A Practical Considerations

In this section, we outline several useful tips and tricks that can improve the quality of hyperparameter
transfer in practice.

A.1 Zero Initialization for Output Layers

We find that the optimal hyperparameters of small and large width models match more closely when
we initialize output layers at O (i.e. with variance o /fan_in where o = 0 instead of positive o).
This is because the neural network in pP is approximately a Gaussian process (GP) at initialization
with variance on the order © (o2 /width) (contrast this with SP networks, which approximates a GP
with @(02) variance) [41, 45]. Of course, when width is large, this variance vanishes, but this can
be far from so in the small proxy model. This discrepancy in the initial GP can cause the training
trajectory of the proxy model to be very different from the trajectory of the large target model,
causing a mismatch in the optimal hyperparameters. By initializing the output layer at 0, we remove
this mismatch in the initial GP. Empirically we do not find this modification to be detrimental to
performance.

A.2 Activation Functions
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Figure 6: Squashing activation functions reduce transfer quality. MLP of different hidden sizes
with tanh activation trained for 20 epoch on CIFAR-10 using SGD. Left uses cross-entropy as loss
function; right uses mean square error; columns alternate between standard parametrization (SP) and
maximal update parametrization («P). Compared to ReLU, tanh exhibits slower convergence for pP,
yet it still outperforms SP when width is increased

When the network is narrow, its approximation to the infinite-width behavior becomes crude, which
is manifested as large fluctuations in preactivation coordinates. When using a squashing activation
functions like softmax or tanh, this causes narrower networks to saturate the activation more than
wider ones, which results in a systematic bias in the gradients and therefore the hyperparameter
landscape. This can be seen in where we use tanh as the network activation function.

Therefore, we recommend replacing non-essential squashing activation functions with ReLU, whose
derivative depends only on the sign of the pre-activation. A similar reasoning can be applied to
superlinear activation functions, where the distribution of activation values can have heavy tails,
leading to slow convergence to the infinite-width limit. However, such activations are rarely used in
practice.

A.3 Enlarge d;

We find that small dj,.,q = dj can lead to a highly noisy HP landscape, as shown in Flg 7[ This
can significiantly decrease the quality of random HP search on the small proxy model. To solve this,
we find it useful to decouple dj from dipoge; (SO that dioger # di - Nheaq) and maintain a relatively
large dj, even as d,o4e; 1S shrunk in the proxy model. For example, pegging d;, = 32 is generally
effective. Training or inference speed are not usually affected much by the larger d; because of
CUDA optimizations. By [Appendix G.2} this decoupling of dj, from d,;,oqe; is theoretically justified,
and as shown in[Fig. 7] it significantly denoises the HP landscape.

A.4 Non-Gaussian vs Gaussian Initialization

We find non-Gaussian (e.g. uniform) initialization can sometimes cause wider models to perform
worse than narrower models, whereas we do not find this behavior for Gaussian initialization. This is
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Figure 7: Enlarging d; makes y/Transfer more precise. Here we plot all curves after subtracting
their minima for easier visual comparison. Transformer on IWSLT 14 similar to the setup in[Ap]
Where the doder = 512 for a width multiplier of 1, npeqq = 4, and d, = di. (Left) We
eave d; = dj, = dmodei/ny,.qq, S0 dy, = 8 for width-multiplier 0.0625. The optimum for the attention
logit multiplier ¢4, is noisy and does not accurately transfer across width. (Right) We enlarge
dq = dj to a minimum of 128. The HP landscape is much smoother than in (Left), and the optima
align between narrow and wide models.

logits

60

attn logits

0.0020

word embedding

15 t \/—
_ 0 0.0015
< 1 40 ~ —
T 2
el 0.0010
= — 3
3 20
G055 —a 0.0005
0.0 % 0 0.0000
0.15 e S L
0125 | SN~ 00015
< 0.100
< 0.10 —_—
ol 0075 S ——— —_ 0.0010
ix
s 0.050 71—
o005 N\ 0.0005
0.025
0.00 0.000 0.0000
0 2000 4000 0 2000 4000 0 2000 4000

width width width

Figure 8: Logits and attention logits, but not word embeddings, of a Transformer blow up with
width in SP after 1 step of training. In contrast, all three are well-behaved with width in uP. Here
we measure how much different values change coordinatewise from initialization over 4 steps of
Adam updates, as a function of width. Specifically, we plot the standard deviation of the coordinates
of vy — xp, fort = 0,...,4, and = € {logits, attention logits, word embeddings}, where ¢ = 0
indicates initialization.

consistent with theory, since in the large width limit, one should expect non-Gaussian initialization
will behave like Gaussian initializations anyway (essentially due to Central Limit Theorem, or more
precisely, universality), but the non-Gaussianity slows down the convergence to this limit.

A.5 Using a Larger Sequence Length
For Transformers, we empirically find that we can better transfer initialization standard deviation

from a narrower model (to a wide model) if we use a larger sequence length. It is not clear why this
is the case. We leave an explanation to future work.

B The Defects of SP and How P Fixes Them

The question of SP vs P has already been studied at length in [45]. Here we aim to recapitulate the

key insights, with more explanations given in|Appendix L.
An Instructive Example As shown in [45] and [Appendix L.3] in SP, the network output will blow

up with width after 1 step of SGD. It’s instructive to consider a 1-hidden-layer linear perceptron
f(x) = VTUx with scalar inputs and outputs, as well as weights V,U € R"*!, In SP, V,, ~
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N(0,1/n) ad U, ~ N(0,1) for each o € [n]. This sampling ensures that f(xz) = O(|z|) at
initialization. After 1 step of SGD with learning rate 1, the new weights are V' < V + 0U, U’ «
U + 0V, where 6 is some scalar of size ©(1) depending on the inputs, labels, and loss function. But
now

f@)=V'TUz=VU+0UTU+0VV+0?U V)z (5)

blows up with width n because U ' U = ©(n) by Law of Large Numbers.

Now consider the same network in uP. According to Table 3, we now have V,, ~ N(0,1/n?) in
contrast to SP, but U, ~ N (0, 1) as before, with learning rates ny = 1/n,ny = n. After 1 step of
SGD, we now have

f@)=(VTU+n ' UTU+0nVTV + 60U V)z,

and one can verify this is ©(1) and thus does not blow up with widthE;]

Some Layers Update Too Fast, Others Too Slow One can observe the same behavior in more
advanced architectures like Transformers and optimizers like Adam; in fact, in SP, other hidden
quantities like attention logits will also blow up with width after 1 step, but in P still remain bounded,

as shown in [Fig. §(middle).

