
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: UniGM: Unifying Multiple Pre-trained
Graph Models via Adaptive Knowledge Aggregation

Anonymous Authors

1 DATASET
1.1 Details of Molecular Datasets
In this section, we provide the detailed information of the molecular
datasets used for downstream tasks.
Molecular Property: Pharmacology The Blood-Brain Barrier
Penetration (BBBP) [23] dataset measures whether a molecule will
penetrate the central nervous system. All three datasets, Tox21 [1],
ToxCast [35], and ClinTox [9] are related to the toxicity of molecular
compounds. The Side Effect Resource (SIDER) [19] dataset stores
the adverse drug reactions on a marketed drug database.
Molecular Property: Physical Chemistry Dataset proposed
in [6] measures aqueous solubility of the molecular compounds.
Lipophilicity (Lipo) dataset is a subset of ChEMBL [8] measuring
the molecule octanol/water distribution coefficient. CEP dataset
is a subset of the Havard Clean Energy Project (CEP) [11], which
estimates the organic photovoltaic efficiency.
Molecular Property: Biophysics Maximum Unbiased Valida-
tion (MUV) [29] is another sub-database from PCBA, and is obtained
by applying a refined nearest neighbor analysis. HIV is from the
Drug Therapeutics Program (DTP) AIDS Antiviral Screen [38], and
it aims at predicting inhibit HIV replication. BACE measures the
binding results for a set of inhibitors of 𝛽-secretase 1 (BACE-1) and
is gathered in MoleculeNet [35]. Malaria [7] measures the drug
efficacy against the parasite that causes malaria.
Drug-Target Affinity Davis [5] measures the binding affinities
between kinase inhibitors and kinases, scored by the 𝐾𝑑 value (ki-
nase dissociation constant). KIBA [31] contains binding affinities
for kinase inhibitors from different sources, including 𝐾𝑖 , 𝐾𝑑 and
IC50. KIBA scores [26] are constructed to optimize the consistency
among these values.
Input graph representation. For simplicity, we use a minimal
set of node and bond features that unambiguously describe the two-
dimensional structure of molecules following previous works [14].
We use RDKit [20] to obtain these features.

• Node features:
– Atom number: 1 ∼ 118
– Chirality tag:

{unspecified, tetrahedral cw, tetrahedral ccw, other}
• Edge features:
– Bond type: {single, double, triple, aromatic}
– Bond direction: {−, endupright, enddownright}

1.2 Details of Protein Datasets
Input graph representation. The protein subgraphs only have
edge features.

• Edge features:
– Neighbourhood: {True, False}
– Fusion: {True, False}
– Co-occurrence: {True, False}

– Co-expression: {True, False}
– Experiment: {True, False}
– Database: {True, False}
– Text: {True, False}

These edge features indicate whether a particular type of rela-
tionship exists between a pair of proteins:

• Neighbourhood: if a pair of genes are consistently observed
in each other’s genome neighbourhood

• Fusion: if a pair of proteins have their respective orthologs
fused into a single protein-coding gene in another organism

• Co-occurrence: if a pair of proteins tend to be observed either
as present or absent in the same subset of organisms

• Co-expression: if a pair of proteins share similar expression
patterns

• Experiment: if a pair of proteins are experimentally observed
to physically interact with each other

• Database: if a pair of proteins belong to the same pathway,
based on assessments by a human curator

• Text mining: if a pair of proteins are mentioned together in
PubMed abstracts

Datasets. A dataset containing protein subgraphs from 50 species
is used [39]. The original PPI networks do not have node attributes,
but contain edge attributes that correspond to the degree of con-
fidence for 7 different types of protein-protein relationships. The
edge weights range from 0, which indicates no evidence for the
specific relationship, to 1000, which indicates the highest confi-
dence. The weighted edges of the PPI networks are thresholded
such that the distribution of edge types across the 50 PPI networks
are uniform. Then, for every node in the PPI networks, subgraphs
centered on each node were generated by: (1) performing a breadth
first search to select the subgraph nodes, with a search depth limit
of 2 and a maximum number of 10 neighbors randomly expanded
per node, (2) including the selected subgraph nodes and all the
edges between those nodes to form the resulting subgraph.

