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UniGM: Unifying Multiple Pre-trained Graph Models via
Adaptive Knowledge Aggregation

Anonymous Authors

ABSTRACT
Recent years have witnessed remarkable advances in graph rep-
resentation learning using Graph Neural Networks (GNNs). To
fully exploit the unlabeled graphs, researchers pre-train GNNs on
large-scale graph databases and then fine-tune these pre-trained
Graph Models (GMs) for better performance in downstream tasks.
Because different GMs are developed with diverse pre-training
tasks or datasets, they can be complementary to each other for a
more complete knowledge base. Naturally, a compelling question
is emerging: How can we exploit the diverse knowledge captured by
different GMs simultaneously in downstream tasks? In this paper, we
make one of the first attempts to exploit multiple GMs to advance
the performance in the downstream tasks. More specifically, for
homogeneous GMs that share the same model architecture but
are obtained with different pre-training tasks or datasets, we align
each layer of these GMs and then aggregate them adaptively on
a per-sample basis with a tailored Recurrent Aggregation Policy
Network (RAPNet). For heterogeneous GMs with different model
architectures, we design an alignment module to align the output
of diverse GMs and a meta-learner to decide the importance of each
GM conditioned on each sample automatically before aggregating
the GMs. Extensive experiments in various downstream tasks from
3 domains reveal our dominance over each single GM. Additionally,
our methods (UniGM) can achieve better performance with moder-
ate computational overhead compared to alternative approaches
including ensemble and model fusion. Also, we verify that our
methods are not limited to graph data but could be flexibly applied
to multiple modalities. The codes can be seen in the anonymous
link: https://anonymous.4open.science/r/UniGM-DA65.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Learning
latent representations.

KEYWORDS
Graph analysis, pre-trained models, ensemble, model fusion

1 INTRODUCTION
Fine-tuning a pre-trained Language Model (LM) has become the
de facto standard for Natural Language Processing (NLP) [4, 6].
Inspired by the prosperity, tremendous efforts have been devoted
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to pre-trained GMs to exploit abundant knowledge of unlabelled
graphs [18, 53]. For the pre-training stage, researchers train the
GNN encoder with various pretext tasks [35]. For the fine-tuning
stage, researchers replace the top layer of the pre-trained models
with a task-specific sub-network and train the new model with
the labeled data of the downstream tasks. Pre-training techniques
can help GNNs capture the potential laws of graph data that are
conducive to downstream tasks [18, 53]. Intuitively, different off-the-
shelf GMs are obtained with diverse pre-training tasks or datasets
and thus they capture diverse knowledge and possess different
abilities. Take molecular graphs as examples, given that motifs
in molecular graphs usually correspond to functional groups that
are indicative of molecular properties, some researchers pre-train
GNNs with motif-driven pre-training strategy [61] to capture the
information of functional groups. Now, we are naturally motivated
to ask the following question: How can we exploit the diverse knowl-
edge captured by different GMs simultaneously in downstream tasks?

There are several possible approaches to achieving this goal.
For example, the easiest way is to adopt all the pretext tasks to
pre-train only one model on various datasets. However, it is imprac-
tical because the downstream users are often only accessible to the
off-the-shelf pre-trained GMs rather than the pre-training datasets
or tasks. Worse still, pre-training a new model from scratch with
multiple tasks and datasets is computationally prohibitive. There-
fore, we consider unifying the off-the-shelf pre-trained GMs during
model adaptation. Ensemble Learning [9] is a prevalent technique
that can unify multiple models. Despite the effectiveness, we have
to fine-tune each GM and then use the averaged outputs of them for
downstream tasks, which is inconvenient and suffers from heavy
computational overhead. Model fusion [1, 32, 38] is another alterna-
tive solution to this problem, which aligns neurons across different
models before averaging their associated parameters in a data-free
way. While model fusion enjoys higher efficiency than ensemble
learning, there is a flaw that causes poorer performance: it treats all
the samples equally by letting them share the same aggregation pol-
icy. However, in practice, each sample holds specific relations with
diverse pre-trained models [56] and the aggregation policy should
depend on each sample. Additionally, existing evidence reveals that
the lower pre-trained layers learn more general features while the
higher layers closer to the output specialize more to the pre-training
tasks [20, 60]. Therefore, for some downstream tasks that are more
similar to pre-training tasks, the aggregation should emphasize
the higher layer and vice versa. Overall, an ideal aggregation pol-
icy should be both sample-dependent and layer-dependent. Also,
tremendous efforts have been devoted to designing pre-training
strategies for GNNs so far. However, how to leverage pre-trained
GNNs remains under-explored.

To remedy the above drawbacks, we propose UniGM to ex-
ploit multiple GMs effectively and efficiently during fine-tuning.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of the ensemble, model fusion, and UniGM.

We show the schematic diagrams of our UniGM and the above-
mentioned approaches in Figure 1. Specifically, for homogeneous
GMs that share the same GNN backbone, we aggregate each layer
of them adaptively on a per-sample basis with a tailored RAPNet,
which includes a Recurrent Neural Network (RNN) [31] to explicitly
model the layer-based relations. For the heterogeneous GMs with
different GNNs backbones, we devise an alignment module to align
the output of heterogeneous GMs and a meta-leaner to decide the
importance of each GM for the downstream task conditioned on per
sample automatically. Here, ‘Heterogeneous GMs’ denote the pre-
trained graph models that differ from each other in terms of GNN
backbones, instead of heterogeneous graph data or heterogeneous
GNNs [59]. Different from some recent works that aim to combine
several self-supervised tasks to pre-train GNNs [13, 22], we attempt
to unify multiple off-the-shelf pre-trained GMs for a more complete
knowledge base. We highlight the following contributions:

• Currently, the community focuses on designing self-supervised
pre-training strategies for GNNs, however, it remains under-
explored how to utilize pre-trained GMs more effectively or
efficiently. To the best of our knowledge, we make one of the
first attempts to unify multiple GMs for better performance
in downstream tasks.

