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A APPENDIX

A.1 FURTHER RESPONSE TO REVIEWERS

Sample complexity bound. To verify the sample complexity bound for LA-SDP in Theorem 2
(O(log(n))) is tight, we will change n and adjust the squared distance between clusters by multiplying
log(n). More precisely, we let d = λ


log(n), λ > 0 The diagonal of the covariance matrices

are placed at a simplex of Rp that are not identical to the corresponding centers. i.e. µk = λ · ek,
Σk = L ·diag(ek+1), ∀l ∈ [K], where eK+1 = e1 This guarantees the symmetry of the construction.
We set L = 10, p = 4, K = 4. Each time we draw the n = 120240480 data from the GMM. The
results of the simulation for the second plot in Figure 5 are obtained through 20 total replicates, where
we can observe the same pattern across different settings for n This shows that the order log(n) for
separation bound in Theorem 2 should be tight.
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Figure 5: Mis-clustering error (with shaded error bars for the left plot) vs λ for iLA-SDP for different
n.

Computational complexity for banknote authentication dataset. Now if we look at the results of
time cost for clustering banknote authentication dataset in Table 1, we can observe that the time cost
for iLA-SDP is relatively high and to reduce the time cost, we could consider sub-sampling methods,
e.g., the subsampling idea (Zhuang et al., 2022b). This will be set as our future goal.

Table 1: Time cost (SD) for clustering banknote authentication dataset for 20 replicates.
EM KM iLA-SDP SC

0.1719 (0.0853) 0.0013 (0.0013) 2100 (1882) 0.0395 (0.0959)

A.2 ENHANCED ILA-SDPS FOR HIGH-DIMENSIONAL AND LARGE-SIZE DATA

In this section, we propose two variations of iLA-SDP that can handle high-dimensional and large-size
data with better computational and statistical efciency.

High dimensional data. If the number attributes of the data are large, it would be hard to approximate
the true covariance matrices since there are O(p2) many unknown parameters. Thus, we propose two
dimension reduction procedures that based on hierarchical clustering, Fisher’s LDA and F-test. The
detailed algorithm have been shown in Algorithm 2 and Algorithm 3. To reduce the dimension, we
proposed two procedure.

1. If the number of clustersK is small and the difference between centers are sparse, we shall use
HC as a benchmark method for feature selection and assume the group means according to HC
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as ground true. Specically, for i-th attribute, we calculate the F-statistics and its p-value based
on the H0 that all group means w.r.t. i-th attribute are the same. At last, each attribute would
likely to be selected if the p-value Pi for i-th attribute is signicantly small among p-values for all
attributes.

2. First we use the hierarchical clustering to get the clustering results for all possible input cluster
number K̃ ∈ [p] If we assume all the clusters have identical covariance matrices, then we may
use the assignments from HC to estimate the within-cluster covariance W̃ (with group means
µ̃l) and get the signal-to-noise ratio ∆(K̃) := mink ̸=l ∥W̃−12(µ̃k − µ̃l)∥. Here, HC serves as a
benchmark method for data initial processing. We will then choose the largest K̃ within target
range such that the signal-to-noise ratio ∆(K̃) is maximized. Then it will lead to the new dataset
with dimension q = K̃ − 1 after running Fisher’s LDA on the assignments from HC with clusters
number equals K̃. Finally we perform Algorithm 1 on the new dataset and extract the cluster
labels.

Large-size data. As we know that the time complexity for solving SDP is as high as O(n35) We
might use subsampling methods to bring down the time cost while maintain the superior behavior for
LA-SDP (Zhuang et al., 2022b). The proposed algorithm is shown in Algorithm 4.

Algorithm 2: Likelihood adjusted SDP based iterative algorithm with unknown covariance
matrices Σ1,    ,ΣK for large p.

Input: Data matrix X ∈ Rp×n containing n points. Cluster numbersK. The stopping criterion
parameters p0, ϵ and S. α ∈ [0, 1], C > 0

1 Run hierarchical clustering with data X , clusters numberK and extract the cluster labels
G

(0)
1 ,    , G

(0)
K as prior assignments for [n]. Suppose the assignments have true centers

µ
(0)
k , k ∈ [K].