One might think scaling down the learning rate with width can solve this problem in SP. However,
other hidden activations like the word embedding (Fig. 8|right)) in a Transformer update by a width-
independent amount for each step of training, so scaling down the learning rate will effectively mean
the word embeddings are not learned in large width models. Similar conclusions apply to other
models like ResNet (in fact, one can observe in the SP linear MLP example above, the input layer
is updated much more slowly than the output layer). On the other hand, uP is designed so that all
hidden activations update with the same speed in terms of width (see for why).

Performance Advantage of uP This is why a wide model tuned with pTransfer should in general
outperform its SP counterpart with (global) learning rate tuned. For example, this is the case for
the width-8192 Transformer in Fig. 1, where, in SP, the optimal learning rate needs to mollify the
blow-up in quantities like logits and attention logits, but this implies others like word embeddings do
not learn appreciably. This performance advantage means pTransfer does more than just predicting
the optimal learning rate of wide SP models. Relatedly, we observe, for any fixed HP combination,
training performance never decreases with width in pP, in contrast to SP (e.g., the uP curves in

Figs. 1, 3 and[I6]do not cross, but the SP curves do; see also[Appendix D).

C Parametrization Matters: A Primer for Multiple Hyperparameters

Here we give more intuition why we need to reparametrize all hyperparameters. In practice, neural
networks have multitudes of hyperparameters all interacting together. In our example of Section 2,
hyperparameter optimization would be akin to minimizing the functio

Fo(ct,..., "= E Fl(cr 4+ PN+ -+ ).

x

where x1,...,x, are as in Eq. (1) and ¢!, ..., ¢* are analogous to k hyperparameters. For the same

reasoning in Section 2, the correct parametrization is in (o, ..., a*) where o = ci\/n.

While this is straightforward, in practice, researchers often fix some hyperparameters (e.g., they tune
only learning rate but neglects to scale parameter multipliers or initialization correctly). For example,
if we only partially reparametrize and optimize in o' while fixing 2, .. ., c¥, then the optimal o is
(a')* = a* — (¢! + ...+ c¥)y/n where a* is the optimal « for Eq. (1). Thus, as n — oo, (a)* still
blows up even though we parametrized ' correctly. More generally, the incorrect parametrization
of some hyperparameters forces other hyperparameters to increasingly compensate for it as width
grows, distorting their optima, even if the latter are correctly parametrized.

Note in this example, Glorot initialization [10] (i.e. with variance 1/(fan_in + fan_out)) would scale
asymptotically the same as pP and thus is similarly well-behaved. However, if one adds layernorm or batchnorm,
then Glorot will cause logit blowup like SP, but pP still will not.

Here, for simplicity of the example, we model the interaction between “hyperparameters” ¢', ..., c* as
additive, but in real neural networks such interactions are usually much more complicated.
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Figure 9: Wider is always better in training loss under P, but not in SP, given the same HP.
Learning curves for ;P and SP with different learning rates, aggregated over 5 seeds. (Left) Wider
©P models always achieve better training loss at any time in training. (Middle) If using a small
learning rate, SP models can appear to do so up to some large width, at which point the pattern fails
(at width 2048 in our plot). (Right) If using a large learning rate, SP model can do worse with width;
here the SP model is identical to the uP model in (Left) at width 128.

D Wider is Better in ;P Throughout Training

6.0

In earlier plots like Figs. 1 and 3, we saw that model width
at the end of training, wider is always better 55 256
in P but not in SP. In fact, we find this to il

1024
2048
4096
8192
16384
32768

o
o

be true throughout training, as seen in[Fig. 9
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in training (except a brief period around 1e8 Figure 10: Stress-testing ‘“‘wider-is-better” in pP.
training tokens, likely due to noise because Here we trained a GPT-3 transformer with 4 layers
we ran only 1 seed due to computational cost). and widths from 256 to 32,768. Modulo a brief
Our observation suggests that wider models are  period around 1e8 training tokens, wider is better
strictly more data-efficient if scaled appropri- throughout training.

ately. By checking “wider-is-better” early in

training, one can also cheaply debug a pP implementation.

I
o
—

Validation loss

»
S

E Useful Hyperparameter Transfer: A Theoretical Puzzle

We want to tune HPs on a small model with width N such that its HP landscape looks like that of
a large model with width > N. Our intuition in Section 2 and[Appendices C|and [[]leads us to uP.
However, for this to be useful, we do not want the small model (as a function) after training to be
close to that of the large model — otherwise there is no point in training the large model to begin
with. So N 1) must be large enough so that the HP optimum converges, but 2) cannot be so large
that the functional dynamics (and the loss) converges. The fact that such N exists, as demonstrated
by our experiments, shows that: In some sense, the HP optimum is a “macroscopic” or “coarse”
variable which converges quickly with width, while the neural network function (and its loss) is a very
“microscopic” or “fine” detail that converges much more slowly with width. However, theoretically,
it is unclear why this should happen, and where else we should expect such useful HP transfer. We
leave an explanation to future work.
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F Detailed Discussions on Related Works

F.1 Hyperparameter Tuning

Many have sought to speedup HP tuning beyond the simple grid or random search. Snoek et al.
[34] treated HP tuning as an optimization process and used Bayesian optimization by treating the
performance of each HP combination as a sample from a Gaussian process (GP). Snoek et al. [35]
further improved the runtime by swapping the GP with a neural network. Another thread of work
investigated how massively parallel infrasture can be used for efficient tuning under the multi-arm
bandit problem [15, 18]. There are also dedicated tools such as Optuna [4] and Talos [3] which
integrate with existing deep learning frameworks and provide an easy way to apply more advanced
tuning techniques.

Our approach is distinct from all of the above in that it does not work on the HP optimization process
itself. Instead, it decouples the size of the target model from the tuning cost, which was not feasible
prior to this work. This means that no matter how large the target model is, we can always use a
fixed-sized proxy model to probe its HP landscape Nevertheless, our method is complementary,
as the above approaches can naturally be applied to the tuning of the proxy model; it is only for
scientific reasons that we use either grid search or random search throughout this work.

F.2 Previously Proposed Scaling Rules of Hyperparameters

(Learning Rate, Batch Size) Scaling [33] proposed to scale learning rate with batch size while
fixing the total epochs of training; [11] proposed to scale learning rate as v/ batchsize while fixing
the total number of steps of training. However, [31] showed that there’s no consistent (learning
rate, batch size) scaling law across a range of dataset and models. Later, [23] studied the trade-off
of training steps vs computation as a result of changing batch size. They proposed an equation of
a/(1+ b/batchsize), where a and b are task- and model-specific constants, for the optimal learning
rate (see their fig 3 and fig 5). This law suggests that for sufficiently large batch size, the optimal
learning rate is roughly constantEr] This supports our results here as well as the empirical results in
[31, fig 8].