The entire dataset contains 394,925 protein subgraphs derived
from 50 species. Out of these 50 species, 8 species (arabidopsis,
celegans, ecoli, fly, human, mouse, yeast, zebrafish) have proteins
with GO protein annotations. The dataset contains 88,000 protein
subgraphs from these 8 species, of which 57,448 proteins have
at least one positive coarse-grained GO protein annotation and
22,876 proteins have at least one positive fine-grained GO protein
annotation. For the self-supervised pre-training dataset, we use all
394,925 protein subgraphs.

We define fine-grained protein functions as Gene Ontology (GO)
annotations that are leaves in the GO hierarchy, and define coarse-
grained protein functions as GO annotations that are the immediate
parents of leaves [2, 4]. For example, a fine-grained protein func-
tion is “Factor XII activation”, while a coarse-grained function is
“positive regulation of protein”. The former is a specific type of the



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Summary for the molecule datasets for downstream tasks.

Dataset Task # Tasks # Molecules # Proteins # Molecule-Protein

BBBP Classification 1 2,039 − −
Tox21 Classification 12 7,831 − −
ToxCast Classification 617 8,576 − −
Sider Classification 27 1,427 − −
ClinTox Classification 2 1,478 − −
MUV Classification 17 93,087 − −
HIV Classification 1 41,127 − −
Bace Classification 1 1,513 − −

Delaney Regression 1 1,128 − −
Lipo Regression 1 4,200 − −
Malaria Regression 1 9,999 − −
CEP Regression 1 29,978 − −

Davis Regression 1 68 379 30,056
KIBA Regression 1 2,068 229 118,254

latter, and is much harder to derive experimentally. The GO hier-
archy information is obtained using GOATOOLS [18]. The 40-th
most common fine-grained protein label only has 121 positively
annotated proteins, while the 40-th most common coarse-grained
protein label has 9386 positively annotated proteins. This illustrates
the extreme label scarcity of our downstream tasks.

1.3 Details of Bibliography Datasets
We also adopt PreDBLP, a new compilation of bibliographic graphs.
We derive the new PreDBLP data from AMiner and DBLP. Specif-
ically, PreDBLP contains 1,054,309 paper subgraphs in 31 fields
(e.g., artificial intelligence, data mining). Each subgraph is centered
at a paper and contains the associated information of the paper.
The original Aminer/DBLP contains both the records of each pa-
per and the implicit relations between papers, authors, venues and
keywords. For each paper record in the Aminer/DBLP data, we
generate a subgraph centered on the paper as follows: (1) according
to the citation relationship, we perform a breadth-first search to
select the subgraph nodes, with a search depth limit of 2 and a
maximum number of 10 neighbors randomly expanded per node;
(2) we include the selected paper nodes and all the edges between
those paper nodes into the subgraph; (3) we convert the authors
attached to each paper’s record to nodes as well, and link them to
the paper; (4) we utilize the same procedure as in (3) to incorporate
the information of venues and keyword terms. As a result, each
subgraph compiled contains four types of nodes (i.e., paper, author,
venue and keywords) and edges (i.e., paper-paper, paper-author,
paper-venue, paper-keywords).

We further utilize a set of node and edge features for the sub-
graph. For each subgraph, we set the node/edge features as their
corresponding types. For instance, for nodes 𝑢 and 𝑣 connected via
edge (𝑢, 𝑣), the feature of 𝑢 and 𝑣 are their respective type and that
of edge (𝑢, 𝑣) is the type of (𝑢, 𝑣). During the pre-training process,
we utilize 794,862 subgraphs that belong to 25 research fields to
pre-train a GNN model. On average, each subgraph contains 262.43
nodes and 900.07 edges. In fine-tuning, we predict the research field
of 299,447 labeled subgraphs from the remaining 6 research fields,
including: Artificial intelligence (86,956 subgraphs), Computational

linguistics (20,024 subgraphs), Computer Vision (95,729 subgraphs),
Data mining (14,934 subgraphs), Databases (68,287 subgraphs) and
Fuzzy systems (13,517 subgraphs).

