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1 Overview

In this supplementary material, we first present the details of the conditional score network in Sec. 2.
Then, we provide the detailed neural network configurations as well as the hyper-parameter settings
in Sec. 3. Next, we report the quantitative results of both unconditional and conditional recovering in
Sec. 4. Finally, we conduct experiments on Chinese MER dataset CH-SIMS [6] for further discussion
and comparison in Sec. 5.
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Figure 1: Model architecture of the conditional score network.

2 Conditional Score Network

We exploit a conditional score network sk to estimate the score of the missing modality k ∈ Imiss at
each time step t ∈ [0, 1], where the input of sk consists of perturbed missing data xk(t), perturbed
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available data xIobs(t), and the corresponding temporal information t. When multiple available
modalities exist, all of them will be concatenated and fused by a 1D convolutional layer with a kernel
size of 1. As shown in Fig. 1, we use the UNet-style neural network as the backbone of sk, where we
use the 1D vanilla and transposed convolutional layers to build the UNet backbone, aiming to spot
the sequential multimodal features. For condition embedding, we exploit the cross-modal attention
mechanism [5]. Typically, we inject the available modalities into each intermediate feature within the
UNet. Let us take the i-th intermediate representation xi

k(t) and xi
Iobs

(t) of xk(t) and xIobs(t) in sk
as an example, the cross-modal attention based condition embedding can be formulated as:

xi
cond(t) = softmax(

QK>
√
d

)V, (1)

where xi
cond(t) denotes the embedded condition representation which will be used in the next step.

d denotes the dimensionality of intermediate representation. Furthermore, Q = xi
k(t)WQ, K =

xi
Iobs

(t)WK and V = xi
Iobs

(t)WV. WQ,WK,WV are the learnable parameters. In addition, we
incorporate the temporal information t via gaussian random features [4]. Specifically, we first sample
ω ∼ N (0, s2I) which is subsequently fixed for the model (i.e., not learnable). For a time step t, the
corresponding gaussian random feature is defined as [sin(2πωt), cos(2πωt)], where [·, ·] denotes the
operation of feature concatenation. Such gaussian random feature can be used as an encoding for
time step t so that the score network can condition on t by incorporating this encoding.

Table 1: Hyperparameter settings in IMDer.

Hyperparameter CMU-MOSI CMU-MOSEI
Optimizer Adam Adam
Batch size 32 128
Learning rate 0.001 0.002
σ used in our stochastic differential equation 25 25
Number of iterations for Euler–Maruyama solver 500 500

Shallow Feature Extractor
Kernel size for Ek 3 3
Hidden dimension for Ek 32 32

Missing Modality Diffused Network
Hidden dimensions for sk {32, 64, 128, 256} {32, 64, 128, 256}
Layers of cross-modal attention for sk 2 2
Number of attention heads for cross-modal attention 8 8
Hidden dimension for Dk 64 64
Number of RCAB for Dk 20 20

Multimodal Fusion and Prediction
Hidden dimension for Tk 32 32
Number of attention heads for Tk 8 8
Layers of transformer for Tk 4 6

3 IMDer Settings

Tab. 1 lists the network architecture and the hyper-parameter settings in IMDer. We implemented all
the experiments using PyTorch on an RTX 3090 GPU with 24GB memory. We explain the involved
neural network components in IMDer as follows.

IMDer mainly consists of three parts: shallow feature extractor, missing modality diffused net-
work, and multimodal fusion and prediction. First, we exploit a shallow feature extractor to encode
the multimodal features xk via separate 1D temporal convolutions Ek, where k ∈ {l, v, a}. Second,
we build a missing modality diffused network to model the modality-specific distribution of each
missing modality. Typically, the modality distribution is captured via the score-based diffusion
model sk. As to achieve this, we sample from the modeled distribution space to recover the missing
data. Then, we use the reconstruction module Dk to recover the final missing modalities. Each
reconstruction module is composed of several residual channel attention blocks [7], where the 2D
convolutional layers are replaced with 1D temporal convolutional layers to better fit the sequence
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Table 2: Comparison of the unconditional and conditional recovering under random missing protocol.
The values reported in each cell denote ACC2/F1/ACC7. MR: Missing Rate. Bold is the best.

