Appendix: On Architectural Compression of Text-to-Image Diffusion Models

A U-Net architectures of BK-SDMs

Figure [1](#page-0-0) depicts the U-Net architectures. Compared to the 1.04B-parameter original SDM (with 0.86B-parameter U-Net), our models are smaller and lighter: 0.76B-parameter BK-SDM-Base (with 0.58B-parameter U-Net), 0.66B BK-SDM-Small (0.49B U-Net), and 0.50B BK-SDM-Tiny (0.33B U-Net). Section [B](#page-0-1) introduces BK-SDM-Tiny, which is compressed further from BK-SDM-Small. Section [D](#page-3-0) describes the details of block components.

Figure 1: U-Net architectures of the original SDM-v1 and BK-SDMs.

B Further compression: BK-SDM-Tiny

To further improve compute efficiency, the innermost down and up stages can also be pruned (indicated with pink in Figure [1\)](#page-0-0), leading to BK-SDM-Tiny. This implies that outer stages with larger spatial dimensions and their skip connections play a crucial role in the U-Net for T2I synthesis. Notably, BK-SDM-Tiny has 50% fewer parameters compared to the original SDM (see Table [1\)](#page-0-2) while achieving competitive performance in zero-shot general-purpose generation (Tables [2](#page-1-0) and [3](#page-1-1) and Figure [2\)](#page-2-0) and personalized synthesis with DreamBooth (Table [4\)](#page-2-1).

Table 1: The impact of per-step compute reduction of the U-Net on the entire SDM. The number of sampling steps is indicated with the parentheses, e.g., U-Net (1) for one step. The full computation (denoted by "Whole") covers the text encoder, U-Net, and image decoder. All corresponding values are obtained on the generation of a single 512×512 image with 25 denoising steps. The latency was measured on Xeon Silver 4210R CPU 2.40GHz and NVIDIA GeForce RTX 3090 GPU.

Table 2: Zero-shot results on 30K prompts from MS-COCO validation set [\[4\]](#page-4-0) at 256×256 resolution. Despite being trained with a smaller dataset and having fewer parameters, our compressed models achieve results on par with prior approaches for general-purpose T2I. For our models, the results with the minimum FID and the final 50K-th iteration are reported.

Model	Type	$FID \downarrow$	IS \uparrow	# Params	Data Size
$SDM-v1.4$ [10]	DF	13.05	36.76	1.04B	600M
Small Stable Diffusion [6]	DF	12.76	32.33	0.76B	229M
BK-SDM-Base (Ours) @ Min FID	DF	13.57	29.22	0.76B	0.22M
BK-SDM-Base (Ours) @ Final Iter	DF	15.76	33.79	0.76B	0.22M
BK-SDM-Small (Ours) @ Min FID	DF	15.93	29.61	0.66B	0.22M
BK-SDM-Small (Ours) @ Final Iter	DF	16.98	31.68	0.66B	0.22M
BK-SDM-Tiny (Ours) @ Min FID	DF	16.54	29.84	0.50B	0.22M
BK-SDM-Tiny (Ours) @ Final Iter	DF	17.12	30.09	0.50B	0.22M
$\overline{\text{DALL} \cdot \text{E}^{\dagger \star}}$ [7]	AR	27.5	17.9	12B	250M
CogView ^{\ddagger} * [1]	AR	27.1	18.2	4B	30M
CogView 2^{\dagger} [2]	AR	24.0	22.4	6B	30M
Make-A-Scene [‡] [3]	AR	11.84		4B	35M
LAFITE ^{$\ddagger\ddagger$} [12]	GAN	26.94	26.02	0.23B	3M
GALIP $(CC3M)^{\dagger}$ [11]	GAN	16.12		0.32B	3M
GALIP $(CC12M)^{\dagger}$ [11]	GAN	12.54		0.32B	12M
$GLIDE$ ^{\ddagger} [5]	DF	12.24		5Β	250M
LDM-KL-8- $G^{\ddagger\sharp}$ [10]	DF	12.63	30.29	1.45B	400M
DALL $-E-2$ [†] [8]	DF	10.39		5.2B	250M

[†] and [‡]: FID from [\[11\]](#page-5-3) and [\[10\]](#page-5-1), respectively. \star and \sharp : IS from [\[2\]](#page-4-4) and [10], respectively. DF and AR: diffusion and autoregressive models. ↓ and ↑: lower and higher values are better.

Model					Performance			
No.	Weight	Output	Feature	Batch	# Removed	$FID \downarrow$	IS \uparrow	CLIP
	Initialization	KD	KD	Size	Inner Stages			Score \uparrow
N ₁	Random	x	x	64		43.80	13.61	0.1622
N ₂	Pretrained	х	х	64		20.45	22.68	0.2444
N ₃	Pretrained		Х	64		16.48	27.30	0.2620
N4	Pretrained			64		14.61	31.44	0.2826
N ₅	Pretrained			256	Х	15.76	33.79	0.2878
N ₆	Pretrained			64		16.87	29.51	0.2644
N7	Pretrained			256		16.98	31.68	0.2677
N ₈	Pretrained			64	3	17.28	28.33	0.2607
N ₉	Pretrained			256	3	17.12	30.09	0.2653
Original SDM- $v1.4$ [9, 10]					13.05	36.76	0.2958	

Table 3: Ablation study on zero-shot MS-COCO 256×256 30K. The common settings include fewer blocks in the down and up stages and the denoising task loss. N5, N7, and N9 correspond to BK-SDM-Base, BK-SDM-Small, and BK-SDM-Tiny, respectively

Figure 2: Visual comparison on zero-shot MS-COCO benchmark. The results of previous studies [\[2,](#page-4-4) [12,](#page-5-2) [11\]](#page-5-3) were obtained with their official codes and released models. We do not apply any CLIPbased reranking for SDM and our models.