2 DETAILS OF GNN ARCHITECTURES
2.1 Molecular Property Prediction
As we describe in the main text, we use the GIN architecture as
the main encoder. To incorporate edge features, following previous
works [15], we make some minor modifications to include bond
features. Specifically, the raw node features and edge features are
both 2-dimensional categorical vectors, denoted as

(
𝑖𝑣,1, 𝑖𝑣,2

)
and(

𝑗𝑒,1, 𝑗𝑒,2
)
for node 𝑣 and edge 𝑒 , respectively. Note that we also

introduce unique categories to indicate masked nodes/edges as well
as self-loop edges. As input features to GNNs, we first embed the
categorical vectors by

ℎ
(0)
𝑣 = EmbNode1

(
𝑖𝑣,1

)
+ EmbNode2

(
𝑖𝑣,2

)
ℎ
(𝑘 )
𝑒 = EmbEdge(𝑘 )1

(
𝑗𝑒,1

)
+ EmbEdge(𝑘 )2

(
𝑗𝑒,2

)
for

𝑘 = 0, 1, . . . , 𝐾 − 1,

where EmbNode1 (·), EmbNode2 (·), EmbEdge(𝑘 )1 (·), and EmbNode(𝑘 )1 (·)
represent embedding operations that map integer indices to 𝑑-
dimensional real vectors, and 𝑘 represents the index of GNN layers.
At the 𝑘-th layer, GNNs update node representations by

ℎ
(𝑘 )
𝑣 = ReLU(MLP(𝑘 ) (

∑︁
𝑢∈N(𝑣)∪{𝑣}

ℎ
(𝑘−1)
𝑢

+
∑︁

𝑒=(𝑣,𝑢 ) :𝑢∈N(𝑣)∪{𝑣}
ℎ
(𝑘−1)
𝑒 )),

(1)

whereN(𝑣) is a set of nodes adjacent to 𝑣 , and 𝑒 = (𝑣, 𝑣) represents
the self-loop edge. Note that for the final layer, i.e., 𝑘 = 𝐾 , we
removed the ReLU from Eq. (1) so that ℎ (𝑘 )𝑣 can take negative
values. This is crucial for pre-training methods based on the dot
product, e.g., Context Prediction and Edge Prediction, as otherwise,
the dot product between two vectors would be always positive.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

0 20 40 60 80 100
Epoch

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

AU
C-

RO
C

SimGRACE
GraphMVP
MGSSL
GraphCL
UniGM-F
UniGM-T

(a) ToxCast

0 20 40 60 80 100
Epoch

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

AU
C-

RO
C

SimGRACE
GraphMVP
MGSSL
GraphCL
UniGM-F
UniGM-T

(b) Tox21

0 20 40 60 80 100
Epoch

0.5

0.6

0.7

0.8

0.9

AU
C-

RO
C

SimGRACE
GraphMVP
MGSSL
GraphCL
UniGM-F
UniGM-T

(c) Sider

Figure 1: Training (solid lines) and testing (dashed lines) curves of various GMs, UniGM-F, and UniGM-T on ToxCast, Tox21 and
Sider datasets.

The graph-level representation ℎ𝐺 is obtained by averaging the
node embeddings at the final layer, i.e.,

ℎ𝐺 = Mean
({
ℎ
(𝐾 )
𝑣 | 𝑣 ∈ 𝐺

})
. (2)

The label prediction is made by a linear model on top of ℎ𝐺 . In
our experiments, we set the embedding dimension 𝑑 to 300. For
MLPs in Eq. (1), we use the ReLU activation with 600 hidden units.
We apply batch normalization right before the ReLU in Eq. (1) and
apply dropout to ℎ (𝑘 )𝑣 at all the layers except the input layer.

Other GNN architectures. For GCN, GraphSAGE, and GAT, we
adopt the implementation in the Pytorch Geometric library, where
we set the number of GAT attention heads to be 2. The dimension-
ality of node embeddings as well as the number of GNN layers are
kept the same as GIN. These models do not originally handle edge
features. We incorporate edge features into these models similarly
to how we do it for the GIN; we add edge embeddings into node em-
beddings, and perform the GNN message-passing on the obtained
node embeddings.

2.2 Protein Function Prediction
The GNN architecture used for protein function prediction is similar
to the one used for molecular property prediction except for a
few differences. First, the raw input node features are uniform
(denoted as 𝑋 here) and second, the raw input edge features are
binary vectors (see Section 1.2 for the detail), which we denote as
𝑐𝑒 ∈ {0, 1}𝑑0 . As input features to GNNs, we first embed the raw
features by