2 for i = 1,    , p do
3 Calculate the p-value Pi of the F-test Fi under H0: µ

(0)
1,i = · · · = µ

(0)
K,i, where µ

(0)
k,i

corresponds to the i-th component of µ(0)
i .

4 Keep p0 attributes with p0 smallest p-values Pi.
5 if there is no clear cutoff between Pi’s, i.e. maxi∈[p] Pimini∈[p] Pi < C, then
6 we further keep other p− p0 attributes with probability α > 0

7 Get dimension reduced data X̃ .
8 Run Algorithm 1 on X̃ with initialization obtained from K clusters of HC and stopping criterion

parameters ϵ and S. Then extract the cluster labels Ĝ1,    , ĜK as a partition estimate for [n].
Output: A partition estimate Ĝ1,    , ĜK for [n].

A.3 EXPERIMENT RESULTS

In this section, we provide more details of the settings and post the results for simulation experiments.
For all the dimension reduction procedures used in the simulation experiments, we perform step 1-7
in Algorithm 2 followed by Algorithm 3 with input parameters α = 07, C = 1010, p0 = 2K, p1 =
15 ϵ = 10−2, S = 50 The initialization we use is hierarchical clustering from mclust package in
R. Here we test our algorithm on Gaussian mixture models and real datasets. We compared our
algorithm iLA-SDP (HC as initialization) with HC, EM algorithm (HC as initialization),K-means
(HC as initialization) and original SDP.

Improvements of iLA-SDP over SDP. Recall in Theorem 2, we dene the signal-to-noise ratio as
∆2 := mink ̸=l ∥Σ−12

k (µk − µl)∥2. To verify the validity of the denition and compare iLA-SDP
and SDP, we change the conditional number for covariance matrices Σ1,    ,ΣK  Here we choose
n = 200, p = 4, K = 4 Recall M := maxk ̸=l ∥Σ12

l Σ−1
k Σ

12
l ∥op, we choose all the covariance

matrices to be the same such thatM is xed. The covariance matrices are set to be identity matrix
except that the rst entry at the diagonal are set to be L+ 1, which refers to the condition number of
matrices. We consider two cases where L = 10, 100 Now denote ek ∈ Rp as the vector with k-th
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Algorithm 3: Likelihood adjusted SDP based iterative algorithm with unknown covariance
matrices Σ1,    ,ΣK for large p.

Input: Data matrix X ∈ Rp×n containing n points. Cluster numbersK. The stopping criterion
parameters p1, ϵ and S.

1 Select a bench mark clustering method (HC) as a way to provide a prior assignments.
2 for K̃ = K,K + 1,    , p1 − 1, p1 do
3 Run hierarchical clustering with data X , clusters number K̃ and extract the cluster labels

G
(K̃)
1 ,    , G

(K̃)

K̃
as prior assignments for [n] and get the group means µ(K̃)

k , k ∈ [K̃].
4 Calculate the within-cluster covariance matrixW , then get the signal-to-noise ratio

∆(K̃) := minl ̸=k ∥W−12(µ
(K̃)
l − µ

(K̃)
k )∥.

5 ChooseK∗ such that ∆(K∗) is maximized forK∗ = K,K + 1    , P − 1, P .
6 Perform the Fisher’s LDA with data X , assignments G(K∗)

1 ,    , G
(K∗)
K∗ and get the transformed

data X̃ ∈ Rq×n with q = K∗ − 1.
7 Run Algorithm 1 on X̃ with initialization obtained from K clusters of HC and stopping criterion

parameters ϵ and S. Then extract the cluster labels Ĝ1,    , ĜK as a partition estimate for [n].
Output: A partition estimate Ĝ1,    , ĜK for [n].

Algorithm 4: Sketch and lift: Likelihood adjusted SDP based iterative algorithm with unknown
covariance matrices Σ1,    ,ΣK for large n.

Input: Data matrix X ∈ Rp×n containing n points. Cluster numbersK. The stopping criterion
parameters P , ϵ and S. Sampling weights (w1,    , wn) with
w1 = · · · = wn = γ ∈ (0, 1) being the subsampling factor.

