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1 DATASET
1.1 Details of Molecular Datasets
In this section, we provide the detailed information of the molecular
datasets used for downstream tasks.
Molecular Property: Pharmacology The Blood-Brain Barrier
Penetration (BBBP) [23] dataset measures whether a molecule will
penetrate the central nervous system. All three datasets, Tox21 [1],
ToxCast [35], and ClinTox [9] are related to the toxicity of molecular
compounds. The Side Effect Resource (SIDER) [19] dataset stores
the adverse drug reactions on a marketed drug database.
Molecular Property: Physical Chemistry Dataset proposed
in [6] measures aqueous solubility of the molecular compounds.
Lipophilicity (Lipo) dataset is a subset of ChEMBL [8] measuring
the molecule octanol/water distribution coefficient. CEP dataset
is a subset of the Havard Clean Energy Project (CEP) [11], which
estimates the organic photovoltaic efficiency.
Molecular Property: Biophysics Maximum Unbiased Valida-
tion (MUV) [29] is another sub-database from PCBA, and is obtained
by applying a refined nearest neighbor analysis. HIV is from the
Drug Therapeutics Program (DTP) AIDS Antiviral Screen [38], and
it aims at predicting inhibit HIV replication. BACE measures the
binding results for a set of inhibitors of 𝛽-secretase 1 (BACE-1) and
is gathered in MoleculeNet [35]. Malaria [7] measures the drug
efficacy against the parasite that causes malaria.
Drug-Target Affinity Davis [5] measures the binding affinities
between kinase inhibitors and kinases, scored by the 𝐾𝑑 value (ki-
nase dissociation constant). KIBA [31] contains binding affinities
for kinase inhibitors from different sources, including 𝐾𝑖 , 𝐾𝑑 and
IC50. KIBA scores [26] are constructed to optimize the consistency
among these values.
Input graph representation. For simplicity, we use a minimal
set of node and bond features that unambiguously describe the two-
dimensional structure of molecules following previous works [14].
We use RDKit [20] to obtain these features.

• Node features:
– Atom number: 1 ∼ 118
– Chirality tag:

{unspecified, tetrahedral cw, tetrahedral ccw, other}
• Edge features:
– Bond type: {single, double, triple, aromatic}
– Bond direction: {−, endupright, enddownright}

1.2 Details of Protein Datasets
Input graph representation. The protein subgraphs only have
edge features.

• Edge features:
– Neighbourhood: {True, False}
– Fusion: {True, False}
– Co-occurrence: {True, False}

– Co-expression: {True, False}
– Experiment: {True, False}
– Database: {True, False}
– Text: {True, False}

These edge features indicate whether a particular type of rela-
tionship exists between a pair of proteins:

• Neighbourhood: if a pair of genes are consistently observed
in each other’s genome neighbourhood

• Fusion: if a pair of proteins have their respective orthologs
fused into a single protein-coding gene in another organism

• Co-occurrence: if a pair of proteins tend to be observed either
as present or absent in the same subset of organisms

• Co-expression: if a pair of proteins share similar expression
patterns

• Experiment: if a pair of proteins are experimentally observed
to physically interact with each other

• Database: if a pair of proteins belong to the same pathway,
based on assessments by a human curator

• Text mining: if a pair of proteins are mentioned together in
PubMed abstracts

Datasets. A dataset containing protein subgraphs from 50 species
is used [39]. The original PPI networks do not have node attributes,
but contain edge attributes that correspond to the degree of con-
fidence for 7 different types of protein-protein relationships. The
edge weights range from 0, which indicates no evidence for the
specific relationship, to 1000, which indicates the highest confi-
dence. The weighted edges of the PPI networks are thresholded
such that the distribution of edge types across the 50 PPI networks
are uniform. Then, for every node in the PPI networks, subgraphs
centered on each node were generated by: (1) performing a breadth
first search to select the subgraph nodes, with a search depth limit
of 2 and a maximum number of 10 neighbors randomly expanded
per node, (2) including the selected subgraph nodes and all the
edges between those nodes to form the resulting subgraph.