Table 4: Personalized generation with finetuning over different pretrained models. Our compact models can preserve subject fidelity (DINO and CLIP-I) and prompt fidelity (CLIP-T) of the original SDM with reduced finetuning (FT) cost and fewer parameters.

Pretrained Model	DINO	CLIP-I ↑	CLIP-T \uparrow	FT Time [†]	FT Mem ^{\ddagger}	# Params
SDM v1.4 [9, 10]	0.728	0.725	0.263	881.3s	23.0 _{GB}	1.04B
BK-SDM-Base (Ours)	0.723	0.717	0.260	622.3s	18.7GB	0.76B
BK-SDM-Small (Ours)	0.720	0.705	0.259	603.6s	17.2 GB	0.66B
BK-SDM-Tiny (Ours)	0.715	0.693	0.261	559.3s	13.1 GB	0.50B
BK-SDM-Base, Batch Size 64	0.718	0.708	0.262	622.3s	18.7GB	0.76B
- Without KD & Random Init.	0.594	0.465	0.191	622.3s	18.7GB	0.76B
- Without KD & Pretrained Init.	0.716	0.669	0.258	622.3s	18.7GB	0.76B

Per-subject finetuning time[†] and GPU memory[‡] for 800 iterations with a batch size of 1 on NVIDIA GeForce RTX 3090.

C Impact of distillation on pretraining phase

Figure [3](#page-3-1) shows additional results for the performance over training progress. Without KD, training compact models solely with the denoising task loss causes fluctuations or sudden drops in performance (indicated with green and cyan). Compared to the absence of KD, distillation (purple and pink) stabilizes and accelerates the training process, improving generation scores. This clearly demonstrates the benefits of providing sufficient hints for training guidance. Additionally, our small-size and tinysize models trained with KD (yellow and red) outperform the bigger base-size models without KD (green and cyan).

Figure 3: Results on zero-shot MS-COCO 256×256 30K over training progress. The architecture size, usage of KD, and batch size are denoted for our models.

D Details of block components in SDM's U-Net

Figure [4](#page-4-7) shows the details of architectural blocks (depicted in Figure [1\)](#page-0-0). Each residual block (ResBlock) contains two 3-by-3 convolutional layers and is conditioned on the time-step embedding. Each attention block (AttnBlock) contains a self-attention module, a cross-attention module, and a feed-forward network. The text embedding is merged via the cross-attention module. Within the attention block, the feature spatial dimensions H and W are flattened into a sequence length of HW. The number of channels C is considered as an embedding size, processed with 8 attention heads. The number of groups for the group normalization is set to 32. Except the down-sizing part, all the convolutional layers maintain the spatial dimensions by adjusting the stride and padding.

E Further implementation details

Distillation-based Pretraining. For augmentation, smaller edge of each image is resized to 512, and a center crop of size 512 is applied with random flip. We use a single NVIDIA A100 80G GPU for 50K-iteration pretraining with the AdamW optimizer and a constant learning rate of 5e-5. With the gradient accumulation steps of 4, the total batch size is set to either 64 or 256. With a batch size of 64 for training BK-SDM-Base, it takes about 60 hours for 50K iterations and 28GB GPU memory. With a batch size of 256, it takes about 300 hours and 53GB GPU memory. Training smaller architectures results in 5∼10% decrease in GPU memory usage.

DreamBooth Finetuning. For augmentation, smaller edge of each image is resized to 512, and a random crop of size 512 is applied. We use a single NVIDIA GeForce RTX 3090 GPU to finetune each personalized model for 800 iterations with the AdamW optimizer and a constant learning rate of 1e-6. We jointly finetune the text encoder as well as the U-Net part. For each subject, 200 class images are generated by the original SDM. The weight of prior preservation loss is set to 1. With a batch size of 1, the original SDM requires 23GB GPU memory for finetuning, whereas BK-SDMs require 13∼19GB memory.

Figure 4: Block components in the U-Net of SDMs.

References

- [1] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou, Z. Shao, H. Yang, et al. Cogview: Mastering text-to-image generation via transformers. In *NeurIPS*, 2021.
- [2] M. Ding, W. Zheng, W. Hong, and J. Tang. Cogview2: Faster and better text-to-image generation via hierarchical transformers. In *NeurIPS*, 2022.
- [3] O. Gafni, A. Polyak, O. Ashual, S. Sheynin, D. Parikh, and Y. Taigman. Make-a-scene: Scene-based text-to-image generation with human priors. In *ECCV*, 2022.
- [4] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.
- [5] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. In *ICML*, 2022.
- [6] J. Pinkney. Small stable diffusion. [https://huggingface.co/OFA-Sys/](https://huggingface.co/OFA-Sys/small-stable-diffusion-v0) [small-stable-diffusion-v0](https://huggingface.co/OFA-Sys/small-stable-diffusion-v0), 2023.
- [7] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever. Zero-shot text-to-image generation. In *ICML*, 2020.
- [8] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
- [9] R. Rombach and P. Esser. Stable diffusion v1-4. [https://huggingface.co/CompVis/](https://huggingface.co/CompVis/stable-diffusion-v1-4) [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), 2022.
- [10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, 2022.
- [11] M. Tao, B.-K. Bao, H. Tang, and C. Xu. Galip: Generative adversarial clips for text-to-image synthesis. In *CVPR*, 2023.
- [12] Y. Zhou, R. Zhang, C. Chen, C. Li, C. Tensmeyer, T. Yu, J. Gu, J. Xu, and T. Sun. Towards language-free training for text-to-image generation. In *CVPR*, 2022.