1 (Sketch) Independent sample an index subset T ⊂ [n] via Ber(wi) and store the subsampled data
matrix V = (Xi)i∈T .

2 Run subroutine Algorithm 1 with input V to get a partition estimate R̂1,    , R̂K for T .
3 Compute the centroids X̄k = R̂k−1


j∈R̂k

Xj and within-group sample covariance matrices
Σ̂k = R̂k−1


j∈R̂k

(Xj − X̄k)(Xj − X̄k)
T for k ∈ [K].

4 (Lift) For each i ∈ [n] \ T , assign i ∈ Ĝk if
log Σ̂k+ ∥Σ̂−12

k (Xi − X̄k)∥2 < log Σ̂l+ ∥Σ̂−12
l (Xi − X̄l)∥2, ∀l ̸= k, l ∈ [K]. And

randomly assign i to any K clusters if such k doesn’t exist.
Output: A partition estimate Ĝ1,    , ĜK for [n].

entry as 1, and 0 otherwise. The centers of clusters µ1,    , µK are placed on vertices of a regular
simplex, i.e., µk = λ


1 + (1 + L)−1ek, k ∈ [K] This ensures that for any L,∆ = λ, ∀λ From

Figures 2 we can observe that the signal-to-noise ratio we dened is reasonable. On the other hand,
the performance of SDP becomes worse as condition number of the group covariance matrices grows
since the assumption of isotropy group covariance matrices for SDP is violated and same reason for
K-means.

Impact of dimension reduction. Here we want to see the performance of iLA-SDP after
dimension reduction. The covariance matrices of GMM are drawn independently following
Σk := UkΛkU

T
k , ∀k ∈ [K] Here Uk is a random orthogonal matrix, Λk is a diagonal matrix

with entries drawn from Z = 1 + βZ · 1(Z > 0), where Z is standard Gaussian distribution, β > 0
controls the condition number of Σk. Here we choose n = 200, p = 20, K = 4, β = 5 The
covariance matrices are xed once chosen and we perform Algorithm 1 on the dataset directly to
get the results of iLA-SDP for each replicates. For dimension reduction, we follow the procedure
of dimension reduction introduced in Algorithm 2 and Algorithm 3 in Appendix A.2 and get the
transformed dataset X̃ with lower dimension. Then the results of pLA-SDP is obtained from running
Algorithm 1 with HC as initialization on X̃ . The results in Figure 6 shows that after reduction of
dimension in our procedure, the performance of iLA-SDP becomes signicantly better when the
separation is large. This is because in our setting, the difference between centers d(k,l) := µk − µl, is
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sparse for all distinct pairs. And after performing the F-test on the covariates, the noisy terms get
eliminated which results in better performance.

Failure of EM vs SDP. Recall the failure of EM for random initialization (Jin et al., 2016) in the
special case that covariance matrices equal to identity matrix and it assumes equal weights. Both
covariance matrices and weights are known. In this case, EM algorithm would be reduced to the
version that the weights and the mean update interactively. Meanwhile, iLA-SDP would be reduced
to SDP. The random initialization indicates that we pick any data point as initialization of the centers
uniformly. Following the same setting from the construction of the pitfall, we choose one dimension
GMM with three clusters such that the distance between two of the centers is much smaller than
others. More concisely, we let n = 300, K = 3, p = 1, µ1 = γ, µ2 = −γ, µ3 = 10 · γ The
results can be observed from the rst plot in Figure 3 with 300 replicates, where we denote the
reduced version of EM as mEM. From the gure we can observe that the reduced version of iLA-SDP,
which is SDP, performs stable and achieves exact recovery when the separation is large. However,
EM would fail for random initialization.