The entire dataset contains 394,925 protein subgraphs derived
from 50 species. Out of these 50 species, 8 species (arabidopsis,
celegans, ecoli, fly, human, mouse, yeast, zebrafish) have proteins
with GO protein annotations. The dataset contains 88,000 protein
subgraphs from these 8 species, of which 57,448 proteins have
at least one positive coarse-grained GO protein annotation and
22,876 proteins have at least one positive fine-grained GO protein
annotation. For the self-supervised pre-training dataset, we use all
394,925 protein subgraphs.

We define fine-grained protein functions as Gene Ontology (GO)
annotations that are leaves in the GO hierarchy, and define coarse-
grained protein functions as GO annotations that are the immediate
parents of leaves [2, 4]. For example, a fine-grained protein func-
tion is “Factor XII activation”, while a coarse-grained function is
“positive regulation of protein”. The former is a specific type of the
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Table 1: Summary for the molecule datasets for downstream tasks.

Dataset Task # Tasks # Molecules # Proteins # Molecule-Protein

BBBP Classification 1 2,039 − −
Tox21 Classification 12 7,831 − −
ToxCast Classification 617 8,576 − −
Sider Classification 27 1,427 − −
ClinTox Classification 2 1,478 − −
MUV Classification 17 93,087 − −
HIV Classification 1 41,127 − −
Bace Classification 1 1,513 − −

Delaney Regression 1 1,128 − −
Lipo Regression 1 4,200 − −
Malaria Regression 1 9,999 − −
CEP Regression 1 29,978 − −

Davis Regression 1 68 379 30,056
KIBA Regression 1 2,068 229 118,254

latter, and is much harder to derive experimentally. The GO hier-
archy information is obtained using GOATOOLS [18]. The 40-th
most common fine-grained protein label only has 121 positively
annotated proteins, while the 40-th most common coarse-grained
protein label has 9386 positively annotated proteins. This illustrates
the extreme label scarcity of our downstream tasks.

1.3 Details of Bibliography Datasets
We also adopt PreDBLP, a new compilation of bibliographic graphs.
We derive the new PreDBLP data from AMiner and DBLP. Specif-
ically, PreDBLP contains 1,054,309 paper subgraphs in 31 fields
(e.g., artificial intelligence, data mining). Each subgraph is centered
at a paper and contains the associated information of the paper.
The original Aminer/DBLP contains both the records of each pa-
per and the implicit relations between papers, authors, venues and
keywords. For each paper record in the Aminer/DBLP data, we
generate a subgraph centered on the paper as follows: (1) according
to the citation relationship, we perform a breadth-first search to
select the subgraph nodes, with a search depth limit of 2 and a
maximum number of 10 neighbors randomly expanded per node;
(2) we include the selected paper nodes and all the edges between
those paper nodes into the subgraph; (3) we convert the authors
attached to each paper’s record to nodes as well, and link them to
the paper; (4) we utilize the same procedure as in (3) to incorporate
the information of venues and keyword terms. As a result, each
subgraph compiled contains four types of nodes (i.e., paper, author,
venue and keywords) and edges (i.e., paper-paper, paper-author,
paper-venue, paper-keywords).

We further utilize a set of node and edge features for the sub-
graph. For each subgraph, we set the node/edge features as their
corresponding types. For instance, for nodes 𝑢 and 𝑣 connected via
edge (𝑢, 𝑣), the feature of 𝑢 and 𝑣 are their respective type and that
of edge (𝑢, 𝑣) is the type of (𝑢, 𝑣). During the pre-training process,
we utilize 794,862 subgraphs that belong to 25 research fields to
pre-train a GNN model. On average, each subgraph contains 262.43
nodes and 900.07 edges. In fine-tuning, we predict the research field
of 299,447 labeled subgraphs from the remaining 6 research fields,
including: Artificial intelligence (86,956 subgraphs), Computational

linguistics (20,024 subgraphs), Computer Vision (95,729 subgraphs),
Data mining (14,934 subgraphs), Databases (68,287 subgraphs) and
Fuzzy systems (13,517 subgraphs).