• We present two effective and efficient techniques to unify
homogeneous and heterogeneous GMs, respectively. Our
methods can also be flexibly applied to various modalities
(validated in section 4.5).

• Extensive experiments validate that UniGM can consistently
outperform each single GM, and achieve state-of-the-art
performance with moderate computational consumption
compared with competitive alternatives.

2 RELATEDWORK
2.1 Pre-training Graph Neural Networks
GNNs have emerged as dominant tools for graph representation
learning. While effective and prevalent, they require expensive an-
notations and barely generalize to unseen graphs, which poses a hur-
dle to practical applications. To remedy these deficiencies, tremen-
dous efforts have been devoted to pre-training GNNs. One line of
these works follows the contrastive paradigm [14, 34, 44, 62]. For

example, GraphCL [58] and its variants [11, 26, 42, 43, 48, 51, 57] em-
bed augmented versions of the anchor graph close to each other and
push the embeddings of other graphs apart. Additionally, DGI [46]
and InfoGraph [41] is proposed to obtain expressive representa-
tions for graphs or nodes via maximizing the mutual information
between graph-level representations and substructure-level repre-
sentations of different granularity. The other line of work adopts
generative or predictive pretext tasks. Typically, GPT-GNN [19]
introduces an attributed graph generation task to pre-train GNNs
so that they can capture the structural and semantic properties of
the graph. Additionally, [18], [25] and [17] conduct attribute and
structure prediction at the level of individual nodes as well as entire
graphs. To capture the rich information in molecular graph motifs,
GROVER [35] and MGSSL [61] propose to predict or generate the
motifs. Considering that 3D geometric information also plays a
vital role in predicting molecular graph properties, several recent
works [10, 27, 28, 40] pre-train the GNN encoders on molecular
datasets with 3D geometric information. Since the above GMs are
obtained with diverse pre-training tasks or datasets, they can be
complementary to each other. To this end, we propose UniGM to
integrate multiple GMs into a unified one for better performance.

2.2 Ensemble Learning and Model Fusion
Ensemble Learning has achieved spectacular achievements in his-
tory [37, 49]. They combine the outputs of different models to
improve performance. In the pretrain-then-finetune paradigm, we
have to finetune all the pre-trained models and then run each of
them during inference to average their outputs, which is laborious.
Alternatively, Model Fusion aims to merge multiple trained net-
works into a single one in a data-free manner. The simplest way
of model fusion is vanilla averaging the parameters of pre-trained
networks [45]. However, vanilla averaging only works in the case
when the weights of individual networks are relatively close in the
weight space. As effective remedies, FBA-Wagging [1], FedMA [47]
and OTFusion [38] align the neurons of each layer before applying
vanilla averaging. Although model fusion runs several magnitudes
faster than ensemble learning, the fusion process is independent of
the input sample while each sample holds specific relations with
diverse models, which accounts for its poorer performance. Com-
pared with them, our UniGM achieves better performance with
moderate computational cost.
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Figure 2: Schematic diagram of UniGM for homogeneous GMs.

3 METHOD
Our UniGM encompasses two ingredients: Unifying homogeneous
GMs and Unifying heterogeneous GMs. In what follows, we elabo-
rate on them in detail.

3.1 Unifying homogeneous GMs (UniGM)
As shown in Figure 2, given𝑛 homogeneousGMsM = {𝑀1, 𝑀2, ..., 𝑀𝑛}
with the same backbone, we aggregate their parameter matrices
layer-wisely following the ‘Alignment-then-Aggregation’ paradigm.
We consider that 𝑖-th GM𝑀𝑖 consists of 𝐿 layers whose parameter
matrices are W𝑖

1,W
𝑖
2, ...,W

𝑖
𝐿
. Next, taking 𝑗-th layer as an example,

we elaborate on the alignment and aggregation modules to obtain
the 𝑗-th layer parameter matrixW𝑢𝑛𝑖

𝑗
of the unified model𝑀𝑢𝑛𝑖 .

Alignment Module. Since the homogeneous GMs are pre-trained
with different tasks or datasets, so even the parameters at the same
layer of them may contain different semantic meanings, which
hinders direct aggregation. To tackle this issue, we can feed the pa-
rameter matrices to linear layers to project them to a shared weight
space to align them. However, this way will incur heavy compu-
tation with multiple matrix multiplications. Hence, we use lighter
convolution. Specifically, given 𝑛 parameters matrices W{1,2,· · · ,𝑛}

𝑗

for 𝑗-th layer, each of which are of scale𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 , we resize them
as a 1 × 𝑛 × 𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 tensorW𝑗 and feed it to a pointwise con-
volution layer including 𝑛 filters C{1,2,· · · ,𝑛}

𝑗
, each of which is with

kernel size 𝑛 × 1 × 1. The output Ŵ𝑗 of size 𝑛 × 𝐻𝑖𝑛 × 𝐻𝑜𝑢𝑡 are
regarded as the aligned parameter matrices. The process can be
formulated as Ŵ𝑖