Learning Rate Scaling with Width Assuming that the optimal learning rate should scale with
batch size following [33], [26] empirically investigated how the “noise ratio” LR/batchsize scales
with width for MLP and CNNs in NTK parametrization (NTP) or standard parametrization (NTP)
trained with SGD. They claimed that, in networks without batch normalization, the optimal noise
ratio is constant in SP but scales like 1/width for NTP. However, they found this law breaks down
for networks with normalization.

Here in our work, Fig. 3 contradicts their results on SP MLP by showing the optimal learning rate
(fixing batch size) shifts with width. We believe this difference is 1) due to their erroneous assumption
that optimal learning rate scales with batch size (as debunked by [23, 31]) and 2) because their SP
experiments were done by fixing the learning rate and only sweeping batch size.

Furthermore, Fig. 1 clearly shows the optimal learning rate is not constant in SP for Transformers
(trained with Adam). Other differences in our works include our applicability to 1) networks with
normalization, 2) Adam and other adaptive optimizers, 3) our empirical validation of transfer across
depth and sequence length, and 4) explicit validation of tuning via pTransfer on large models like
BERT-large.

Finally, as argued in [45] and [Appendix L.3] SP and NTP lead to bad infinite-width limits in contrast
to uP and hence are suboptimal for wide neural networks. For example, sufficiently wide neural
networks in SP and NTP would lose the ability to learn features, as concretely demonstrated on
word2vec in [45].

Input Layer Parametrization While typically, the input layer is initialized with fanin initialization,
in language models where the input and output layers are shared (corresponding to word embeddings),
it can actually be more natural to use a fanout initialization (corresponding to fanin initialization of

2lwhile the optimal learning is roughly linear in batch size when the latter is small
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the output layer). In fact, we found that fairseq [25] by default actually implements our proposed
input layer parametrization (both the fanout initialization and the +/fan_out multiplier)

From the Theory of Infinite-Width to the Practice of Finite-Width Neural Networks and Back
[45] introduced ;P as the unique parametrization that enables all layers of a neural network to learn
features in the infinite-width limit, especially in contrast to the NTK parametrization [14] (which
gives rise to the NTK limit) that does not learn features in the limit. Based on this theoretical insight,
in we argue that P should also be the unique parametrization that allows HP transfer
across width; in short this is because it both 1) preserves feature learning, so that performance on
feature learning tasks (such as language model pretraining) does not become trivial in the limit, and
2) ensures each parameter tensor is not stuck at initialization in the large width limit, so that its
learning rate does not become meaningless. At the same time, our results here suggest that uP is
indeed the correct parametrization for large neural networks and thus provide empirical motivation
for the theoretical study of the infinite-width pP limit.

G Which Hyperparameters Can Be Transferred? (Continued)

G.1 Further Discussions on Hyperparameter Categories

Below, we discuss the reasoning behind each kind, which are supported by our empirical evidence
collected in Fig. 4 on Transformers as well as those in[Appendix I.T|on ResNet.

Transferable Hyperparameters In Table 2, we summarize which HPs can be transferred across
training scale. The transfer across width, as explained in Section 2, is theoretically justified, while we
present the transfer across the other dimensions as empirical results.

These cover most of the well-known and important HPs when the need for regularization is not
paramount, e.g., during large scale language model pretraining. Parameter Multipliers are not well-
known HPs, yet we include them here as they serve a bridge between SP and pP and can impact
model performance in practice. Concretely, any SP and uP neural networks of the same width can
have their Parameter Multipliers tuned so that their training dynamics become identical.

Hyperparameters That Don’t Transfer Well Not all HPs transfer well even if we use uP. In
particular, those whose primary function is to regularize training to mitigate “overfitting" tend not to
transfer well. Indeed, intuitively, regularization needs to be applied more heavily in larger models, so
naturally we do not expect the same regularization HPs to stay constant across model sizes.

To the best of our knowledge, there is no strict separation between HPs that regularize and those that
don’t. However, conventional wisdom tells us that there exists a spectrum of how much regularizing
effect a HP has. For example, dropout probability and weight decay are among those whose primary
function is to regularize, whereas batch size and learning rate might regularize training in some cases
but affect the dynamics more so in other ways. Our empirical exploration tells us that the former do
not transfer well, while the latter do. Our subsequent discussion will focus on the latter; we leave to
future works the expansion to the former.

Hyperparameters Transfered Across We have left out a category of HPs that defines the training
scale, or in practical terms, training cost. This includes 1) those that define how many operations a
model’s forward/backward pass takes, such as the model’s width, depth, and in the case of language
modeling, sequence length; and 2) those that define how many such passes are performed, such as
batch size and number of training steps.

As recent works have shown [6, 16], improvements along any of these scale dimensions lead to
apparently sustainable gain in performance; as a result, we are primarily interested in transferring
other HPs across these dimensions that define scale, rather than finding the optimal scaleE] This
category of HPs is particularly crucial as one can speedup training by downsizing in one or multiple

22But it certainly does not implement other parts of our parametrization, like Adam learning rate scaling or
the output multiplier.

Zn particular, we are not fixing the total training FLOPs when we scale, which requires understanding the
tradeoff of different scale HPs. For example, when we transfer across batch size, we fix the number of steps of
training (not the number of epochs), so that the total FLOPs scales linearly.

20



dimodel modet
Lo | |
S S
g Self-attn (paramless) g dy * Npeaa
g dy, dy dy, § no. heads = Npeqq
o {=3
2 RARARA
AL
“ doder e dodel
s §
8 3
£ difn g drfn
§ §
\ Amodet \ Amodel
(a) Single-head attention (b) Multi-head attention

Figure 11: Schematics of each Transformer layer. Commonly, the key and value dimensions dj and
d,, are both set to d,odel /M head, and this is referred to as dpeqd-

such dimensions. Indeed, it’s very common for practitioners to implicitly transfer HPs across the
number of training samples by tuning on only a subset of the full training data.

Our insights from the infinite-width limit inspired us to explore HP tranfer across width, which
does not work under SP as we have shown earlier. Building upon our success with width, which
is well explained theoretically, we hope to push the limit of compute-saving by investigating the
other dimensions empirically. To the best of our knowledge, the transferability of optimal HPs across
depth, batch size, sequence length, and training time has not been rigorously investigated previously,
with the main exception of the literature on (learning rate, batch size) scaling [31, 33] where our
transferability result of learning rate across batch size recapitulates [23]@ See %ﬁﬁendix F.2[on how
our results relate to prior works. We will primarily focus on the Transformer architecture in the main
text with evidence for ResNet in

G.2 On the Definitions of Width

Our theory allows more general notions of width. This is especially relevant in Transformers,
where dyodets dhead = di, Ay, Nhead, df n (see can all be construed as measures of width.
We briefly discuss these here, with more theoretical justification in and empirical
validation below.