ℎ
(0)
𝑣 = 𝑋

ℎ
(𝑘 )
𝑒 =𝑊𝑐𝑒 + 𝑏 for 𝑘 = 0, 1, . . . , 𝐾 − 1,

where 𝑊 ∈ R𝑑×𝑑0 and 𝑏 ∈ R𝑑 are learnable parameters, and
ℎ
(0)
𝑣 , ℎ

(𝑘 )
𝑒 ∈ R𝑑 . At each layer, GNNs update node representations

by

ℎ
(𝑘 )
𝑣 = ReLU(MLP(𝑘 ) (CONCAT(

∑︁
𝑢∈N(𝑣)∪{𝑣}

ℎ
(𝑘−1)
𝑢 ,∑︁

𝑒=(𝑣,𝑢 ) :𝑢∈N(𝑣)∪{𝑣}
ℎ
(𝑘−1)
𝑒 ))),

(3)

where CONCAT(·, ·) takes two vectors as input and concatenates
them. Since the downstream task is ego-network classification, we
use the embedding of the center node 𝑣center together with the
embedding of the entire ego-network. More specifically, we obtain
graph-level representation ℎ𝐺 by

ℎ𝐺 = CONCAT
(
MEAN({ℎ (𝐾 )

𝑣 | 𝑣 ∈ 𝐺}), ℎ (𝐾 )
𝑣center

)
. (4)

2.3 Research Field Prediction
In research field prediction, the raw node features are 4-dimensional
one-hot vectors, denoted as x𝑣 ∈ R4 for node 𝑣 . The raw edge
features are 1-dimensional type vector indicting the type of edge,
denoted as z𝑢𝑣 ∈ R1 (see Appendix B for details). As input features
to GNNs, we first embed the feature vectors by

h0𝑣 = Wnode x𝑢 + bnode

h𝑙𝑒𝑢𝑣 = Wedge z𝑢𝑣 + bedge for 𝑙 = 0, 1, . . . , 𝐿 − 1,

where Wnode , 𝑏node ,Wedge and 𝑏edge are learnable parameters.
At each layer, GNNs update node representations by

h𝑙𝑣 =RELU(MLP𝑙 (CONCAT

(
∑︁

𝑢∈N𝑢∪{𝑣}
h𝑙−1𝑢 ,

∑︁
𝑒𝑢𝑣 :𝑢∈N𝑢∪{𝑣}

h𝑙−1𝑒 ))), (5)

where CoNCAT (·) takes two vectors as input and concatenates
them, and N𝑢 is a set of nodes adjacent to node 𝑣 . Note that we re-
move the RELU activation in the final layer so as to output negative
values in h𝑙𝑣 .

With the aggregation and update of node/edge features, we
generate node embeddings at final layer 𝑙 to obtain the graph-level
representation hG :

h𝐺 = MLP
(
MEAN

({
h𝑙𝑣 | 𝑣 ∈ G

}))
,

whereMEAN is themean pooling operation andΩ(·) =MLP(MEAN(·))
is the graph-level pooling calculation.

3 VARIOUS UNIONS OF GMS
In addition to the Unions (GraphCL, GraphMVP, SimGRACE,MGSSL)
of GMs as we used in the experiments, we also try various unions of



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 2: Various Unions of GMs in UniGM-T.

Unions ToxCast Tox21

GraphCL + SimGRACE + JOAO + AD-GCL 76.2(1.0) 63.8(0.9)
Attrmask + GraphLoG + InfoGraph + GPT-GNN 77.8(0.3) 65.1(0.6)
GraphCL + SimGRACE + MGSSL + GraphMVP 78.0(0.8) 65.3(0.3)

GMs in Table 2. The results are reported with UniGM-T. As can be
observed, the union of GMs (GraphCL, SimGRACE, JOAO, AD-GCL)
with similar pre-training tasks (contrastive tasks based on instance
discrimination) is inferior to the union of GMs with diverse tasks.
The union of GMs including MGSSL and GraphMVP that introduce
extra domain knowledge is conducive to the UniGM.

4 BROADER RANGE OF DOWNSTREAM
TASKS

We report the performance of UniGM in regressive property pre-
diction and Drug-target affinity (DTA) tasks in Table 3. DTA is a
crucial task in drug discovery, where we aim to predict the affinity
scores between the molecular drugs and protein targets. We fol-
low the settings of a recent work [25] on DTA which models the
molecular graphs with GNN and target protein (as an amino-acid
sequence) with convolution neural network (CNN). We substitute
the GNN in their approach with pre-trained GNNs. The superior
performance indicates that UniGM canwork well in a broader range
of downstream tasks.