𝑗
= C𝑖

𝑗
∗ W𝑗 , where ‘*’ is the convolution with

time complexity O(𝑛2𝐻𝑖𝑛𝐻𝑜𝑢𝑡 ). It is superior to the linear layer of
size 𝐻𝑜𝑢𝑡 ×𝐻𝑜𝑢𝑡 with complexity O(𝑛𝐻𝑖𝑛𝐻

2
𝑜𝑢𝑡 ) because 𝐻𝑜𝑢𝑡 ≫ 𝑛

in practice. Kindly note that we initialize the convolution as an
identical mapping for a warm-up from pre-trained parameters.
Aggregation Module. As we discuss in the introduction section,
the aggregation policy should be both sample-dependent and layer-
dependent. To this end, we introduce a Recurrent Aggregation
Policy Network (RAPNet) which is conditioned on the input fea-
ture of each layer to learn the aggregation policy for the aligned
parameter matrices. The term "aggregation policy" refers to the

weights used to linearly combine the aligned parameter matrices
into unified ones. Specifically, for each layer, we first apply a global
pooling to transform the input feature into a one-dimensional em-
bedding vector, which will be fed into the RNN [31] to model the
dependencies between different layers. Namely, we regard the one-
dimensional embedding vector of each layer as the input for a
timestamp in RNN and the hidden state of RNN will be propagated
to the next layer. Formally, for 𝑗-th layer, given that the input feature
(after pooling) is ℎ̂ 𝑗 , we can obtain the output of RNN 𝑜 𝑗 by,

𝑠 𝑗 = 𝑡𝑎𝑛ℎ(Pℎ̂ 𝑗 + Q𝑠 𝑗−1 + 𝑏), 𝑜 𝑗 = 𝑡𝑎𝑛ℎ(R𝑠 𝑗 + 𝑐), (1)

where 𝑠 𝑗 is the hidden state of layer 𝑗 and we initialize 𝑠0 with zeros.
P,Q,R are the parameters of the RNN. 𝑏 and 𝑐 are the bias terms.
Finally, we transform the output of the RNN (𝑜 𝑗 ) to the aggregation
weights (policy) with a fully-connected layer followed by a softmax
function, i.e., 𝐴 𝑗

(
ℎ 𝑗−1

)
= Softmax

(
Linear

(
ReLU

(
𝑜 𝑗
) ) )

. The 𝑖-th
dimension of 𝐴 𝑗

(
ℎ 𝑗−1

)
is 𝐴𝑖

𝑗

(
ℎ 𝑗−1

)
, which denotes the learned

aggregation weights (policy) for the 𝑗-layer parameter matrix of
the 𝑖-th pre-trained model (Ŵ𝑖

𝑗
). Finally, we can obtain the 𝑗-th

layer parameter matrix𝑊𝑢𝑛𝑖
𝑗

of the unified model by re-weighting
the aligned matrices with the learned aggregation policy,

W𝑢𝑛𝑖
𝑗 =

𝑛∑︁
𝑖=1

𝐴𝑖
𝑗 (ℎ 𝑗−1)Ŵ𝑖

𝑗
. (2)

With the aggregated parameters in the unified model𝑀uni (·;W𝑢𝑛𝑖
1 ,

W𝑢𝑛𝑖
2 , · · · ,W𝑢𝑛𝑖

𝐿
), we can formulate the loss as,

L = E(x,y)∼Dℓ

(
𝑀uni

(
x;W𝑢𝑛𝑖

1 ,W𝑢𝑛𝑖
2 , · · · ,W𝑢𝑛𝑖

𝐿

)
, y
)
, (3)

where D = {(x, y)} denotes the dataset of downstream tasks and
x, y denote the sample and label. ℓ is the loss of downstream tasks.
We provide two variations for UniGM. The first one, dubbed UniGM-
F, is to freeze the pre-trained parameters of GMs and only tune the
parameters of alignment and aggregation modules. The other one
named UniGM-T is to tune all the parameters. Unlike ensemble
learning, UniGM is more efficient because the samples are only
required to pass through the unified model while the samples in
ensemble learning need to pass through all the GMs. Comparedwith
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Figure 3: The schematic diagram for unifying heterogeneous GMs (He-UniGM).

model fusion, UniGM aggregates parameters of GMs adaptively
depending on the sample and layer, leading to better performance.

3.2 Unifying heterogeneous GMs (He-UniGM)
Although most current open-sourced GMs for the same domain
share the same GNN encoder, future GMsmay adopt more powerful
GNNs. However, UniGM-T and UniGM-F cannot unify heteroge-
neous GMs. As a remedy, we develop another effective strategy
(He-UniGM) to integrate heterogeneous GMs into a unified one,
whose general pipeline can be seen in Figure 3.
Alignment Module. Since heterogeneous GMs are separately pre-
trained with different networks or datasets, both the semantics
and dimensions of their outputs are not well-aligned. We intro-
duce the following strategy to overcome this issue. Specifically, let
𝑀𝑖 (·), 𝑀uni (·) be the output of 𝑖-th GM and He-UniGM respectively,
we minimize the following ℓ2 objective to align their feature space,

∥𝑅𝜔 (𝑀uni (x;𝜃uni)) −𝑀𝑖 (x;𝜃𝑖 )∥22 , (4)

where 𝑅𝜔 (·) is a linear transformation parameterized by 𝜔 . Differ-
ent from homogeneous settings, the parameters 𝜃uni of the unified
model are initialized randomly and updated with the following
aggregation module.
Aggregation Module. Considering that diverse GMs contribute
unequally to the downstream task, we introduce a learnable param-
eter 𝜆𝑖 to automatically decide the importance of GM 𝑀𝑖 . We set
𝜆𝑖 = 𝑓 𝑖