Varying Width Ratio So far we have assumed that every hidden layer is widened by the same
factor. But in fact we can widen different hidden layers differently. This is useful, for example, in a
Transformer where we may want to use a smaller d ¢,, during tuning. If we are using Adam, as long
as the width of every layer still tends to infinity, we still obtain approximately the same limitlﬂ so the
pTransfer remains theoretically justified.

See[Fig. 12| for an empirical validation on IWSLT-14 using a Transformer.

Number of Attention Heads In attention-based models, one typically splits hidden size into
multiple attention heads following d,,ode1 = dhead X Mhead- SO far we have assumed dj,cqq and
dmoder to be width, but it’s possible and potentially advantageous to fix dpeqq and treat npeqq as
the width, or increasing both simultaneously. This allows our technique to handle many popular
models, including GPT-3 [6], which scale up by fixing djcqq and increasing npeqq. See[Fig. 13| for
an empirical validation on Wikitext-2.

*There’s also a literature on the proper initialization for training deep networks effectively (e.g. [5, 13, 21,

30, 47, 48, 51]), but they do not study the transferability per se. See[Appendix F2|

>This also applies for SGD, but we need more involved scaling to keep the limit approximately the same.
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Figure 13: pTransfer across width when we fix djeqq and vary dp,ode1 and npeqd. Qoutput> Qaten are
multipliers for output and key weights, and o is initialization standard deviation.

Varying Just the Width of Attention Heads A specific useful instance of varying width ratio is
decoupling the key and value dimensions dj, and d,, and scaling dj, differently from (typically larger
than) dpmodet /Mhead- This works as long as we use 1/d scaled-attention as in Definition 4.1 (instead
of 1/+/d as is done commonly). When tuning on the small proxy model, if dj, is too small, the HP
landscape can be quite noisy. Keeping dy, relatively large while shrinking all other dimensions solves
this problem, while still obtaining significant speedup.

H Experimental Details

H.1 IWSLT

IWSLT14 De-En is a well-known machine translation benchmark. We use a Transformer implemented
in fairseq [25] with a default d,;,04e1 = Y/4d s g, = 512 and dj, = dg = d,, = dmodet/nyeqa = 128
(amounting to 40M parameters), which we denote as the /x model. For transfer, we tune on a proxy
model with the same nj,..q but with d,,,04¢; and other dimensions 4 times smaller; we will call this
the 0.25x model (but it has 4M parameters). All models are trained with Adam for 100 epochs and
validated at the end of every epoch. We tune via random search the learning rate n, the output layer
parameter multiplier cvoyspy:, and the attention key-projection weight multiplier gy, following the
grid

e« 7: 5 x 1074 x 2%, where z € {—1.5,~1.25, —1, ..., 1.25}
* Qoutput: 2%, where z € {—8,—7,—6,...,7}
* Qaitn: 2%, where z € {-3,-2,-1,...,8}

H.2 WMT

We scale up to WMT14 En-De using the large Transformer from [37], with a dynoqer = L/4dfpn =
1024 and dy = dy, = dyy = dmodet/ny.q.0 = 64. We use the exact same setup and reproduce their
result as our baseline. Then, we build the proxy model by shrinking the target model’s d,,,,4.; from
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the original 1024 to 256, dy s, from 4096 to 256 and neqq from 16 to 4. This reduces the total
parameter count from 211M to 15M. We then perform the HP search on the proxy model and take the
best according to validation loss, before testing on the target model. We tune via random search the
learning rate 7, the output layer parameter multiplier cvoy¢py:, and the attention key-projection weight
multiplier g4y, following the grid

e 7:6x 107* x 2%, where z € {—1.5,-1.25, —1,...,1.25}
* Qoutput: 2%, where z € {—8,—-7,—6,...,7}
* Qaitn: 2%, where z € {-3,-2,—1,...,8}

H.3 BERT

Details of BERT Prototype Our proxy model has 10 Transformer layers with d,04e1 = dffn =
256. We also reduce the number of attention heads to 8 with a dpeqq of 32. We call it BERT Prototype
since we can increase its width and depth according to our definitions to recover both BERT Base and
BERT Large, which enables us to sweep HPs once and use for both models. Overall, BERT Prototype
has 13M trainable parameters, a fraction of the 110M in BERT Base and the 350M in BERT Large.

Hyperparameters Tuned for Pretraining We tune the following HPs for pretraining: Adam
learning rate 1), embedding learning rate 7, output weight multiplier avgy¢py¢, attention logits
multiplier agysn, layernorm gain multiplier oy, n and bias multiplier ;.

gain?®

We sample 256 combinations from the follow grid:

o 7:1x107* x 2%, where z € {1.5,2,2.5,3,3.5}

* Nemp: 1 X 1074 x 2% where z € {—1,-0.5,0,0.5,1}
* Qoutpur: 2%, where z € {2,4,6}

* Quun: 2%, where z € {3,3.5,4,...,7}

* QLN,..,: 27, where z € {8.5,9,9.5,10,10.5}

* Qpigs: 2%, where z € {8.5,9,9.5,10,10.5}

The ranges are chosen to include the implicit choices of these HPs in SP BERT Large.

Finetuning Procedure and Hyperparameters We hand-pick the finetuning HPs after training the
full-sized model. As regularization is an essential ingredient in successful finetuning, we do not
transfer such HPs (at least via the suite of techniques presented in this work) (see Table 1). We focus
on MNLI [40] and QQP, which are two representative tasks from GLUE [38]. Following [22], we
used Adam [17] with a learning rate of 5 x 1075 and a batch size of 64. The maximum number of
epochs was set to 5. A linear learning rate decay schedule with warm-up of 0.1 was used. All the
texts were tokenized using wordpieces and were chopped to spans no longer than 128 tokens.

H4 GPT-3

Baseline 6.7B GPT-3 Transformer As the GPT-3 codebase has evolved since the publication of
[6], we re-trained the 6.7B model from scratch to remove changes in our codebase as a possible
confounder. The main difference to [6] is a modified learning rate decay schedule, where the learning
rate is decayed to zero at the end of training rather than being decayed to 0.1 of the initial value.

Random Search using Reduced-Width Proxy Model In order to find a good set of hyperparam-
eters for the pTransfer version of the 6.7B model, we performed a hyperparameter search over a
reduced version of the model (i.e., the proxy model), where the width is set to 256 hidden units.
This proxy model inherits changes from the evolved GPT-3 codebase: it uses relative [8] (instead of
absolute) position encoding. Early on, we noted that on the proxy model, linear learning rate decay
outperformed the default cosine schedule, so all subsequent experiments for the proxy models use a
linear decay schedule. By Fig. 4, pTransferring this linear decay schedule to the full model sould
maintain such a performance advantage over the cosine schedule.