5 CAN HE-UNIGM UNIFY HOMOGENEOUS
MODELS?

In this section, we verify that He-UniGM can also unify homoge-
neous models. As can be seen in Table 5, He-UniGM achieves better
performance than the ensemble. However, He-UniGM underper-
forms in homogeneous settings than UniGM because He-UniGM is
unable to generate layer-dependent aggregation policies.

6 TRAINING AND TESTING CURVES
We plot the training and testing curves of UniGM and single GM
in Figure 1. For small-scale datasets such as Sider, we can observe
that single GM and UniGM-T are prone to over-fit the training data.
UniGM-F can achieve better performance on small-scale datasets
due to the less learnable parameters while UniGM-T performs better
on larger-scale datasets such as ToxCast and Tox21.

7 IMPLEMENTATION OF BASELINES
For baselines, we optimize their parameters empirically under the
guidance of literature. Specifically, we also train the baselines with
Adam optimizer with a learning rate of 0.001 and the shared GINs
architectures. Other baseline parameters either adopt the original
optimal settings or are optimized by the validation set. During the
fine-tuning stage, considering that previous works adopt different
evaluation protocols, we reproduce all the results with the same
protocol as the pioneering work [15] rigorously for fairness. Specif-
ically, we fine-tune the respective publicly available pre-trained
models with 10 random seeds (0-9) following the pioneering work.

8 CLARIFICATIONS ON THE FINE-TUNING
SETTINGS

In this section, we clarify the different fine-tuning settings for
evaluating the pre-trained GNNs. Specifically, the original paper
of GraphLog [37], D-SLA [17], and GraphMAE [13] reported the
performance of the last epoch on chemical datasets with an ad-
vanced learning rate schedule, which results in unfair comparisons
to previous pre-training strategies. For fairness, we reproduce their
performance following the standard fine-tuning settings of the
pioneering work [15] rigorously.

9 GNN ARCHITECTURES OF
HETEROGENEOUS GMS

We show the GNN architectures of heterogeneous GMs used in our
experiments in Table 5.

10 MORE CASE STUDIES

No Pretrain AttrMask EdgePred UniGM92

94

96

98
Ac

cu
ra

cy

50

60

70

80

90

Ac
cu

ra
cy

Atom Type Prediction
Bond Type Prediction

Figure 2: Comparisons of AttrMask, EdgePred and UniGM in
Bond Type Prediction and Atom Type Prediction.

In addition to 3D Diameter Prediction and Atom Type Prediction,
we introduce another task: Bond Type Prediction, which means
we predict the bonds’ type based on their neighboring structure.
This task coincides with the pre-training task of EdgePred. We
unify the pre-trained GMs including EdgePred and AttrMask here.
As can be observed in Figure 2, EdgePred is better at Bond Type
Prediction while AttrMask is better at Atom Type Prediction. The
unified model achieves comparable or better performance in the
above two tasks simultaneously, which indicates that UniGM can
obtain the specialized skills or advantages of each GM.

11 COMPARE UNIGMWITH MORE MODEL
FUSION METHODS

We also compare UniGM with more model fusion based methods
in Table 6. The results illustrate that UniGM is superior to a broad
spectrum of methods of this category. Note that there are also some
model fusion based methods that are not reported here due to the
different applicable scenarios or unavailable codes [3, 33].



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials: UniGM: Unifying Multiple Pre-trained Graph Models via Adaptive Knowledge Aggregation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 3: Results for molecular property prediction and DTA (regression). We report the mean (and standard variance) RMSE
of 3 seeds with scaffold splitting for molecular property prediction, and mean (and standard variance) MSE for 3 seeds with
random splitting on DTA tasks. Both indicators are the less the better. The best performance is highlighted in bold.

Molecular Property Prediction Drug-Target Affinity

Datasets ESOL Lipo Malaria CEP Davis KIBA
No Pre-train 1.178 (0.044) 0.744 (0.007) 1.127 (0.003) 1.254 (0.030) 0.286 (0.006) 0.206 (0.004)
AttMask 1.112 (0.048) 0.730 (0.004) 1.119 (0.014) 1.256 (0.000) 0.291 (0.007) 0.203 (0.003)
ContextPred 1.196 (0.037) 0.702 (0.020) 1.101 (0.015) 1.243 (0.025) 0.279 (0.002) 0.198 (0.004)
JOAO 1.120 (0.019) 0.708 (0.007) 1.145 (0.010) 1.293 (0.003) 0.281 (0.004) 0.196 (0.005)
GraphMVP 1.064 (0.045) 0.691 (0.013) 1.106 (0.013) 1.228 (0.001) 0.274 (0.002) 0.175 (0.001)
Ensemble 1.115 (0.020) 0.685 (0.009) 1.101 (0.013) 1.212 (0.005) 0.265 (0.004) 0.171 (0.006)
UniGM-F 0.997 (0.025) 0.662 (0.015) 1.082 (0.011) 1.198 (0.010) 0.272 (0.001) 0.162 (0.003)
UniGM-T 1.018 (0.032) 0.676 (0.021) 1.075 (0.008) 1.187 (0.008) 0.282 (0.005) 0.151 (0.001)

