Train/Val/Test

Figure 6 schematically summarizes the three chronologi-
cal split strategies (A, B, C) used in our experiments. The
top blue bar represents the full, ordered sequence of SBAS
frames; the coloured segments beneath it indicate how each
strategy partitions those frames into training (blue), valida-
tion (orange), and test (green) sets.

Strategy A (30/30/20). This strategy is used for long
context length. The first 30 frames are used for training, the
next 30 frames for validation, and the final 20 frames for
testing.

Strategy B (20/40/20). To investigate a baseline context
length, we allocate the first 20 frames to training, the subse-
quent 40 frames to validation, and keep the same 20-frame
test window as in Strategy A. Within this split, we train the
model with

Strategy C (10/50/20). Here, the shortest training context
remains 10 frames, while the validation horizon is extended
to 50 frames; the last 20 frames again serve as a fixed test
set.

Across all three strategies, the test portion (right-most
green segment) is identical, guaranteeing that every model
is evaluated on exactly the same 20 unseen frames. The
differing sizes of the training and validation windows allow
us to study how context length and prediction horizon affect
learning dynamics and generalisation performance.

Figure 6. Data splitting strategies for training, validation, and
testing. We train a model using only frames of training data, and
using that learned model, we predict frames of validation and
testing data.

6.2. SBAS dataset in Japan
We evaluate our method using the Small Baseline Subset
(SBAS) dataset, which consists of time-series synthetic aper-
ture radar (SAR) interferograms capturing ground deforma-
tion over a specified region. The SBAS technique recon-
structs surface displacement by minimizing temporal and
spatial decorrelation effects, making it well-suited for study-
ing geophysical phenomena such as seismic activity and land
subsidence.

For our experiments, we use SBAS-derived displacement
maps with a spatial resolution of X meters and a temporal
resolution of Y days, covering a total of Z frames. The
dataset provides a rich source of spatiotemporal patterns,
enabling us to assess the effectiveness of our KPA model in
forecasting surface deformation.
6.3. Out of distribution dataset
For training, we utilize the SBAS dataset from Japan. To
evaluate the robustness of our method, we test it on SBAS
data from regions not included in training, specifically
Turkey, Italy, and Hawaii. This cross-region evaluation al-
lows us to assess the generalization capability of our ap-
proach in diverse geophysical settings.

Figure 7 illustrates the mean displacement velocity of
the SBAS data. The points in the figure represent sampled
locations corresponding to the evaluation sites discussed in
the text.

7. Method
7.1. Koopman Layer
The latent state zn ∈ RNl resides in the bottleneck (cyan);
a single learnable matrix K ∈ RNl×Nl then advances the
dynamics:

zn+1 = Kzn, zn+k = Kk zn (k ≥ 1). (12)

Because K is declared as a parameter of the network it is
updated by back-propagation alongside all convolutional
weights. In PyTorch the layer can be written concisely:

1 import torch, torch.nn as nn
2

3 class KoopmanLayer(nn.Module):
4 def __init__(self, latent_dim: int):
5 super().__init__()
6 # initialise K as (noisy) identity;

requires_grad=True by default
7 self.K = nn.Parameter(torch.eye(

latent_dim))



Figure 7. SBAS data for evaluating the robustness of our trained model.

8

9 def forward(self, z, steps: int = 1):
10 """Propagate latent code z forward

by ‘steps‘."""
11 if steps == 1:
12 return z @ self.K.T
13 Kk = torch.matrix_power(self.K,

steps)
14 return z @ Kk.T

Here self.K is a fully learnable weight matrix; the call
z @ self.K.T realises the update zn+1 = Kzn. Multi-
step propagation uses torch.matrix power to obtain
Kk without explicit loops, keeping the operation both GPU-
friendly and differentiable.

8. Experimental Results

8.1. Model Efficiency Analysis

Comparison of Model Architectures for Time Series Im-
age Prediction. In this supplementary material, we pro-
vide a detailed analysis of the computational efficiency of
our proposed model compared to conventional ConvLSTM
and Transformer-based approaches for the task of predicting
the next frame (64 × 64 × 1) from time series image data
(64× 64× 20ch).

Parameter Count Comparison Table 4 shows the param-
eter count for each model architecture with default hyper-
parameter settings. Our model achieves a significant reduc-
tion in parameter count compared to traditional approaches.
Specifically, our model requires only 0.2 million parameters,
which is approximately 50 times fewer than ConvLSTM
(10M) and 140 times fewer than Transformer-based archi-
tectures (28M). This dramatic reduction in model size is
primarily attributed to the efficient Koopman operator rep-
resentation and the utilization of spectral methods through

FFT, which enables capturing complex dynamics with fewer
parameters.

Table 4. Parameter Count Comparison

Model Parameter Count Relative Size

Ours 0.2M 1×
ConvLSTM 10M 50×
Transformer 28M 140×

Computational Complexity Analysis. Table 5 presents
the theoretical computational complexity in terms of float-
ing point operations (FLOPs) required for a single forward
pass with batch size 1. The computational advantage of
our approach is particularly evident when compared to
Transformer-based models, requiring approximately 1,647
times fewer operations. Our model also offers a 4-fold reduc-
tion in computational requirements compared to ConvLSTM
architectures, making it significantly more efficient for real-
time applications and deployment on resource-constrained
devices.

Table 5. Computational Complexity Comparison

Model FLOPs Relative Computation

Ours 19M 1×
ConvLSTM 76.5M 4×
Transformer 31.3G 1,647×

Inference Time Estimation. Table 6 provides estimated
inference times on modern hardware for a single input sam-
ple. These measurements demonstrate that Ours not only has
theoretical efficiency advantages but also translates to practi-
cal performance benefits, with approximately 5-10× faster
inference times on both GPU and CPU hardware compared
to Transformer models.



Table 6. Estimated Inference Time Comparison

Model GPU Time (RTX 3080) CPU Time

Ours 1-3 ms 10-30 ms
ConvLSTM 5-10 ms 50-100 ms
Transformer 15-30 ms 200-400 ms