𝜙
(𝑀𝑖 (x;𝜃𝑖 )) in order to model the importance of 𝑀𝑖 condi-

tioned on the input x, where 𝑓 𝑖
𝜙
(·) is a light meta-learner (1-layer

fully-connected network in practice) parameterized by 𝜙 . We can
then formulate the loss of aggregation as,

Lagg = E(x,y)∼D

𝑛∑︁
𝑖=1

𝜆𝑖 ∥𝑅𝜔 (𝑀uni (x;𝜃uni)) −𝑀𝑖 (x;𝜃𝑖 )∥22 , (5)

where 𝑛 is the number of GMs. And then, the optimization objective
of He-UniGM is,

Lhe = Ltask + 𝛼 ∗ Lagg, (6)

where 𝛼 is a hyper-parameter and Ltask is the loss of downstream
task,

Ltask = E(x,y)∼Dℓ (𝑀uni (x;𝜃uni) , y) . (7)

Then, we utilize 𝜑 to denote both the parameters of linear trans-
formation 𝜔 and unified model 𝜃uni for convenience. We can solve
above problem with following bilevel scheme [2, 12, 21],

min
𝜙

Ltask (𝜑∗) , s.t. 𝜑∗ = argmin𝜑 Lhe (𝜑, 𝜙) . (8)

In practice, we can choose gradient descent (GD) to approximately
solve the inner optimization,

𝜑𝑡+1 = 𝜑𝑡 − 𝛽∇𝜑Lhe (𝜑𝑡 , 𝜙) , (9)

where 𝛽 is the learning rate. Now we consider solving the outer
optimization with gradient-based methods. The prerequisite is the
gradients of Ltask w.r.t 𝜙 . Let 𝜑𝑇 is the approximate optimal solu-
tion obtained with 𝑇 steps GD in Eq.(9), we can then re-write the
gradients as,

∇𝜙Ltask (𝜑𝑇 ) = ∇𝜑Ltask (𝜑𝑇 )∇𝜙𝜑𝑇 , (10)

where the gradient ∇𝜙𝜑𝑇 can be computed by unrolling the dynam-
ics of the inner loop from 𝜑𝑇 to 𝜑0. In the forward computation,
successive parameters 𝜑0, · · · , 𝜑𝑇 are cached. In the backward call,
the cached parameters are used to compute gradients in a series of
vector-jacobian products. During the reverse computation, the gra-
dient starting from the ∇𝜙𝜑𝑇 can be propagated to the intermediate
parameters 𝜑𝑡 through ∇𝜑𝑡

𝜑𝑡+1:

∇𝜑𝑡
𝜑𝑡+1 = 1 − 𝛽∇2

𝜑𝑡
Lhe (𝜑𝑡 ) , 𝑡 ∈ {0, . . . ,𝑇 − 1}, (11)

where ∇2
𝜑𝑡

is the Hessian. We can then obtain the gradients Ltask

w.r.t 𝜙 with,

∇𝜙Ltask (𝜑𝑇 ) = ∇𝜑Ltask (𝜑𝑇 )
0∑︁

𝑡=𝑇−1

[
∇𝜑𝑡+1𝜑𝑇

]
∇𝜙𝜑𝑡+1

= −𝛽∇𝜑Ltask (𝜑𝑇 )
0∑︁

𝑡=𝑇−1

[
∇𝜑𝑡+1𝜑𝑇

]
∇𝜙

(
∇𝜑𝑡

Lhe (𝜑𝑡 , 𝜙)
)
,

(12)

where ∇𝜑𝑡+1𝜑𝑇 can be iteratively derived with Eq. (11). Kindly
note that the bilevel optimization can be done efficiently with Py-
Torch [33] because (1) 𝜑 only includes the parameters of the linear
transformation and the unified model; (2) 𝑇 = 2 is enough in our
experiments. Compared with the ensemble, He-UniGM is computa-
tionally cheaper because (1) the parameters of multiple GMs are
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frozen during the training stage; (2) He-UniGMonly uses the unified
model (one model) for inference.

4 EXPERIMENTS
4.1 Experimental Settings and Baselines.
Following previous works on the topic of pre-training GNNs [18,
30], we evaluate UniGM on 3 downstream tasks from 3 domains:
molecular property prediction in chemistry, protein function pre-
diction in biology, and research field prediction in the bibliography.

For the first task, we adopt the 8 binary classification datasets
contained in MoleculeNet [50]. For the second task, we use protein-
protein interaction (PPI) networks consisting of 88K proteins from
8 different species, where the subgraphs centered at a protein of
interest (i.e., ego-networks) are used to predict their biological func-
tions. The task is to predict 40 fine-grained biological functions
corresponding to 40 binary classification tasks. For the third task,
we predict the research field with 299,447 labeled subgraphs from 6
different categories. We randomly split the downstream data and
evaluate test performance with micro-averaged F1 score. Addition-
ally, we evaluate UniGM on more downstream tasks in the experi-
ments. For homogeneous UniGM, we unify recent open-sourced
GMs including GraphCL, MGSSL, SimGRACE, and GraphMVP in
chemistry and Infomax, EdgePred, ContextPred, AttrMask for both
the biology and bibliography domains. For heterogeneous GMs in
chemistry, we first pre-train different GNNs with the pre-training
tasks proposed in the above works. And then, we integrate the ob-
tained GMs into a unified one with He-UniGM. For single GM, we
report the results of baselines in Table 1. Additionally, we consider
several alternatives that can also utilize multiple GMs. Specifically,
‘Vanilla Average’ refers to we use the average of the weights of GMs
to initialize a newmodel for prediction. ‘Concatenation’ denotes the
baselines that we take the graph embeddings from the pre-trained
models, concatenate them, and pass them into a single linear layer
to finetune w.r.t the downstream task.