Table 4: Comparisons in the homogeneous setting.

Methods Tox21 Toxcast

Best single GM 75.9(0.5) 63.4(0.5)
Ensemble 76.6(0.1) 64.1(0.4)
UniGM-F 77.2(0.4) 64.9(0.5)
UniGM-T 78.0(0.5) 65.3(0.3)
He-UniGM 76.8(0.1) 64.5(0.2)

Table 5: GNN architectures of heterogeneous GMs.

GNN Type Number of Layers Dimension of Hidden Units

GraphCL GCN 6 128
GraphMVP GIN 3 256
SimGRACE GIN 5 300
MGSSL GraphSAGE 4 300

Table 6: Comparisons with more model fusion methods.

Methods Tox21 Toxcast

Elastic Weight Consolidation [21] 75.9(0.8) 62.5(0.6)
OT-fusion [30] 75.7(0.3) 63.0(0.1)
UniGM-F 77.2(0.4) 64.9(0.5)
UniGM-T 78.0(0.5) 65.3(0.3)

12 THE NUMBER OF PARAMETERS IN
MOLECULAR TASKS (MEMORY
CONSUMPTION)

In this section, we compare the number of parameters of various
methods during the training and inference stages. As can be ob-
served in Table 7, for the homogeneous setting, the parameters of
UniGM are less than ensemble because (1) the number of atom or
bond embedding layers is the same as the single model in UniGM (2)
the number of parameters in RAPNet can be negligible compared
to the scale of GMs. Additionally, as for the heterogeneous setting
in Table 8, although He-UniGM trains with more parameters than
ensemble, it only uses the unified model (one model) for inference
and thus is more memory-efficient.

Table 7: Comparisons of the number of parameters in the
homogeneous setting.

Methods Training Parameters Inference Parameters

Single GM 1.87 M 1.87 M
Ensemble 7.46 M 7.46 M
UniGM 7.28 M 7.28 M

Table 8: Comparisons of the number of parameters in the
heterogeneous setting.

Methods Training Parameters Inference Parameters

GraphCL (6-layer GCN) 0.13 M 0.13 M
GraphMVP (3-layer GIN) 0.84 M 0.84 M
SimGRACE (5-layer GIN) 1.87 M 1.87 M
MGSSL (4-layer GraphSAGE) 0.42 M 0.42 M
Ensemble 3.26 M 3.26 M
He-UniGM 5.33 M 1.87 M

13 MORE RELATEDWORKS
Transfer learning [27] is a common and effective way to trans-
fer knowledge learned from related tasks to a target task to im-
prove generalization, which have achieved overwhelming success
in CV [22], NLP [28] and graph [36] domains. Multiple strategies
are developed to fully exploit the knowledge in pre-trained models.
For example, in computer vision, SpotTune [10] develops a policy
network to make routing decisions on whether to pass the image
through the fine-tuned layers or the pre-trained layers. In this way,
they address the question of where to fine-tune its parameters
with examples of the target task. For pre-trained language mod-
els, SMART [16] proposes a smoothness-inducing regularization
to prevent over-fitting and trust region-based methods to prevent
knowledge forgetting. To alleviate the issue of catastrophic forget-
ting in graph transfer learning, Han et al. [12] utilize meta-learning
to adaptively select and combine different auxiliary tasks with the
target task in the fine-tuning stage. However, above works focus on
how to transfer knowledge from single pre-trained model. As reme-
dies, recent works aim to evaluate the transferability of pre-trained
models to select the best one before tuning [24, 32]. However, these
strategies still cannot exploit all the pre-trained models. Another
line of works distills knowledge from multiple pre-trained models



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

to a new one [34]. Despite the effectiveness, these methods sneed
to pass the input data through all models during training, which
may cause high computation and memory costs. On the other hand,
the distillation process is not conditioned on the input, which may
hurt the performance because all the pre-trained models contribute
unequally to the downstream tasks. To address these issues, we pro-
pose UniGM which can adaptively aggregate various pre-trained
models with less computational budget.