The hyperparameter search space consists of the following hyperparameters:

* learning rate: Sampled from 10QUniform(—4,~1)
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Figure 14: Results of the random search over reduced-width proxy models trained on 4 (left) and 16
(right) billion tokens. Only the best performing runs are highlighted.

« initialization scale: All the parameters are multiplied - sampled from 10Vnform(=1,1)

* attention temperature: Reciprocal of the multiplier applied to the input to attention soft-
max. Sampled from 4Uniform(=1,1),

* output temperature: Reciprocal of the multiplier applied to the input to softmax that
produces the distribution over output tokens. Sampled from 4Unriform(—1,1)

* embedding multip}ier: Scalar by which we multiply the output of the embedding layer.
Sampled from 10Uriform(=1.1)

* relative position embedding multiplier: Scalar by which we multiply vectors representing
relative position. Sampled from 10Uriform(=1,1),

In order to make the search more efficient we reduced the total number of training tokens. We
hypothesized that tuning hyperparameters on a reduced total number of tokens does not significantly
affect optimal hyperparameters. To verify, we trained two different horizons and compared the results.
While the target model was to be trained on 300 billion tokens, we tuned the proxy model on only
subsets consisting of 4 billion and 16 billion tokens. This impacts both the total training time and and
the length of the linear learning rate decay schedule. Other than hyperparameters explicitly listed
above and the training horizon, the rest was the same as what we intended to use for the full width
6.7B training run.

Analyzing the Results of the Random Search We performed 467 training runs of the proxy
model, out of which 350 were for 4 billion tokens (286 completed without diverging) and 117 for
16b tokens (80 completed without diverging). See for summary of the results.

As suspected, we observed that the results are well-aligned for both 4 and 16 billion tokens versions.
We observe learning rate and initialization scale impact the results the most. Based on the results we
chose 0.006 for the former and 2.5 for the latter. Since most other hyperparameters appear to have
negligible effect on performance, they were kept at their default values of 1, the only exception being
the embedding scale, where higher values seem to perform better and it was therefore set to 10.

Training the yTransfer Model We encountered frequent divergences in our initial attempt to train
the pTransfer model. We traced the issue back to underflow of FP16 tensors in the backwards pass
and therefore switched to training the model in FP32. This allowed us to finish the training run
without divergences. We hypothesize that the divergence issue is related to pTransfer picking more
aggressive hyperparameters, for example a higher learning rate on linear weight tensors compared
to the original model. In order to exclude code differences as a possible confounder, we re-trained
GPT-3 6.7B from scratch using the original hyperparameters. The only difference compared to the
version published in [6] is that the learning rate was decayed fully, whereas the learning rate of the
model from [6] was only decayed to 10% of its starting value. The retrained model performs slightly
worse than the original published in [6]. We suspect that this is because it made less progress during
the last phase of training where the learning rate is close to zero. The training curves of the pTransfer
model and the re-run of the original 6.7B can be seen in|[Fig. 15 Detailed evaluation results can be
found in and
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Figure 15: The training curves of the GPT-3 6.7B model with yTransfer (orange) and a re-run
with the original settings from [6] (blue). The pTransfer model was trained using FP32 activations
and weights after initially encountering stability issues with the hyperparameters computed using
1P, while the re-run used the original FP16 training. The pTransfer model seems to underperform in
the middle of training, but achieves a much better final validation loss once the learning rate is fully
decayed. The pTransfer model uses a linear learning rate decay schedule while the original model
uses a cosine schedule.

Ratio of Tuning Cost to Pretraining Cost in FLOPs can be approximated as

S(thl + tQNQ)

ST ~ 0.07

where

s = 40 Million is number of parameters of the proxy model

S = 6.7 Billion is number of parameters of the target model

e t;1 = 4 Billion is the number of training tokens for the short horizon HP search, and
N; = 350 is the corresponding number of random HP search trials.

to = 16 Billion is the number of training tokens for the longer horizon HP search, and
N; = 117 is the corresponding number of random HP search trials.

e T = 300 Billion is the number of training tokens for the 6.7B target model.

Here we are using the fact that the training FLOPs of a Transformer per token is roughly proportional
to its number of parameters.

I Additional Experiments

I.1 Experiments on ResNets

I.1.1 ResNet on CIFAR-10

Setup For this case we use Davidnet [2], a ResNet variant that trains quickly on CIFAR-10, so as
to efficiently investigate its HP landscape. We train with SGD on CIFAR-10 for 10 epochs; all results
are averaged over 15 random seeds. We use a width multiplier to identify models of different width,
and a multiplier of 1 corresponds to the original model in [2]. We look at validation accuracy here as
the model barely overfits, and our observations will hold for the training accuracy as well. We first
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Table 8: Full evaluation results of our GPT-3 6.7B models: The new model tuned with pTransfer
(marked pP), the original model from [6], and a re-training of this model from scratch with the
original hyperparameter settings (marked re-run). The sampling-based evaluations shown here are
a subset of the ones from [6]. Since the sampling-based evaluations are subject to high variance,
Wikitext 103 and the LM 1B benchmark have been added to help distinguish the relative performance
of the ¢P and non-uP model. Note that Wikitext-103 [24] and the LM 1B [7] benchmarks overlap
with the training dataset. Accuracies and F1 scores have been multiplied by 100. The perplexities
reported in this table are based on a custom BPE encoding and are not comparable to other results in
the literature. The number k of examples in the context for each task is identical to [6].

Note: Zero-shot, One-Shot and Few-Shot refer to the number of additional query and answer pairs
passed in the context when performing the sampling-based evaluations, not the ”shots” involved in
hyperparameter transfer.