For model fusion, we adopt the most advanced method OTFu-
sion [38] so far. For homogeneous GMs, we set the learning rate
as 1 × 10−3. The hidden size of RNN in RAPNet is set as 8 and the
number of layers is 2.Note that we only aggregate the fully-connected
layers of GNNs. The embedding layers and the batch normalization
layers of each GM are not integrated into a unified one. For hetero-
geneous settings, we unify heterogeneous GMs with diverse GNN
architectures. We provide the details of these heterogeneous GMs
in the appendix. For the chemistry and biology domains, we adopt
a 5-layer Graph Isomorphism Networks (GINs) [54] whose hidden
dimension is 300 as the backbone architecture, which is one of the
most expressive GNNs. In the fine-tuning stage, we use a batch size
of 32 and dropout rate of 50%. On the molecular property prediction
datasets, we train models for 100 epochs, while on the protein func-
tion prediction dataset (with the 40 binary prediction tasks), we
train models for 50 epochs. All the above models are trained with
Adam optimizer with a learning rate of 0.001 and we evaluate test
performance on downstream tasks using ROC-AUC. For bibliogra-
phy domain, we train the pre-trained GNNs with Adam optimizer
with a learning rate of 0.001 and batch size as 32 for 50 epochs.
In all the 3 domains, the split for train/validation/test sets is 80% :
10% : 10%. We use ADAM optimizer for training the meta-networks

with a learning rate of 1 × 10−3. Additionally, we set the steps of
inner optimization as 2 (i.e., 𝑇 = 2). Hyper-parameter 𝛼 is picked
from {0.1, 0.2, 0.5, 0.8} with the validation set. All experiments are
conducted on Tesla V100 GPUs. More details can be found in the
appendix.

4.2 Results and Analysis.
Table 1, Table 2, and Table 3 document the main results in terms of
accuracy. Table 4 and Table 5 compare the computational efficiency,
from which we make the following observations (Obs):
Obs 1. Variants of UniGM achieve notable improvements over every
single model. However, they inevitably introduce extra computa-
tional costs. We compare the memory consumption in the appendix.
Obs 2. Variants of UniGM achieve better performance while en-
joying higher efficiency than ensemble in most cases. Although
model fusion is more efficient than UniGM, its performance is
unsatisfactory and even sometimes inferior to the single model.
Moreover, model fusion cannot work in heterogeneous settings.
Overall, UniGM achieves better performance with moderate com-
putational budgets.
Obs 3. UniGM-F performs better than UniGM-T in datasets with
smaller scales while the latter is superior in larger-scale datasets.
This phenomenon coincides with the observations of a recent
work [52]: the over-parameterizedmodels tend to overfit the limited
labeled graphs. UniGM-T with more learnable parameters is more
likely to overfit the small-scale datasets. To support these claims,
we plot the training and testing accuracy curves in the appendix.

4.3 Case Study
In this section, we study whether UniGM can possess the special-
ized abilities of the GMs it is composed of. We adopt two tasks:
3D Diameter Prediction [28] and Atom Type Prediction [18]. The
former means using 2D molecular graph to predict the 3D diameter,
which is challenging with respect to the 2D topology but straightfor-
ward using 3D geometry because the 2D and 3D landscapes of some
molecules are considerably different (Figure 4). The latter means
predicting atoms’ type. As shown in Figure 4, GraphMVP [28] per-
forms the best in 3D Diameter Prediction because it can capture the
3D geometry. Analogously, AttrMask [18] is better at Atom Type
Prediction. UniGM composed of GraphMVP and AttrMask pos-
sesses their unique abilities, which verify that UniGM constitutes a
more complete knowledge base.

4.4 Ablation Study
GMs’ diversity. Although UniGM achieves impressive results, it
remains to be explored: What the performance gains can be at-
tributed to? The GMs’ diversity or more learnable parameters? In
Table 6, we substitute diverse GMs in UniGM-T and UniGM-F with
the same one and keep the number of GMs unchanged. ‘4 ×MGSSL’
means that we substitute 4 GMs in UniGM-T or UniGM-F with 4
MGSSL models. In this way, we keep the number of learnable pa-
rameters unchanged while observing the role of GMs’ diversity. We
can draw the following conclusions: (1) More parameters are not
necessarily conducive for downstream tasks. Since most datasets in
experiments are insufficiently labeled, over-parameterized models
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Table 1: Results for molecular property prediction tasks (homogeneous setting). We report the mean (and standard deviation)
ROC-AUC of 10 seedswith scaffold splitting. The best results and the second best are highlightedwith bold and bold, respectively.
We also highlight the performance of the GMs that UniGM contains with the gray background. ‘No pretrain’ means training
from scratch. The original papers marked with ‘♦’ did not follow the standard fine-tuning settings, which we elaborate on in the
appendix. For fairness, we reproduce their fine-tuning results following the settings of the pioneering work [18]. Considering
that the std is relatively large on small-scale molecular datasets, we highlight the results that outperform the best baselines
with ≥ 0.5 std / ≥ 2 std with ‘★’ and ‘+’ respectively to show how statistically significant the improvement is.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