2 DETAILS OF GNN ARCHITECTURES
2.1 Molecular Property Prediction
As we describe in the main text, we use the GIN architecture as
the main encoder. To incorporate edge features, following previous
works [15], we make some minor modifications to include bond
features. Specifically, the raw node features and edge features are
both 2-dimensional categorical vectors, denoted as

(
𝑖𝑣,1, 𝑖𝑣,2

)
and(

𝑗𝑒,1, 𝑗𝑒,2
)
for node 𝑣 and edge 𝑒 , respectively. Note that we also

introduce unique categories to indicate masked nodes/edges as well
as self-loop edges. As input features to GNNs, we first embed the
categorical vectors by

ℎ
(0)
𝑣 = EmbNode1

(
𝑖𝑣,1

)
+ EmbNode2

(
𝑖𝑣,2

)
ℎ
(𝑘 )
𝑒 = EmbEdge(𝑘 )1

(
𝑗𝑒,1

)
+ EmbEdge(𝑘 )2

(
𝑗𝑒,2

)
for

𝑘 = 0, 1, . . . , 𝐾 − 1,

where EmbNode1 (·), EmbNode2 (·), EmbEdge(𝑘 )1 (·), and EmbNode(𝑘 )1 (·)
represent embedding operations that map integer indices to 𝑑-
dimensional real vectors, and 𝑘 represents the index of GNN layers.
At the 𝑘-th layer, GNNs update node representations by

ℎ
(𝑘 )
𝑣 = ReLU(MLP(𝑘 ) (

∑︁
𝑢∈N(𝑣)∪{𝑣}

ℎ
(𝑘−1)
𝑢

+
∑︁

𝑒=(𝑣,𝑢 ) :𝑢∈N(𝑣)∪{𝑣}
ℎ
(𝑘−1)
𝑒 )),

(1)

whereN(𝑣) is a set of nodes adjacent to 𝑣 , and 𝑒 = (𝑣, 𝑣) represents
the self-loop edge. Note that for the final layer, i.e., 𝑘 = 𝐾 , we
removed the ReLU from Eq. (1) so that ℎ (𝑘 )𝑣 can take negative
values. This is crucial for pre-training methods based on the dot
product, e.g., Context Prediction and Edge Prediction, as otherwise,
the dot product between two vectors would be always positive.
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Figure 1: Training (solid lines) and testing (dashed lines) curves of various GMs, UniGM-F, and UniGM-T on ToxCast, Tox21 and
Sider datasets.

The graph-level representation ℎ𝐺 is obtained by averaging the
node embeddings at the final layer, i.e.,

ℎ𝐺 = Mean
({
ℎ
(𝐾 )
𝑣 | 𝑣 ∈ 𝐺

})
. (2)

The label prediction is made by a linear model on top of ℎ𝐺 . In
our experiments, we set the embedding dimension 𝑑 to 300. For
MLPs in Eq. (1), we use the ReLU activation with 600 hidden units.
We apply batch normalization right before the ReLU in Eq. (1) and
apply dropout to ℎ (𝑘 )𝑣 at all the layers except the input layer.

Other GNN architectures. For GCN, GraphSAGE, and GAT, we
adopt the implementation in the Pytorch Geometric library, where
we set the number of GAT attention heads to be 2. The dimension-
ality of node embeddings as well as the number of GNN layers are
kept the same as GIN. These models do not originally handle edge
features. We incorporate edge features into these models similarly
to how we do it for the GIN; we add edge embeddings into node em-
beddings, and perform the GNN message-passing on the obtained
node embeddings.

2.2 Protein Function Prediction
The GNN architecture used for protein function prediction is similar
to the one used for molecular property prediction except for a
few differences. First, the raw input node features are uniform
(denoted as 𝑋 here) and second, the raw input edge features are
binary vectors (see Section 1.2 for the detail), which we denote as
𝑐𝑒 ∈ {0, 1}𝑑0 . As input features to GNNs, we first embed the raw
features by

ℎ
(0)
𝑣 = 𝑋

ℎ
(𝑘 )
𝑒 =𝑊𝑐𝑒 + 𝑏 for 𝑘 = 0, 1, . . . , 𝐾 − 1,

where 𝑊 ∈ R𝑑×𝑑0 and 𝑏 ∈ R𝑑 are learnable parameters, and
ℎ
(0)
𝑣 , ℎ

(𝑘 )
𝑒 ∈ R𝑑 . At each layer, GNNs update node representations

by

ℎ
(𝑘 )
𝑣 = ReLU(MLP(𝑘 ) (CONCAT(

∑︁
𝑢∈N(𝑣)∪{𝑣}

ℎ
(𝑘−1)
𝑢 ,∑︁

𝑒=(𝑣,𝑢 ) :𝑢∈N(𝑣)∪{𝑣}
ℎ
(𝑘−1)
𝑒 ))),

(3)

where CONCAT(·, ·) takes two vectors as input and concatenates
them. Since the downstream task is ego-network classification, we
use the embedding of the center node 𝑣center together with the
embedding of the entire ego-network. More specifically, we obtain
graph-level representation ℎ𝐺 by