Zero-shot One-shot Few-shot
Task Split Metric uP [6] re-run P [6] re-run P [6] re-run
Validation dataset valid ce 1.98 2.03
PTB test  ppl 114 13.0
Wikitext 103 test  ppl 8.56 9.13
LMI1B test  ppl 20.5 21.7
HellaSwag dev  acc 720 674 667 711 665 659 724 673 664
LAMBADA test acc 735 703 708 699 654 648 747 791 77.1
StoryCloze test acc 794 777 773 80.6 787 783 842 812 8l.1
NaturalQS test acc 986 579 720 14.7 9.78 106 20.2 17.0 157
TriviaQA dev  acc 47.0 38.7 375 504 444 425 555 51.6 499
WebQS test acc 11.3 773 979 202 151 162 33.0 27.7 282
Ro—En 16 test BLEU-sb 26.9 875 13.7 365 342 335 382 362 356
En—Ro 16 test BLEU-sb 18.1 531 440 21.0 182 173 220 19.6 1838
Fr—En 14 test BLEU-sb 29.8 155 196 31.7 31.6 30.1 380 364 365
En—Fr 14 test BLEU-sb 29.6 114 11.6 288 283 260 333 333 312
De—En 16 test BLEU-sb 31.7 182 21.7 333 319 31.1 389 365 362
En—De 16 test BLEU-sb 23.1 936 9.00 24.6 217 21.1 276 241 245
Winograd test acc 853 857 868 846 846 842 864 854 839
Winogrande dev  acc 668 0645 625 676 658 645 710 674 672
PIQA dev  acc 791 780 780 773 763 769 792 778 717
ARC (Challenge) test acc 42,1 414 425 440 415 424 438 437 427
ARC (Easy) test acc 643 0602 619 653 626 634 673 658 653
OpenBookQA test  acc 544 504 526 564 53.0 528 584 552 544
Quac dev fl 418 36.1 382 431 390 395 440 399 399
RACE-h test acc 45.0 441 432 449 443 429 452 447 434
RACE-m test acc 584 544 540 579 547 538 58.6 554 554
SQuADv2 dev  fl 599 527 509 649 571 547 689 62.1 584
CoQA dev  fl 785 728 729 809 751 744 813 773 754
DROP dev f1 17.1  17.0 174 233 273 257 339 29.7 287
BoolQ dev  acc 694 654 609 741 68.7 650 739 70.0 69.7
CB dev  acc 214 286 375 60.7 339 321 625 607 66.1
Copa dev  acc 82.0 800 77.0 810 820 81.0 88.0 830 82.0
RTE dev  acc 552 552 462 61.0 549 588 527 495 599
WiC dev  acc 0. 0. 0. 50.0 503 503 505 531 513
ANLI R1 test acc 337 323 334 324 316 31.7 309 331 307
ANLI R2 test acc 338 335 330 348 339 337 350 333 322
ANLI R3 test  acc 327 348 334 348 331 333 369 339 323
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Table 9: Evaluation results comparing the GPT-3 6.7B model trained with pTransfer against the
twice as large GPT-3 13B model from [6]. The two models have similar performance on most of the
evaluation tasks.

Zero-shot One-shot Few-shot
Task Split Metric 6.7B+uP 13B[6] 6.7B+uP 13B[6] 6.7B+uP 13B[6]
HellaSwag dev acc 72.0 70.9 71.1 70.0 72.4 71.3
LAMBADA test acc 73.5 72.5 69.9 69.0 74.7 81.3
StoryCloze test acc 79.4 79.5 80.6 79.7 84.2 83.0
NaturalQS test acc 9.86 7.84 14.7 13.7 20.2 21.0
TriviaQA dev acc 47.0 41.8 50.4 51.3 55.5 57.5
WebQS test acc 11.3 8.22 20.2 19.0 33.0 33.5
Ro—En 16 test BLEU-sb  26.9 20.8 36.5 36.7 38.2 38.4
En—Ro 16 test BLEU-sb  18.1 6.43 21.0 20.8 22.0 21.8
Fr—En 14 test BLEU-sb 29.8 224 31.7 314 38.0 38.3
En—Fr 14 test BLEU-sb  29.6 15.3 28.8 30.1 333 35.5
De—En 16 test BLEU-sb 317 24.4 333 34.5 38.9 39.1
En—De 16 test BLEU-sb  23.1 11.0 24.6 23.3 27.6 27.7
Winograd test acc 85.3 87.9 84.6 86.1 86.4 82.4
Winogrande dev acc 66.8 67.9 67.6 66.9 71.0 70.0
PIQA dev acc 79.1 78.5 77.3 77.8 79.2 79.9
ARC (Challenge) test acc 42.1 43.7 44.0 43.1 43.8 44.8
ARC (Easy) test acc 64.3 63.8 65.3 66.8 67.3 69.1
OpenBookQA test acc 54.4 55.6 56.4 55.8 584 60.8
Quac dev fl 41.8 38.4 43.1 40.6 44.0 40.9
RACE-h test acc 45.0 44.6 44.9 44.6 45.2 45.1
RACE-m test acc 58.4 56.7 57.9 56.9 58.6 58.1
SQuADv2 dev fl 59.9 56.3 64.9 61.8 68.9 67.7
CoQA dev fl 78.5 76.3 80.9 77.9 81.3 79.9
DROP dev f1 17.1 24.0 233 29.2 33.9 323
BoolQ dev acc 69.4 66.2 74.1 69.0 73.9 70.2
CB dev acc 214 19.6 60.7 554 62.5 66.1
Copa dev  acc 82.0 84.0 81.0 86.0 88.0 86.0
RTE dev acc 55.2 62.8 61.0 56.3 52.7 60.6
WiC dev acc 0. 0. 50.0 50.0 50.5 51.1
ANLIR1 test acc 33.7 332 324 32.7 30.9 333
ANLI R2 test acc 33.8 33.5 34.8 339 35.0 32.6
ANLI R3 test acc 32.7 344 34.8 32.5 36.9 34.5

conduct a learning rate sweep for models of different widths using SP; the result is shown in [Fig. 16}
on the left.

Hyperparameter Stability Note that the best model with a width multiplier of 8 under-performs
that with a multiplier of 4. We run the same sweep with uP, along with a sweep of the output
multiplier ((tou¢pue); the result is shown in [Fig. 16} on the right. We notice that wider models always
perform better under ;P and that the optimal learning rate 7 and oy¢p.: are stable across width.

Hyperparameter Transfer Next, we perform a grid search for learning rate (1) and qoyipy:r OD
the 0.5x model for both SP and /,LPFE] Then, we take the best combination and test on the 8x model,
simulating how a practitioner might use yTransfer. The result is shown in where P
outperforms SP by 0.43% 4 .001%.

I.1.2 Wide ResNet on ImageNet

Setup For this case we use Wide-Resnet, or WRN [50], a ResNet variant with more channels per
layer, to further showcase pTransfer across width, i.e., number of channels. We train with SGD
on ImageNet for 50 epochs following standard data augmentation procedures. We use a width
multiplier to identify models of different width, and a multiplier of 1 corresponds to the original
WRN-50-2-bottleneck in [50].

%Here we tune the 0.5x model instead of the 1x model to simulate the situation that one does “exploratory
work” on the 1x model but, when scaling up, would like to tune faster by using a smaller proxy model.
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Figure 16: ResNet on CIFAR-10 for different widths (compared to a base network). On the left, the
widest network SP underperforms; on the right, the uP network has a more consistent HP landscape
and performs better. Both networks are tuned at the smallest width for the HP (1) or coy¢put) NOt in
the x-axis.