# graphs 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -

No pretrain 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

InfoGraph [41] 73.3 (0.6) 61.8 (0.4) 58.7 (0.6) 75.4 (4.3) 74.4 (1.8) 74.2 (0.9) 68.7 (0.6) 74.3 (2.6) 70.10
EdgePred [18] 76.0 (0.6) 62.8 (0.6) 60.4 (0.7) 64.1 (3.7) 75.1 (1.2) 76.3 (1.0) 67.3 (2.4) 77.3 (3.5) 70.08
AttrMasking [18] 75.1 (0.9) 63.3 (0.6) 60.5 (0.9) 73.5 (4.3) 75.8 (1.0) 75.3 (1.5) 65.2 (1.4) 77.8 (1.8) 70.81
GPT-GNN [19] 74.9 (0.3) 62.5 (0.4) 58.1 (0.3) 58.3 (5.2) 75.9 (2.3) 65.2 (2.1) 64.5 (1.4) 77.9 (3.2) 68.45
ContextPred [18] 73.9(0.5) 62.8(0.3) 59.9(1.6) 74.3(3.2) 72.4(1.8) 75.6(1.0) 70.8(1.4) 78.5(1.3) 71.03
GraphLoG♦ [55] 75.0(0.6) 63.4(0.6) 59.6(1.9) 75.7(2.4) 75.5(1.6) 76.1(0.8) 68.7(1.6) 78.6(1.0) 71.56
G-Contextual [35] 75.3(0.4) 62.4(0.5) 58.5(1.1) 60.3(4.8) 72.3(0.9) 76.5(1.3) 69.7(1.8) 78.2(1.2) 69.33
G-Motif [35] 73.2(0.6) 62.0(0.8) 61.1(1.2) 77.5(2.5) 73.4(1.6) 73.3(1.5) 66.6(2.6) 73.3 (3.1) 70.05
AD-GCL [43] 74.6(0.2) 63.6(0.4) 61.4(0.8) 76.3 (2.4) 72.4(1.5) 75.8(1.0) 69.5 (0.6) 75.5(1.2) 71.14
KCL [11] 74.5(0.3) 62.7(0.7) 59.6(0.9) 65.5(5.5) 73.4(2.6) 75.7(0.6) 65.0(1.1) 74.0 (1.5) 68.80
GraphMAE♦ [17] 75.2(0.9) 63.6(0.3) 60.5(1.2) 76.5(3.0) 76.4(2.0) 76.8(0.6) 71.2(1.0) 78.2(1.5) 72.30
D-SLA♦ [23] 75.3(0.4) 63.2(0.3) 60.8(1.2) 76.6(2.8) 76.2(1.5) 76.6(1.4) 69.8(0.8) 78.3(1.4) 72.10
JOAO [57] 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 66.6 (3.1) 76.6 (1.7) 76.9 (0.7) 66.4 (1.0) 73.2 (1.6) 69.71
SimGRACE [51] 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.0 (1.1) 74.9 (2.0) 71.15
GraphCL [58] 75.1 (0.7) 63.0 (0.4) 59.8 (1.3) 77.5 (3.8) 76.4 (0.4) 75.1 (0.7) 67.8 (2.4) 74.6 (2.1) 71.16
MGSSL [61] 75.2(0.6) 63.3(0.5) 61.6(1.0) 77.1(4.5) 77.6(0.4) 75.8(0.4) 68.8(0.6) 78.8(0.9) 72.28
GraphMVP [28] 75.9(0.5) 63.1(0.2) 60.2(1.1) 79.1(2.8) 77.7(0.6) 76.0(0.1) 70.8(0.5) 79.3(1.5) 72.76

Vanilla Average 73.8(1.0) 60.2(0.7) 58.5(1.3) 57.0(5.2) 71.5(0.9) 75.2(1.7) 65.6(1.1) 70.9(1.8) 66.59
Concatenation 75.5(0.7) 62.7(1.0) 62.8(0.9) 77.8(3.5) 76.3(0.6) 75.7(1.3) 70.3(0.7) 77.9(1.1) 72.38
Ensemble 76.1(0.1) 64.3(0.2) 63.1(1.0) 78.2(1.5) 77.8(0.2) 77.1(0.3) 71.4(0.5) 77.6(0.8) 73.20
Model Fusion 75.7(0.3) 63.0(0.1) 60.7(0.7) 77.4(2.1) 77.3(0.2) 75.8(0.5) 70.4(0.5) 76.3(1.0) 72.08

UniGM-F (RNN) 77.2+(0.4) 64.9+(0.5) 64.6★(0.9) 80.3★(1.8) 78.9+(1.1) 77.6★ (0.8) 71.3(0.5) 80.4★(1.4) 74.40
UniGM-T (RNN) 78.0+(0.5) 65.3+(0.3) 64.2★(1.3) 79.5★(2.7) 79.7+(0.7) 78.2+(1.0) 71.9★(0.9) 81.3★(1.2) 74.78

will over-fit the scarce samples; (2) The performance gains can be at-
tributed to GMs’ diversity because UniGM outperforms ‘4×MGSSL’
by large margins.