Perturbation of initialization assignments. To see how the performance of EM and iLA-SDP will
change when perturbing the initialization, we set HC as initialization and proportion α (α ∈ [0, 1])
of the initialization labels will be perturbed. The diagonal of the covariance matrices are placed
at a simplex of Rp that are not identical to the corresponding centers. i.e. µk = λ · ek, Σk =
L · diag(ek+1), ∀l ∈ [K], where eK+1 = e1 This guarantees the symmetry of the construction. We
set L = 10, p = 4, K = 4 and the distance between centers d = 8 Each time we draw the n = 200
data from the GMM and run HC as initialization. Then we randomly assign α proportion of the
labels from HC to any cluster uniformly. The results of the simulation for the second plot in Figure 3
are obtained through 300 total replicates, where we can observe that iLA-SDP is fairly stable with
perturbation of initialization if the separation is large while EM can go worse as α approaches 1,
i.e., all the labels are selected randomly. In other words, EM is more sensitive to initialization and
iLA-SDP is more stable if the signal is strong.

Empirical evidence for monotone increasing of objective function for iLA-SDP. Here we provide
examples based on previous experiment settings where we set the distance between centers d =
13510 and try to see how the log-likelihood function of given data changes as the iteration
proceeds. From Figure 7 in Appendix we can see that our algorithm guarantees that the log-likelihood
function of given data increases over iteration empirically. What is more, by our construction we can
show that the log-likelihood function will increase after each step for iLA-SDP theoretically.
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Figure 6: Mis-clustering error (with shaded error bars for the left plot) vs center distance D for
iLA-SDP before and after dimension reduction. pLA-SDP denotes the iLA-SDP after dimension
reduction.
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Figure 7: Log-likelihood (up to some constant) as iteration s grows for iLA-SDP.

A.4 PROOF OF THE THEOREMS AND PROPOSITIONS

In this section, we provide the proofs for the Proposition 1, Proposition 4 and a sketch proof of
Theorem 2. The proof of the main theorem follows the track from the paper solving the exact recovery
for original SDP (Chen & Yang, 2021b) and we will show the main differences in our proof.
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First, we provide explicit expressions of some constants appearing in Theorem 2 below:

E1 =
4(1 + 2δ)M52

(1− β)2η2


M +


M2 +

(1− β)2

(1 + δ)

p

m log n
+ C4Rn



with

Rn =
(1− β)2

(1 + δ) log n

√
p log n

n
+

log n

n


,

and

E2 =
C5(M − 1)3M2

(1− β)(1− η)


p

log n
+ 1


+

C6K
2(1− β)

β

·min


1

β(M − 1)2
n

m


1 +

log p

log n


p

log n
,
(M − 1)M2

β


p3

log n
+


p log n


n√
m




(15)

A.4.1 PROOF OF PROPOSITION 1

Proposition 1 (SDP relaxation forK-means is a special case of LA-SDP). Suppose Σk = σ2Idp
for all k ∈ [K]. Let Ẑ be the solution to (5) that achieves maximumM1 and Ẑk, k = 1,    ,K, be
the solution to (5) with maximumM2. ThenM1 = M2. And Ẑ =

K
k=1 Ẑk, if Ẑ is unique in (5).

Proof of Proposition 1 If Σk = σ2Idp, ∀k ∈ [K] Then from (7) we have

Ak ≡ 1

2


diag(XTX)1T

n + 1ndiag(XTX)T

+XTX, ∀k ∈ [K]

This implies that (8) can be written as

Ẑ1,    , ẐK = arg max
Z1,ZK∈Rn×n


XTX,

 K

k=1

Zk



subject to Zk ⪰ 0, tr
 K

k=1

Zk


= K,

 K

k=1

Zk


1n = 1n, Zk ⩾ 0, ∀ k ∈ [K],

(16)

Since

diag(XTX)1T

n ,
K

k=1 Zk


= tr(XTX), which is a constant in the optimization problem

(16). Now suppose Ẑ is a solution to (5) that achieves maximumM1 and Ẑk, k = 1,    ,K, is the
solution to (16) that achieves maximumM2, then we have


XTX,

 K

k=1

Zk


≤ M1,


XTX,

 K

k=1

Z̃k


≤ M2,

where Z̃1 := Ẑ, Z̃2 = · · · = Z̃K = 0 In other words,M1 = M2, which nishes the proof. If Ẑ is
unique in (5), then we have Ẑ =