ℎ𝐺 = CONCAT
(
MEAN({ℎ (𝐾 )

𝑣 | 𝑣 ∈ 𝐺}), ℎ (𝐾 )
𝑣center

)
. (4)

2.3 Research Field Prediction
In research field prediction, the raw node features are 4-dimensional
one-hot vectors, denoted as x𝑣 ∈ R4 for node 𝑣 . The raw edge
features are 1-dimensional type vector indicting the type of edge,
denoted as z𝑢𝑣 ∈ R1 (see Appendix B for details). As input features
to GNNs, we first embed the feature vectors by

h0𝑣 = Wnode x𝑢 + bnode

h𝑙𝑒𝑢𝑣 = Wedge z𝑢𝑣 + bedge for 𝑙 = 0, 1, . . . , 𝐿 − 1,

where Wnode , 𝑏node ,Wedge and 𝑏edge are learnable parameters.
At each layer, GNNs update node representations by

h𝑙𝑣 =RELU(MLP𝑙 (CONCAT

(
∑︁

𝑢∈N𝑢∪{𝑣}
h𝑙−1𝑢 ,

∑︁
𝑒𝑢𝑣 :𝑢∈N𝑢∪{𝑣}

h𝑙−1𝑒 ))), (5)

where CoNCAT (·) takes two vectors as input and concatenates
them, and N𝑢 is a set of nodes adjacent to node 𝑣 . Note that we re-
move the RELU activation in the final layer so as to output negative
values in h𝑙𝑣 .

With the aggregation and update of node/edge features, we
generate node embeddings at final layer 𝑙 to obtain the graph-level
representation hG :

h𝐺 = MLP
(
MEAN

({
h𝑙𝑣 | 𝑣 ∈ G

}))
,

whereMEAN is themean pooling operation andΩ(·) =MLP(MEAN(·))
is the graph-level pooling calculation.

3 VARIOUS UNIONS OF GMS
In addition to the Unions (GraphCL, GraphMVP, SimGRACE,MGSSL)
of GMs as we used in the experiments, we also try various unions of



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Various Unions of GMs in UniGM-T.

Unions ToxCast Tox21

GraphCL + SimGRACE + JOAO + AD-GCL 76.2(1.0) 63.8(0.9)
Attrmask + GraphLoG + InfoGraph + GPT-GNN 77.8(0.3) 65.1(0.6)
GraphCL + SimGRACE + MGSSL + GraphMVP 78.0(0.8) 65.3(0.3)

GMs in Table 2. The results are reported with UniGM-T. As can be
observed, the union of GMs (GraphCL, SimGRACE, JOAO, AD-GCL)
with similar pre-training tasks (contrastive tasks based on instance
discrimination) is inferior to the union of GMs with diverse tasks.
The union of GMs including MGSSL and GraphMVP that introduce
extra domain knowledge is conducive to the UniGM.

4 BROADER RANGE OF DOWNSTREAM
TASKS

We report the performance of UniGM in regressive property pre-
diction and Drug-target affinity (DTA) tasks in Table 3. DTA is a
crucial task in drug discovery, where we aim to predict the affinity
scores between the molecular drugs and protein targets. We fol-
low the settings of a recent work [25] on DTA which models the
molecular graphs with GNN and target protein (as an amino-acid
sequence) with convolution neural network (CNN). We substitute
the GNN in their approach with pre-trained GNNs. The superior
performance indicates that UniGM canwork well in a broader range
of downstream tasks.

5 CAN HE-UNIGM UNIFY HOMOGENEOUS
MODELS?

In this section, we verify that He-UniGM can also unify homoge-
neous models. As can be seen in Table 5, He-UniGM achieves better
performance than the ensemble. However, He-UniGM underper-
forms in homogeneous settings than UniGM because He-UniGM is
unable to generate layer-dependent aggregation policies.