The number of GMs.We also study the influence of the number
of GMs by sequentially adding the following six GMs: EdgePred,
InfoGraph, SimGRACE, GraphCL, GraphMVP, and MGSSL. We con-
duct experiments on Toxcast dataset. ‘Best single model’ refers to
the GM whose performance is the best in the models’ pool. As
shown in Table 7, UniGM consistently outperforms the best single
model. Additionally, UniGM performs better with more GMs. How-
ever, the memory consumption which increases with the number
of GMs linearly will limit the practical applications.

Alignment, aggregation module, and RAPNet. For the align-
ment module of UniGM, we remove it and observe performance
drops in Table 8. Additionally, we substitute RAPNet with an MLP-
based policy network. Specifically, the MLP takes the output of the
last layer as input and outputs the aggregation policy followed by
softmax function. Also, we try various RNNs for RAPNet. RAPNet
with RNNs outperforms MLP-based policy networks, verifying that
modeling the dependency between different layers is necessary and
conducive. Secondly, RAPNet with RNN performs better than LSTM
and Gated Recurrent Unit (GRU) in general. For both UniGM and
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Table 2: Results for heterogeneous GMs. Model fusion and vanilla average cannot work in this setting.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

GraphCL (6-layer GCN) 74.2(0.6) 61.5(0.7) 61.3(1.7) 75.0(3.6) 76.3(0.9) 74.6(0.7) 65.6(2.1) 71.2(3.9) 70.01
GraphMVP (3-layer GIN) 72.6(0.4) 60.2(0.4) 58.3(1.1) 63.6(3.6) 72.1(1.1) 74.2(0.6) 64.1(1.5) 65.7(2.2) 66.35
SimGRACE (5-layer GIN) 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.0 (1.1) 74.9 (2.0) 71.15
MGSSL (4-layer GraphSAGE) 73.8(0.5) 61.8(0.3) 59.1(1.5) 66.2(4.2) 76.2(1.2) 73.6(0.5) 68.6(1.2) 72.6(2.1) 68.99

Concatenation 75.0(0.4) 61.6(0.7) 61.9 (1.0) 75.0(4.2) 77.5(0.6) 75.4(0.9) 71.0(1.5) 74.8(2.0) 71.53
Ensemble 75.3(0.2) 62.9(0.2) 62.5(1.4) 76.6(4.1) 77.3(0.3) 76.0(0.4) 70.3(0.3) 75.4(1.7) 72.04

He-UniGM (5-layer GIN) 76.7+(0.7) 63.8+(0.5) 63.6★(0.7) 75.4(2.5) 78.5+(1.2) 77.6+(0.8) 71.6+(1.2) 77.5★(1.4) 73.08

Table 3: Results for protein function prediction and research field prediction.

Methods No pre-train Infomax EdgePred ContextPred AttrMask Concatenation Model Fusion Ensemble UniGM-F UniGM-T

Protein function prediction 64.8(1.0) 64.1(1.5) 65.7(1.3) 65.2(1.6) 64.4(1.3) 66.1(0.9) 64.9(1.7) 66.4(0.8) 68.1(1.2) 68.6(1.4)
Research field prediction 69.01(0.23) 69.54(0.08) 69.43(0.07) 69.37 (0.21) 68.61(0.16) 69.91(0.25) 68.14(0.09) 70.21(0.11) 71.69(0.20) 72.85(0.17)
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Figure 4: Left: An example of 3D Diameter Prediction task in [28]. Right: The performance of GraphMVP, AttrMask and UniGM
in the two tasks. UniGM acquire the specialized abilities of AttrMask and GraphMVP.

Table 4: Comparisons of training and inference time on the
same device in the homogeneous setting.

Methods ToxCast Sider
Training Inference Training Inference

Single GM 368.3 s 102.8 s 88.1 s 37.6 s
Model Fusion 531.2 s 115.5 s 120.8 s 39.9 s
Ensemble 1536.7 s 442.8 s 370.1 s 135.4 s
UniGM-T 981.2 s 211.7 s 215.6 s 64.8 s
UniGM-F 778.4 s 195.6 s 176.5 s 56.5 s

He-UniGM, we replace the adaptive aggregation with vanilla aver-
age and random aggregation. The results indicate that the learned
importance of each GM is meaningful.

4.5 Results for Pre-trained Models in Multiple
Modalities

As we mentioned in the main text, our approaches are not limited
to GNNs scenarios but could be flexibly applied to various scenarios

Table 5: Comparisons of training and inference time on the
same device in the heterogeneous setting.

Methods ToxCast Sider
Training Inference Training Inference

GraphCL (6-layer GCN) 415.9 s 116.8 s 95.4 s 46.3 s
GraphMVP (3-layer GIN) 222.6 s 64.5 s 54.6 s 25.8 s
SimGRACE (5-layer GIN) 368.3 s 102.8 s 88.1 s 37.6 s
MGSSL (4-layer GraphSAGE) 235.7 s 68.9 s 61.8 s 29.3 s

Ensemble 1482.5 s 361.2 s 329.7 s 151.8 s

He-UniGM 916.6 s 98.5 s 205.7 s 36.3 s

Table 6: The influence of GMs’ diversity for UniGM.

Methods 4 × MGSSL
(UniGM-T)

4 ×MGSSL
(UniGM-F) UniGM-F UniGM-T

Sider 62.0(0.9) 61.5(1.3) 64.6(0.9) 64.2(1.3)
Toxcast 63.1(0.8) 63.0(0.1) 64.9(0.5) 65.3(0.3)
Tox21 76.6(0.1) 75.8(0.5) 77.2(0.4) 78.0(0.5)
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Table 7: The influence of the number of GMs.