K
k=1 Ẑk since both of them achieve the maximum in (5). ■

A.4.2 PROOF OF PROPOSITION 4

Proposition 4 (iLA-SDP is a soft clustering method). If rank(Zk) = 1, then there exists weights
(wk,1,    , wk,n) such that Σ̂k in Lemma 3 can be written as

Σ̂k :=
1

nk

n

i=1

wk,i(Xi − µ̂k)(Xi − µ̂k)
⊤ with µ̂k :=

1

nk

n

i=1

wk,iXi, (17)

where nk =
n

i=1 wk,i.
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Proof of Proposition 4 If Zk is rank 1, then there exists a ∈ Rn such that Zk = aaT  Let wk :=
aT1 · a, then we have

Zk =
wkw

T
k

wT
k 1

,

i.e., Zk,ij =
wk,iwk,jn

i=1 wk,i
 Finally, by plugging in the expression of Zk,ij with wk,i we can get the target

expression for Σ̂k ■

A.4.3 SKETCH PROOF OF THEOREM 2

Theorem 2 (Exact recovery for LA-SDP). Suppose there exist constants δ > 0 and β ∈ (0, 1) such
that

log n ≥ max


(1− β)2

β2
,

(1− β)(1− η)K2

β2 max(M − 1)2, 1


C1n

m
, δ ≤ β2

(1− β)2
C2M

12

K
, m ≥ 4(1 + δ)2

δ2


If
∆2 ≥ (E1 + E2) log n, and min

k ̸=l
D(k,l) ≥ C3(1 + log np+ pn), (18)

where

E1 =
4(1 + 2δ)M52

(1− β)2η2


M +


M2 +

(1− β)2

(1 + δ)

p

m log n
+ C4Rn



with

Rn =
(1− β)2

(1 + δ) log n

√
p log n

n
+

log n

n


,

and

E2 =
C5(M − 1)3M2

(1− β)(1− η)


p

log n
+ 1


+

C6K
2(1− β)

β

·min


1

β(M − 1)2
n

m


1 +

log p

log n


p

log n
,
(M − 1)M2

β


p3

log n
+


p log n


n√
m


;

(19)

then the LA-SDP achieves exact recovery, or Ẑ = Z∗, with probability at least 1− C7K
3n−δ for

some universal constants C1,    , C7.

Sketch of the proof. Recall that we let G∗
1,    , G

∗
K be the true partition of the index set [n] :=

1,    , n such that if i ∈ G∗
k, then

Xi = µk + ϵi, (20)

where µk ∈ Rp is the true center of the k-th cluster G∗
k (Gk for simplicity) and ϵi is an i.i.d. random

Gaussian noise N(0,Σk). First we can write down the dual problem:

min
λ∈R,α∈Rn,
Bk∈Rn×n

λK + αT1n, subject to Bk ≥ 0, λIdn +
1

2
(α1T

n + 1nα
T )−Ak −Bk ⪰ 0, ∀k ∈ [K]

Denote Z∗
k := 1

|Gk|1Gk
1T
Gk

, ∀k ∈ [K] then it can be shown that the sufcient conditions for the
solution of SDP to be Zk = Z∗

k , ∀k ∈ [K] are

Bk ≥ 0; (C1)

Wk := λIdn +
1

2
(α1T

n + 1nα
T )−Ak −Bk ⪰ 0; (C2)

tr(WkZ
∗
k) = 0; (C3)

tr(BkZ
∗
k) = 0 (C4)

It can be veried that if we can nd symmetric Bk such that

Bk,GkGk
= 0;

18
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[Bk,GlGk
1Gk

]i = −nk + nl

2nl
· λ

+
nk

2
[(∥Σ−12

k (X̄k −Xi)∥2 + log Σk)− (∥Σ−12
l (X̄l −Xi)∥2 + log Σl)];

[Bk,GlGl
1Gl

]j = [Al,GlGl
1Gl

]j − [Ak,GlGl
1Gl

]j ;

[Bk,Gl′Gl
1Gl

]j = [Bl,Gl′Gl
1Gl

]j + [Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j ,

for any triple pairs (k, l, l′) that are mutually distinct and i ∈ Gk, j ∈ Gl. Then (C3) and (C4) hold.
In fact, the target matrices can be dened through

B#
k,Gl′Gl

:=
Bk,Gl′Gl

1Gl
1T
Gl′

Bk,Gl′Gl

1T
Gl′

Bk,Gl′Gl
1Gl

, (21)

for any k ∈ [K], (l′, l) ̸= (k, k). Furthermore, the construction ofBk shows thatBk1Gl
= 0, ∀(k, l)

pairs.