Datasets MR Unconditional Recovering Conditional Recovering

CMU-MOSI

0.0 85.7 / 85.6 / 45.3 85.7 / 85.6 / 45.3
0.1 83.5 / 83.4 / 43.6 84.9 / 84.8 / 44.8
0.2 81.6 / 81.3 / 41.6 83.5 / 83.4 / 44.3
0.3 79.0 / 78.4 / 40.4 81.2 / 81.0 / 42.5
0.4 76.4 / 75.8 / 38.1 78.6 / 78.5 / 39.7
0.5 74.7 / 74.8 / 35.3 76.2 / 75.9 / 37.9
0.6 72.3 / 72.3 / 33.2 74.7 / 74.0 / 35.8
0.7 69.2 / 69.3 / 32.4 71.9 / 71.2 / 33.4

Average 77.8 / 77.6 / 38.7 79.6 / 79.3 / 40.5

CMU-MOSEI

0.0 85.1 / 85.1 / 53.4 85.1 / 85.1 / 53.4
0.1 83.2 / 82.9 / 52.0 84.8 / 84.6 / 53.1
0.2 81.3 / 80.4 / 50.7 82.7 / 82.4 / 52.0
0.3 79.2 / 78.3 / 50.2 81.3 / 80.7 / 51.3
0.4 78.2 / 76.8 / 49.1 79.3 / 78.1 / 50.0
0.5 77.6 / 75.7 / 47.8 79.0 / 77.4 / 49.2
0.6 76.1 / 74.6 / 47.1 78.0 / 75.5 / 48.5
0.7 75.4 / 73.6 / 46.0 77.3 / 74.6 / 47.6

Average 79.5 / 78.4 / 49.5 80.9 / 79.8 / 50.6

features. Finally, the recovered modalities and the available modalities will be jointly fed into the
multimodal transformers Tk [5] for feature fusion and MER.

4 Quantitative comparison of unconditional/conditional recovering

Besides the visualization results in the main file, we provide quantitative results of the unconditional
and conditional recovering under the random missing protocol. Tab. 2 reports the quantitative results.
Compared with the unconditional modality recovering mechanism, it is obvious that the conditional
paradigm gains consistent performance improvements. This is reasonable as the available modalities
will provide meaningful and semantic information to guide the modality recovering process, thus
reducing the semantic ambiguity for the recovered modalities.

Table 3: MER accuracy comparison on CH-SIMS dataset under random missing protocol. The values
reported in each cell denote ACC2/F1/ACC5. MR: Missing Rate. Bold is the best.

Datasets MR MMIN GCNet IMDer (Ours)

CH-SIMS

0.0 74.9/75.0/45.3 76.7/76.8/50.1 76.3/76.4/50.7
0.1 73.4/73.2/44.7 75.2/75.3/48.0 75.4/75.5/50.1
0.2 71.9/71.5/44.1 73.7/73.6/45.1 74.7/74.5/47.3
0.3 70.5/70.0/40.3 72.3/72.5/43.2 74.2/73.6/45.6
0.4 69.6/68.9/39.0 71.1/71.2/41.0 73.7/73.3/44.6
0.5 67.1/67.1/37.0 69.7/69.4/40.5 72.7/72.3/43.3
0.6 66.7/65.6/37.2 68.9/68.9/39.8 71.3/69.8/42.4
0.7 64.3/63.8/35.1 67.8/67.8/35.9 69.8/69.6/42.2

Average 69.8/69.4/40.3 71.9/71.9/43.0 73.5/73.1/45.8

5 Comparison on CH-SIMS

In this section, we consider a Chinese MER dataset CH-SIMS [6] to conduct further experiments.
CH-SIMS contains 2281 refined video segments with fine-grained annotations of modalities. The data
is collected from movies, TV serials, and variety shows. The annotation for each sample ranges from
-1 (strongly negative) to 1 (strongly positive). For language modality, we extract the language features
via pre-trained Chinese BERT model [2]. For vision modality, we use MultiComp OpenFace2.0
toolkit [1] to extract the set of 68 facial landmarks, 17 facial action units, head pose, head orientation,
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and eye gaze. For audio modality, we use LibROSA speech toolkit [3] with default parameters to
extract acoustic features. The experimental results are listed in the Tab. 3. Obviously, our proposed
IMDer consistently achieves better results than MMIN or GCNet under random missing protocol.
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