Table 10: CIFAR10: Transferring the best learning rate (1) and cvoyipy: from widening factor 0.5
to 8; uP significantly outperforms SP given the same search grid. The best HPs are different as the
models are parametrized to be identical at 1x WidthF?’-l

Transfer Setup  Bestn  Best aoutput  Valid. Acc. (0.5x)  Valid. Acc. (8x)

SP 0.707 4 92.82% 94.86%
upP 0.5 4 92.78% 95.29%

Hyperparameter Transfer We start with a proxy model with a width multiplier of 0.125 and tune
several HPs using the following grid:

o n: 1 x2.048 x 2%, where z € {—5,—4,-3,...,4}
* Qoutput: 10 X 2%, where z € {—5, -4, -3, ...,4}
* weight decay co-efficient y: 3.05 x 1075 x 2% where z € {—2, 1.5, —1,..., 1.5}
* SGD momentum j: 0.875 x 2%, where z € {—-2,—1.5,—1,..., 1.5}
The grid is centered around the default HPs used by [1] for ResNet-50; while not expected to be

competitive for WRN, they represent a reasonable starting point for our experiment.

We randomly sample 64 HP combinations from the grid and train for 50 epochs, before selecting
the one with the highest top-1 validation accuracy. Then, we scale up the model following both pP
and SP and run with the same HPs we just selected. The result is shown in where uP
outperforms SP by 0.41% in terms of top-1 validation accuracy.

Table 11: Imagenet: Transferring the best learning rate (1), &toutput, ¥, and 3 from widening factor
0.125 to 1; pP significantly outperforms SP given the same search grid.

Transfer Setup  Bestn  Best aoutput Besty  Best  Valid. Acc. (0.125x)  Valid. Acc. (1x)

Sp 32.768 .625 .000015 4375 58.12% 76.75%
upP 32.768 .625 .000015 4375 58.12% 77.16%

1.2 Experiments on Transformers

L.2.1 Verifying Transfer across Batch Size, Sequence Length, and Training Time on
Wikitext-2

See
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Figure 17: Empirical validation of y/Transfer for Post-LN Transformers. Same setting as Fig. 4.

L3 Post-Layernorm Transformers
shows the transferability of learning rate, cvoy¢put, initialization standard deviation, and Adam

B2 across width, batch size, sequence length, and training steps for post-layernorm Transformers.
However, in general, we find transfer across depth to be fragile.

L.3.1 Hyperparameter Instability of SP Transformers
Fig. 18]and [Fig. 20|show the HP instability inherent in SP Transformers.

J Implementing ;/Transfer in a Jiffy

As we have shown, one can enable yTransfer by just reparametrizing the desired model in Maximal
Update Parametrization (xP). While conceptually simple, switching from Standard Parametrization
(SP) to 1P can be error-prone, as popular deep learning frameworks are built around SP. We strive to
build a tool that fulfills two goals:

1. Minimize code changes when switching to pP;

2. Keep model behavior invariant, under this switch, at a given base model shape.

3]
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Figure 18: Post-layernorm Transformer with SP and pP on Wikitext-2. We sweep one HP across
width (d,04e1) at a time while keeping the rest fixed; we also scale dj,¢qq linearly with d,;,4q¢; and
fixing npead. Qoutput, Qattn are multipliers for output and key weights, and o is initialization standard
deviation. This yields unstable result for SP, as expected, where missing points/curves represent
divergence; in uP, the optimal HP choices stabilize as width increases.
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Figure 19: Empirical validation of Hyperparameter Transfer across Batch Size, Sequence
Length, and Training Time on pre-LN Transformers. Same setting as Fig. 4. Despite some
shift, the optimal HPs are roughly stable when transferring from batch size 32, sequence length 128,
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Table 12: Alternative (Equivalent) uP Formulation for Easier Implementation. Same format as
in Table 3. In contrast to the formulation in Table 3, here all “vector-like” parameters (i.e. those
that have only one dimension tending to infinity), including input and output weights and biases,
have the same width scaling for initialization variance and SGD/Adam LR (note the 1/fan_in for
input weight/bias init. var. is ©(1) in width). This has two benefits in practice: 1) implementation
is unified and simplified for all “vector-like” parameters; 2) input and output weights can now be
tied, in contrast to Table 3, which is a common design feature of Transformer models. Note that in
this table, for biases, the fan_in is 1 (compare to PyTorch nn . Linear default initialization of biases,
where fan_in refers to fan_in of the layer.)

Input weights & all biases Output weights Hidden weights
Init. Var. 1/fan7in 1 ( l/f;mjn) 1/fan7in
Multiplier 1 l/fanfin (@8] 1
SGDLR 7n-fan_out (1) n-fan_in () n
Adam LR 7 7 Nffan_in (7))

By model shape, we mean the collection of dimensions of all parameters of the model. The latter goal,
which we call parametrization backward compatibility, ensures that any code base works exactly as
before at the base model shape, similar to Eq. (4), e.g. the loss at any time step remains exactly the
same before and after the switch to uP. Of course, when widths start to differ from the base model
shape, the model behavior necessarily changes so that HPs can be transferred.

There are two common approaches to setting the base model shape: 1) If one intends to tune a large
target model, then the user can set the base model shape to be the shape of the target model (e.g.
BERT-large or T5-large), so that the target model itself is in standard parametrization. Then one
can tune a proxy model with e.g. width = 124 to obtain the optimal HPs for the target model. In
addition, if one wishes to scale up further e.g. width = 1024, then these HPs remain optimal. 2)
If one has done exploration on a new idea with a small model and now wishes to scale up, reusing
the HP found during this exploration, then one can set the base model shape to be the shape of the
exploratory small model. Of course, in both scenarios, depth, batch size, and sequence lengths can
be scaled up and down as well according to (though note that currently we require users to
recreate the base model shape at new depths, since the number of parameters now change with depth).

The mup Package We provide our tool as a Python package called mup designed to work with
PyTorch. The following example illustrates the usage of our package.
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Table 13: ;P Formulation in the Style of [45].
Input weights & all biases Output weights Hidden weights

Init. Var. l/fatLotlt (jl/’f;mjn) 1/fan7in 1/fan7in
Multiplier +/fan_out (1) Yyfann (1) 1
SGD LR n n n
Adam LR /(fan out (1)) n/fan_m (1)) M/tan_in (1))

mup.layers import MuReadout
from mup.shape i save_shapes, set_base_shapes
om mup.optim import MuSGD, MuAdam
ss MyModel(nn.Module):
def __init_ (self, width, ...):

readout = MuReadout(width, d_out)

def forward(self, ...):

attention_scores = query @ key.T / d

base_model = MyModel(width=1)

model = MyModel(width=100)

set_base_shape(model, base_model)

for param in model.parameters():

mup.init.uniform_(param, -0.1, 0.1)

optimizer = MuSGD(model.parameters(), 1lr=0.1)