The following two lemma gives the sufcient conditions for (C1).
Lemma 6 (Separation bound on the covariance matrices). Let λ1,    ,λp correspond to the
eigenvalues of (Σ12

l Σ−1
k Σ

12
l −Idp) and deneD(k,l) :=

p
i=1(λi−log(1+λi))

pmaxi |λi|  If there exists constant
C such that

min
k ̸=l

D(k,l) ≥ C(1 + log np+ pn),

then

P

[Al,GlGl

1Gl
]j − [Ak,GlGl

1Gl
]j ≥ 0, for all (k, l) ∈ [K]2 and j ∈ Gl


≥ 1− CK2n

Lemma 7 (Separation bound on the centers). Let δ > 0, β ∈ (0, 1), η ∈ (0, 1). If we have

∆2 ≥ 4(1 + δ)M2

(1− β)2η2


M32 +


M3 +

(1− β)2M

(1 + δ)

p+ 2

p log(nK) + 4 log(nK)

m log n


 log n,

and

∆2 ≥ M2(M − 1)2

(1− β)2(1− η)2
·


1 +

2(1− β)(1− η)

M
[3 logM + 4M(M − 1)(p+ 2


p log(nK) + 4 log(nK))]


,

then

P

∥Σ−12

l (X̄l −Xj)∥2 + log Σl)− (∥Σ−12
l′ (X̄l′ −Xj)∥2 + log Σl′ )

− 2

nl

[Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j
 ≥ β

M
∥Σ−12

l (µl − µl′)∥2 + (n−1
l + n−1

l′ )p− rk,l,l′ ,

for all triple (k, l, l′) ∈ [K]3 with (k, l, l′) ̸= (k, k, k) and j ∈ Gl′



≤ CK3

nδ
,

where

rk,l,l′ = 4


log(nK)

nl
∥Σ−12

l (µl − µl′)∥+ 2(n−1
l + n−1

l′ )


2p log(nK) + 4n−1
l′ log(nK)

for some large constant C.

The proof of Lemma 7 follows the similar steps from the original paper (Chen & Yang, 2021b).
The two lemmas imply that (C1) can hold with high probability if the separation condition in the
assumption holds. The remaining part is to verify the (C2).
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Denote Γ = span1Gk
: k ∈ [K]⊥ be the othogonal complement of the linear space spanned by

1Gk
, k ∈ [K] Note thatWk1Gl

= 0, ∀(k, l) ∈ [K]2, we only need to check for v ∈ Γ,

vTWkv ≥ 0, ∀k ∈ [K]

Note that vT1Gk
= 0, we have

vTWkv = λ∥v∥2 − Sk(v)− Tk(v),

where Sk(v) := vTAkv = vTXTΣ−1
k Xv, and Tk(v) = vTBv By concentration bound we can get

P(Sk(v) ≤ MK(
√
n+

√
p+


2 log n), for all k ∈ [K]) ≥ 1− K

n


For Tk(v), rst we dene

V
(1)
k,ll′ := ⟨Σ12

l′ Σ−1
l (µl′ − µl),



j∈Gl′

vjϵj⟩;

V
(2)
k,ll′ := ⟨ϵ̄l′ − Σ

12
l′ Σ

−12
l ϵ̄l,



j∈Gl′

vjϵj⟩;

V
(3)
k,ll′ :=

1

2



j∈Gl′

ϵTj Σ
12
l′ (Σ−1

l − Σ−1
l′ )Σ

12
l′ ϵjvj ;

V
(4)
k,ll′ :=

1

nl



j∈Gl′

([Al,Gl′Gl
1Gl

]j − [Ak,Gl′Gl
1Gl

]j)vj · 1(l ̸= l′)