6 TRAINING AND TESTING CURVES
We plot the training and testing curves of UniGM and single GM
in Figure 1. For small-scale datasets such as Sider, we can observe
that single GM and UniGM-T are prone to over-fit the training data.
UniGM-F can achieve better performance on small-scale datasets
due to the less learnable parameters while UniGM-T performs better
on larger-scale datasets such as ToxCast and Tox21.

7 IMPLEMENTATION OF BASELINES
For baselines, we optimize their parameters empirically under the
guidance of literature. Specifically, we also train the baselines with
Adam optimizer with a learning rate of 0.001 and the shared GINs
architectures. Other baseline parameters either adopt the original
optimal settings or are optimized by the validation set. During the
fine-tuning stage, considering that previous works adopt different
evaluation protocols, we reproduce all the results with the same
protocol as the pioneering work [15] rigorously for fairness. Specif-
ically, we fine-tune the respective publicly available pre-trained
models with 10 random seeds (0-9) following the pioneering work.

8 CLARIFICATIONS ON THE FINE-TUNING
SETTINGS

In this section, we clarify the different fine-tuning settings for
evaluating the pre-trained GNNs. Specifically, the original paper
of GraphLog [37], D-SLA [17], and GraphMAE [13] reported the
performance of the last epoch on chemical datasets with an ad-
vanced learning rate schedule, which results in unfair comparisons
to previous pre-training strategies. For fairness, we reproduce their
performance following the standard fine-tuning settings of the
pioneering work [15] rigorously.

9 GNN ARCHITECTURES OF
HETEROGENEOUS GMS

We show the GNN architectures of heterogeneous GMs used in our
experiments in Table 5.

10 MORE CASE STUDIES

No Pretrain AttrMask EdgePred UniGM92
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Figure 2: Comparisons of AttrMask, EdgePred and UniGM in
Bond Type Prediction and Atom Type Prediction.

In addition to 3D Diameter Prediction and Atom Type Prediction,
we introduce another task: Bond Type Prediction, which means
we predict the bonds’ type based on their neighboring structure.
This task coincides with the pre-training task of EdgePred. We
unify the pre-trained GMs including EdgePred and AttrMask here.
As can be observed in Figure 2, EdgePred is better at Bond Type
Prediction while AttrMask is better at Atom Type Prediction. The
unified model achieves comparable or better performance in the
above two tasks simultaneously, which indicates that UniGM can
obtain the specialized skills or advantages of each GM.

11 COMPARE UNIGMWITH MORE MODEL
FUSION METHODS

We also compare UniGM with more model fusion based methods
in Table 6. The results illustrate that UniGM is superior to a broad
spectrum of methods of this category. Note that there are also some
model fusion based methods that are not reported here due to the
different applicable scenarios or unavailable codes [3, 33].
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Table 3: Results for molecular property prediction and DTA (regression). We report the mean (and standard variance) RMSE
of 3 seeds with scaffold splitting for molecular property prediction, and mean (and standard variance) MSE for 3 seeds with
random splitting on DTA tasks. Both indicators are the less the better. The best performance is highlighted in bold.

Molecular Property Prediction Drug-Target Affinity

Datasets ESOL Lipo Malaria CEP Davis KIBA
No Pre-train 1.178 (0.044) 0.744 (0.007) 1.127 (0.003) 1.254 (0.030) 0.286 (0.006) 0.206 (0.004)
AttMask 1.112 (0.048) 0.730 (0.004) 1.119 (0.014) 1.256 (0.000) 0.291 (0.007) 0.203 (0.003)
ContextPred 1.196 (0.037) 0.702 (0.020) 1.101 (0.015) 1.243 (0.025) 0.279 (0.002) 0.198 (0.004)
JOAO 1.120 (0.019) 0.708 (0.007) 1.145 (0.010) 1.293 (0.003) 0.281 (0.004) 0.196 (0.005)
GraphMVP 1.064 (0.045) 0.691 (0.013) 1.106 (0.013) 1.228 (0.001) 0.274 (0.002) 0.175 (0.001)
Ensemble 1.115 (0.020) 0.685 (0.009) 1.101 (0.013) 1.212 (0.005) 0.265 (0.004) 0.171 (0.006)
UniGM-F 0.997 (0.025) 0.662 (0.015) 1.082 (0.011) 1.198 (0.010) 0.272 (0.001) 0.162 (0.003)
UniGM-T 1.018 (0.032) 0.676 (0.021) 1.075 (0.008) 1.187 (0.008) 0.282 (0.005) 0.151 (0.001)

Table 4: Comparisons in the homogeneous setting.