REFERENCES
[1] 2017. Tox21 challenge. https://tripod.nih.gov/tox21/challenge/ (2017).
[2] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather

Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T
Eppig, et al. 2000. Gene ontology: tool for the unification of biology. Nature
Genetics 25, 1 (2000), 25.

[3] Stephen Ashmore and Michael Gashler. 2015. A method for finding similar-
ity between multi-layer perceptrons by Forward Bipartite Alignment. In 2015
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7.

[4] Gene Ontology Consortium. 2018. The Gene Ontology resource: 20 years and
still GOing strong. Nucleic Acids Research 47, D1 (2018), D330–D338.

[5] Mindy I Davis, Jeremy P Hunt, Sanna Herrgard, Pietro Ciceri, Lisa M Wodicka,
Gabriel Pallares, Michael Hocker, Daniel K Treiber, and Patrick P Zarrinkar. 2011.
Comprehensive analysis of kinase inhibitor selectivity. Nature biotechnology 29,
11 (2011), 1046–1051.

[6] John SDelaney. 2004. ESOL: estimating aqueous solubility directly frommolecular
structure. Journal of chemical information and computer sciences (2004).

[7] Francisco-Javier Gamo, Laura M Sanz, Jaume Vidal, Cristina De Cozar, Emilio
Alvarez, Jose-Luis Lavandera, Dana E Vanderwall, Darren VS Green, Vinod
Kumar, Samiul Hasan, et al. 2010. Thousands of chemical starting points for
antimalarial lead identification. Nature 465, 7296 (2010), 305.

[8] Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne
Hersey, Yvonne Light, ShaunMcGlinchey, David Michalovich, Bissan Al-Lazikani,
et al. 2012. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic
acids research 40, D1 (2012), D1100–D1107.

[9] Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. 2016. A data-driven
approach to predicting successes and failures of clinical trials. Cell chemical
biology (2016).

[10] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen Grauman, Tajana Rosing, and
Rogerio Feris. 2019. Spottune: transfer learning through adaptive fine-tuning. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4805–4814.

[11] Johannes Hachmann, Roberto Olivares-Amaya, Sule Atahan-Evrenk, Carlos
Amador-Bedolla, Roel S Sánchez-Carrera, Aryeh Gold-Parker, Leslie Vogt,
Anna M Brockway, and Alán Aspuru-Guzik. 2011. The Harvard clean energy
project: large-scale computational screening and design of organic photovoltaics
on the world community grid. The Journal of Physical Chemistry Letters 2, 17
(2011), 2241–2251.

[12] Xueting Han and others. 2021. Adaptive Transfer Learning on Graph Neural
Networks. In KDD.

[13] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders.
arXiv e-prints (2022), arXiv–2205.

[14] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In
International Conference on Learning Representations, ICLR.

[15] Weihua Hu, Bowen Liu, and others. 2020. Strategies for Pre-training Graph
Neural Networks. ICLR (2020).

[16] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Tuo Zhao. 2019. Smart: Robust and efficient fine-tuning for pre-trained natural
language models through principled regularized optimization. arXiv preprint
arXiv:1911.03437 (2019).

[17] Dongki Kim, Jinheon Baek, and Sung Ju Hwang. 2022. Graph Self-supervised
Learning with Accurate Discrepancy Learning. In Advances in Neural Informa-
tion Processing Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (Eds.). https://openreview.net/forum?id=JY6fLgR8Yq

[18] DV Klopfenstein, Liangsheng Zhang, Brent S Pedersen, Fidel Ramírez, Alex War-
wick Vesztrocy, Aurélien Naldi, Christopher J Mungall, Jeffrey M Yunes, Olga
Botvinnik, Mark Weigel, et al. 2018. GOATOOLS: A Python library for Gene
Ontology analyses. Scientific Reports 8, 1 (2018), 10872.

[19] Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. 2015. The SIDER
database of drugs and side effects. Nucleic acids research 44, D1 (2015), D1075–
D1079.

[20] Greg Landrum et al. 2013. RDKit: A software suite for cheminformatics, compu-
tational chemistry, and predictive modeling.