Then we can write Tk(v) as

Tk(v) :=


l ̸=l′

nlnl′

1T
nBk1n

(T
(1)
k,ll′ + T

(2)
k,ll′ + T

(3)
k,ll′ + T

(4)
k,ll′ + T

(5)
k,ll′),

where
T

(1)
k,ll′ := V

(1)
k,ll′ · V

(1)
k,l′l;

T
(2)
k,ll′ := V

(2)
k,ll′ · V

(2)
k,l′l;

T
(3)
k,ll′ := V

(1)
k,ll′ · V

(2)
k,l′l + V

(2)
k,ll′ · V

(1)
k,l′l;

T
(4)
k,ll′ := (V

(3)
k,ll′ + V

(4)
k,ll′) · (V

(1)
k,l′l + V

(2)
k,l′l) + (V

(1)
k,ll′ + V

(2)
k,ll′) · (V

(3)
k,l′l + V

(4)
k,l′l);

T
(5)
k,ll′ := (V

(3)
k,ll′ + V

(4)
k,ll′) · (V

(3)
k,l′l + V

(4)
k,l′l)

Now we choose λ = p+ β
4Mm∆2, which implies that

1T
nBk1n ≥ nlnl′

8

β

M
max∥Σ−12

l′ (µl − µl′)∥2, ∥Σ−12
l (µl − µl′)∥2

From concentration bounds for Gaussians we have for all triple (k, l, l′) ∈ [K]3 such that (k, l, l′) ̸=
(k, k, k), 



l ̸=l′

nlnl′

1T
nBk1n

T
(1)
k,ll′


≤ CM2

β
· (n+


2nK log n+ 2K log n)∥v∥2;




l ̸=l′

nlnl′

1T
nBk1n

T
(2)
k,ll′


≤ CM3

1− β
· (δ


mp log n+


mp log7 nn)∥v∥2;




l ̸=l′

nlnl′

1T
nBk1n

T
(5)
k,ll′


≤ CK2

β
· ( 1− β

(M − 1)2M
(p+ pM log p log n) +M(M − 1))n∥v∥2,

Or 


l ̸=l′

nlnl′

1T
nBk1n

T
(5)
k,ll′


≤ CK2M(1− β)(M − 1)

β
· (


p3m

log n
+


pm log n)n∥v∥2,
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with probability ≥ 1− CK3nδ for some constant C.

Note that by assumption we have ∆2 ≥ C(M−1)3M2

(1−β)(1−η) (p + log n) + CM3

(1−β)


(1 + δ)p log nm and

the fact that the remaining terms of Tk,ll′ can be bounded by the above inequalities up to multiplied
by some constant, we can directly verify that (C2) is true under our assumptions. ■
Lemma 6 (Separation bound on the covariance matrices). Let λ1,    ,λp correspond to the
eigenvalues of (Σ12

l Σ−1
k Σ

12
l −Idp) and deneD(k,l) :=

p
i=1(λi−log(1+λi))

pmaxi |λi|  If there exists constant
C such that

min
k ̸=l

D(k,l) ≥ C(1 + log np+ pn),

then

P

[Al,GlGl

1Gl
]j − [Ak,GlGl

1Gl
]j ≥ 0, for all (k, l) ∈ [K]2 and j ∈ Gl


≥ 1− CK2n

Sketch of the proof. Let T := [Al,GlGl
1Gl

]j − [Ak,GlGl
1Gl

]j , B := Σ
12
l Σ−1

k Σ
12
l − Idp then by

denition we have

T = −
p

i=1

log(λi + 1) +

p

i=1

λi

+
1

2
⟨B, ϵjϵ

T
j − Idp⟩

− 1

2
⟨B,

1

nl



t∈Gl

ϵtϵ
T
j + ϵj

 1

nl



t∈Gl

ϵt

T

⟩

+
1

2
⟨B,

1

nl



t∈Gl

ϵtϵ
T
t − Idp⟩,

where the last three terms can be bounded by concentration bounds for Gaussians. ■
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