Methods Tox21 Toxcast

Best single GM 75.9(0.5) 63.4(0.5)
Ensemble 76.6(0.1) 64.1(0.4)
UniGM-F 77.2(0.4) 64.9(0.5)
UniGM-T 78.0(0.5) 65.3(0.3)
He-UniGM 76.8(0.1) 64.5(0.2)

Table 5: GNN architectures of heterogeneous GMs.

GNN Type Number of Layers Dimension of Hidden Units

GraphCL GCN 6 128
GraphMVP GIN 3 256
SimGRACE GIN 5 300
MGSSL GraphSAGE 4 300

Table 6: Comparisons with more model fusion methods.

Methods Tox21 Toxcast

Elastic Weight Consolidation [21] 75.9(0.8) 62.5(0.6)
OT-fusion [30] 75.7(0.3) 63.0(0.1)
UniGM-F 77.2(0.4) 64.9(0.5)
UniGM-T 78.0(0.5) 65.3(0.3)

12 THE NUMBER OF PARAMETERS IN
MOLECULAR TASKS (MEMORY
CONSUMPTION)

In this section, we compare the number of parameters of various
methods during the training and inference stages. As can be ob-
served in Table 7, for the homogeneous setting, the parameters of
UniGM are less than ensemble because (1) the number of atom or
bond embedding layers is the same as the single model in UniGM (2)
the number of parameters in RAPNet can be negligible compared
to the scale of GMs. Additionally, as for the heterogeneous setting
in Table 8, although He-UniGM trains with more parameters than
ensemble, it only uses the unified model (one model) for inference
and thus is more memory-efficient.

Table 7: Comparisons of the number of parameters in the
homogeneous setting.

Methods Training Parameters Inference Parameters

Single GM 1.87 M 1.87 M
Ensemble 7.46 M 7.46 M
UniGM 7.28 M 7.28 M

Table 8: Comparisons of the number of parameters in the
heterogeneous setting.

Methods Training Parameters Inference Parameters

GraphCL (6-layer GCN) 0.13 M 0.13 M
GraphMVP (3-layer GIN) 0.84 M 0.84 M
SimGRACE (5-layer GIN) 1.87 M 1.87 M
MGSSL (4-layer GraphSAGE) 0.42 M 0.42 M
Ensemble 3.26 M 3.26 M
He-UniGM 5.33 M 1.87 M

13 MORE RELATEDWORKS
Transfer learning [27] is a common and effective way to trans-
fer knowledge learned from related tasks to a target task to im-
prove generalization, which have achieved overwhelming success
in CV [22], NLP [28] and graph [36] domains. Multiple strategies
are developed to fully exploit the knowledge in pre-trained models.
For example, in computer vision, SpotTune [10] develops a policy
network to make routing decisions on whether to pass the image
through the fine-tuned layers or the pre-trained layers. In this way,
they address the question of where to fine-tune its parameters
with examples of the target task. For pre-trained language mod-
els, SMART [16] proposes a smoothness-inducing regularization
to prevent over-fitting and trust region-based methods to prevent
knowledge forgetting. To alleviate the issue of catastrophic forget-
ting in graph transfer learning, Han et al. [12] utilize meta-learning
to adaptively select and combine different auxiliary tasks with the
target task in the fine-tuning stage. However, above works focus on
how to transfer knowledge from single pre-trained model. As reme-
dies, recent works aim to evaluate the transferability of pre-trained
models to select the best one before tuning [24, 32]. However, these
strategies still cannot exploit all the pre-trained models. Another
line of works distills knowledge from multiple pre-trained models
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to a new one [34]. Despite the effectiveness, these methods sneed
to pass the input data through all models during training, which
may cause high computation and memory costs. On the other hand,
the distillation process is not conditioned on the input, which may
hurt the performance because all the pre-trained models contribute
unequally to the downstream tasks. To address these issues, we pro-
pose UniGM which can adaptively aggregate various pre-trained
models with less computational budget.
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