[21] Mikhail Iu Leontev, Viktoriia Islenteva, and Sergey V Sukhov. 2020. Non-iterative
knowledge fusion in deep convolutional neural networks. Neural Processing
Letters 51, 1 (2020), 1–22.

[22] Ying Lu, Lingkun Luo, Di Huang, YunhongWang, and Liming Chen. 2020. Knowl-
edge transfer in vision recognition: A survey. ACM Computing Surveys (CSUR)
53, 2 (2020), 1–35.

[23] Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. 2012. A
Bayesian approach to in silico blood-brain barrier penetration modeling. Journal
of chemical information and modeling 52, 6 (2012), 1686–1697.

[24] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. 2020.
Leep: A new measure to evaluate transferability of learned representations. In
International Conference on Machine Learning. PMLR, 7294–7305.

[25] Thin Nguyen, Hang Le, Thomas P Quinn, Tri Nguyen, Thuc Duy Le, and Svetha
Venkatesh. 2021. GraphDTA: Predicting drug–target binding affinity with graph
neural networks. Bioinformatics 37, 8 (2021), 1140–1147.

[26] Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. 2018. DeepDTA: deep drug–
target binding affinity prediction. Bioinformatics 34, 17 (2018), i821–i829.

[27] Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering (2009).

[28] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences 63, 10 (2020), 1872–1897.

[29] Sebastian G Rohrer and Knut Baumann. 2009. Maximum unbiased validation
(MUV) data sets for virtual screening based on PubChem bioactivity data. Journal
of chemical information and modeling 49, 2 (2009), 169–184.

[30] Sidak Pal Singh and Martin Jaggi. 2020. Model fusion via optimal transport.
Advances in Neural Information Processing Systems 33 (2020), 22045–22055.

[31] Jing Tang, Agnieszka Szwajda, Sushil Shakyawar, Tao Xu, Petteri Hintsanen,
Krister Wennerberg, and Tero Aittokallio. 2014. Making sense of large-scale
kinase inhibitor bioactivity data sets: a comparative and integrative analysis.
Journal of Chemical Information and Modeling 54, 3 (2014), 735–743.

[32] Anh T Tran, Cuong V Nguyen, and Tal Hassner. 2019. Transferability and hard-
ness of supervised classification tasks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 1395–1405.

[33] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated Learning with Matched Averaging. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=BkluqlSFDS

[34] Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021. One teacher is enough?
pre-trained language model distillation from multiple teachers. arXiv preprint
arXiv:2106.01023 (2021).

[35] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Ge-
niesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. 2018. MoleculeNet: a
benchmark for molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[36] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. 2022. A survey of pretraining on
graphs: Taxonomy, methods, and applications. arXiv preprint arXiv:2202.07893
(2022).

[37] Minghao Xu, Hang Wang, Bingbing Ni, Hongyu Guo, and Jian Tang. 2021. Self-
supervised graph-level representation learning with local and global structure.
In International Conference on Machine Learning. PMLR, 11548–11558.

[38] Daniel Zaharevitz. 2015. Aids antiviral screen data.
[39] Marinka Zitnik, Rok Sosič, Marcus W. Feldman, and Jure Leskovec. 2019. Evolu-

tion of resilience in protein interactomes across the tree of life. Proceedings of the
National Academy of Sciences 116, 10 (2019), 4426–4433. https://doi.org/10.1073/
pnas.1818013116 arXiv:https://www.pnas.org/content/116/10/4426.full.pdf

https://openreview.net/forum?id=JY6fLgR8Yq
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS
https://doi.org/10.1073/pnas.1818013116
https://doi.org/10.1073/pnas.1818013116
https://arxiv.org/abs/https://www.pnas.org/content/116/10/4426.full.pdf

	1 Dataset
	1.1 Details of Molecular Datasets
	1.2 Details of Protein Datasets
	1.3 Details of Bibliography Datasets

	2 Details of GNN Architectures
	2.1 Molecular Property Prediction
	2.2 Protein Function Prediction
	2.3 Research Field Prediction

	3 Various Unions of GMs
	4 Broader Range of Downstream Tasks
	5 Can He-UniGM Unify Homogeneous Models?
	6 Training and Testing Curves
	7 Implementation of Baselines
	8 Clarifications on the Fine-tuning Settings
	9 GNN architectures of heterogeneous GMs
	10 More Case Studies
	11 Compare UniGM with more model fusion methods
	12 The Number of Parameters in Molecular Tasks (Memory Consumption)
	13 More Related Works
	References