Num. of GMs 2 3 4 5 6

Best single model 62.8(0.6) 62.8(0.6) 63.0(0.4) 63.1(0.2) 63.3(0.5)
UniGM-F 63.3(0.5) 64.2(0.2) 64.5(0.3) 64.0(0.6) 64.5(1.1)
UniGM-T 63.7(0.1) 64.8(0.5) 65.3(0.3) 65.9(0.5) 65.5(0.7)

Table 8: Ablations on alignment, RAPNet of UniGM, and the
aggregation of He-UniGM.

Methods Tox21 Toxcast Sider

UniGM-T w/o alignment 75.4(1.0) 63.8(0.1) 61.5(2.1)
UniGM-T with MLP 76.7(0.2) 63.6(0.7) 63.0(1.5)
UniGM-T with GRU 77.2(0.2) 64.5(0.5) 62.9(0.7)
UniGM-T with LSTM 77.7(0.6) 64.8(0.3) 63.8(1.0)
UniGM-T (Vanilla average) 76.6(1.0) 63.0(0.7) 62.1(1.2)
UniGM-T (Random aggregation) 76.4(0.8) 63.5(0.9) 62.6(0.6)
UniGM-T 78.0(0.5) 65.3(0.3) 64.2(1.3)

UniGM-F w/o alignment 75.1(0.7) 63.6(1.1) 61.7(1.3)
UniGM-F with MLP 75.9(0.7) 63.4(0.9) 63.5(0.9)
UniGM-F with GRU 76.5(0.6) 63.8(0.1) 64.1(0.7)
UniGM-F with LSTM 77.5(0.8) 64.3(0.4) 64.3(1.1)
UniGM-F (Vanilla average) 75.6(1.3) 63.2(0.5) 62.4(1.5)
UniGM-F (Random aggregation) 75.4(1.1) 63.0(0.7) 62.0(1.6)
UniGM-F 77.2 (0.4) 64.9(0.5) 64.6(0.9)

He-UniGM (Vanilla average) 75.8(0.1) 62.2(0.6) 62.8(1.6)
He-UniGM (Random aggregation) 75.4(0.7) 62.5(0.3) 62.5(1.1)
He-UniGM 76.7(0.7) 63.8(0.5) 63.6(0.7)

Table 9: UniGM for pre-trained vision models (top-1 accu-
racy).

Models CIFAR-100 COCO-70
ImageNet Supervised 81.18 81.97
MOCO 75.31 75.66
Mask R-CNN 79.12 81.64
DeepLabV3 78.76 80.70
Keypoint R-CNN 76.38 76.53

Model Fusion 80.77 81.74
Ensemble 82.18 82.42

UniGM-F 83.56 83.86
UniGM-T 83.83 84.69

Table 10: UniGM for pre-trained language models.

Models SST-2 (Acc.) RTE (Acc.)
BERT 92.1 65.8
RoBERTa 92.9 68.9
UniLM 93.3 70.6

Model Fusion 93.5 71.9
Ensemble 93.8 72.7

UniGM-F 94.2 74.8
UniGM-T 94.6 75.7

such as in NLP or computer vision (CV). In this section, we unify the

pre-trained models in CV and NLP. For pre-trained vision models,
we unify 5 representative pre-trained vision models: (1) Supervised
pre-trained models on ImageNet [36]; (2) Unsupervised pre-trained
models with MOCO [15] on ImageNet; (3) Mask R-CNN [16] model
for detection and instance segmentation; (4) DeepLabV3 [5] model
for semantic segmentation; (5) Keypoint R-CNNmodel for keypoint
detection, pre-trained on COCO-2017 challenge datasets of each
task. All these pre-trained models are from torchvision or original
implementation. For pre-trained language models, we combine
BERT [7], RoBERTa [29] and UniLM [8]. We conduct experiments
on two text datasets with different sizes. The first one is SST-2 [39],
which is a benchmark for text sentiment classification. The second
one is RTE [3], which is a widely used dataset for natural language
inference. The results can be seen in Table 9 and Table 10, from
which we can observe that UniGM consistently outperforms each
single model and competitive baselines including ensemble and
model fusion. Compared with the graph domain, the superiority of
UniGM in CV or NLP domains is even more pronounced.

4.6 Visualization Analysis
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Figure 5: Visualization of the learned aggregation policy.

We visualize the learned aggregation policy for diverse GMs on
Toxcast dataset in Figure 5. As can be observed, the policies vary
significantly across different GMs and layers, which coincides with
previous literatures that claim different pre-trained models have
different relations to the downstream tasks and different layers
can capture different knowledge [24, 60]. Concretely, GMs such
as GraphMVP and MGSSL that introduce external knowledge out-
weigh the contrastive GMs including SimGRACE and GraphCL.
Additionally, the higher layer of SimGRACE and GraphCL are gen-
erally more important for downstream tasks.

5 CONCLUSION
In this paper, we make one of the first attempts to unify multi-
ple pre-trained GMs for better performance in downstream tasks.
Specifically, we propose UniGM whose variants can integrate both
homogeneous and heterogeneous pre-trained models into a uni-
fied one in an effective and efficient manner. The empirical results
suggest that UniGM can achieve better performance in various
downstream tasks. Currently, tremendous efforts are devoted to
designing pre-training strategies for multiple modalities. Despite
the fruitful progress, exploring more effective and efficient ways to
leverage pre-trained models warrant further research in the future.
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