What Happens in the mup Package Under the hood, mup implements the pP formulation in
By invoking set_base_shape (model, base_model), each parameter tensor p of model
gets a p.infshape attribute that stores, for each of its dimensions, the corresponding base dimension
and whether that dimension should be considered “infinite” (i.e. will be scaled up/down, e.g.,
dmoder Of a Transformer) or “finite” (i.e. will be fixed, e.g., vocabulary size). This information
is used in the initializers and optimizers to automatically scale the parameters or learning rates
to be compliant with ;P. For example, by [Table 12} the Adam learning rate of hidden weights p
is calculated as 7/p.infshape.width_mult (), where p.infshape.width_mult () essentially

calculates L2210
ase_fan_in

K Reverse-uTransfer for Diagnosing Training Instability in Large Models

Large Transformers are famously fickle to train [20, 29]. We note that a possible source of this
instability for larger transformers is the failure of naive hyperparameter transfer via the standard
parametrization. This is certainly consistent with Fig. 1, which shows that the optimal learning
rate for small Transformers can lead to trivial performance in large Transformers. We support this
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hypothesis further by reverse-uTransferring the instability-inducing HPs from a large Transformer to
a small one and replicating the training instability. This is shown in|[Fig. 21]

Practically, this reverse-pTransfer technique can be used to diagnose or debug training instability
problems of large models. We offer two case studies toward this claim.

1) When training transformers of width 8192 on Wikitext-2, we found certain HP combinations
caused divergence in the middle of training. We reverse-uTransferred one such HP combination to
a model of width 256 and replicated this divergence. By analyzing this small model’s activations
right before this divergence, we found that the cause is due to attention logits blowing up. Note this
debugging session proceeded much more quickly than if we directly worked with the large model.
Later we confirmed this is indeed the same cause of the width-8192 model’s divergence.

2) A 6B-parameter language model (in standard parametrization) in a separate project experienced
repeated blow-up in the middle of training. We reverse-pTransferred its hyperparameters to a smaller,
100M-parameter model and replicated the training instability. This was solved by a retuning of the
small model via random search.

75 Fix Hparam., Change Width 75 Fix Width, Change Hparam.
training instability Actual Width training instability Simqlated
7 \ 256 7.0 \ Width
6.5 512 256
a2 1024 w65 512
Seo0 2048 S 1024
2 —— 4096 2 6.0 2048
£33 — 812 £ — 4096
o © 5.5 — 8192
F 5.0 =
45 50
4.0 4.5
-20 -18 -16 -14 -12 -10 -8 =20 -18 -16 -14 -12 -10 -8
log,LearningRate log,LearningRate

Figure 21: Replicating training instability on a small Transformer by reverse-uTransferring
hyperparameters. These experiments concern 2-layer Transformers in Standard Parametrization
(SP) on Wikitext-2, trained with Adam, where width is defined as d,ode1 = dffr. (Left) LR-vs-
loss for wider and wider Transformers. (Right) Likewise for simulated width: Here each point
(logy m, loss) for simulated width n indicates the loss from training a width-256 yP Transformer
with base width n and LR 7 (i.e. loosely speaking, it’s using LR transferred from 7 in a width-n SP
Transformer). Takeaway: The overall shapes of the curves are identical between the left and right
plot in particular, a learning rate leads to instability in a wide model iff it does so when transferred
back to a narrow model.

L An Intuitive Introduction to the Theory of Maximal Update
Parametrization

In what follows, we seek to describe useful intuitions and rule of thumbs that would be helpful
to practitioners and empirical researchers alike in figuring out what is the right neural network
parametrization. The intuitions we shall describe regarding SGD can be made rigorous as in [44, 45];
those regarding Adam are new, and their formalization will be done in an upcoming paper.

L.1 Behaviors of Gaussian Matrices vs Tensor Product Matrices

Central to the derivation of P for any architecture are key insights on the behaviors of two kinds of
random matrices: 1) iid Gaussian random matrix and 2) tensor product matrix (by which we mean a
sum of outer products) and more generally what we call nonlinear tensor product matrix (see[Eq. (7)).
For example, a neural network, randomly initialized in the typical way, will have each weight matrix
look like the former. However, every step of training by gradient descent adds a sum of outer products
to this initial matrix, so that the change in weights constitute a tensor product matrix. For Adam,
the change in weights is not a tensor product but a more general nonlinear tensor product matrix
(see[Eq. (T)). In this section, we will particularly focus on the right scaling for the entries of such

% Note that the curves on the left are “lower” than curves on the right. This just reflects the increasing capacity
of wider models able to fit the training data better, so is orthogonal to our point.
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Table 14: Expected entry size of Av for different matrices A and vector v correlated with each other,
both having entries of size ©(1).

Standard Gaussian  (Nonlinear) Tensor Product Vector
AERan AERan AeRlxn
Entry size of Av O(y/n) O(n) O(n)

matrices, leading to a discussion of the right neural network parametrization in the next section. We
concentrate on the key heuristics but eschew burdensome rigor.

Key Insights Consider a random vector v € R™ with approximately iid entries and a random
matrix A of either size n X n or 1 X n, both having entries of size @(I)Egl In the context of deep
learning, v for example can be an activation vector in an MLP, a Gaussian A the hidden weights at
initialization, a (nonlinear) tensor product A the change in hidden weights due to training, and a
vector A the readout layer weights. Then Av corresponds to a part of the next layer preactivation
or the network output. To make sure the preactivations and the output don’t blow up, we thus need
to understand the scale of Av, especially in the general case where A is correlated with val This
is summarized in [Table T4] with the derivations below. Intuitively, a (nonlinear) tensor product or
vector A will interact with a correlated v via Law of Large Numbers, hence the n-scaling, while a
Gaussian A interacts with v via Central Limit Theorem, hence the /n-scaling.

In the derivations below, we answer a slightly different but equivalent question of “how to scale A
such that Av has entry size ©(1)?”

L.1.1 Preparation for the Derivations

By the results of [45], each (pre-)activation vector and its gradient vector in a multi-layer perceptron
have approximately iid coordinates in the large width limit}’”|and something similar can be said for
more advanced networks such as ResNet and Transformers’'| In particular, to each such vector v,
we can associate a random variable Z" that represents the coordinate distribution of v. If vector w is

correlated with v, then Z* will also be correlated with Z?, and lim,,_yoo v ' © /n=EZ"Z".

L.1.2 Linear Tensor Product Matrix (e.g. SGD Updates)

The case of (linear) tensor product matrix can be reduced to the outer product case by linearity. Given
u,v,z € R™ having approximately iid coordinates (of size ©(1)) like so, we can form the outer
product

Adéfu®v/n:uvT/n, (6)
which is the form of a single (batch size 1) gradient update to a weight matrix. Then, by Law of
Large Numbers,

Ar =u—— ~cu, where c=EZ"Z".

So Az also has approximately iid coordinates, distributed like Z4* f gug zvze, Likewise, if A is
a sum of outer products A = 2%, u' © v /n, then
k T k . )
Ax = Z uiu, with coordinates distributed as  Z4% = Z ZYEZV Z°.
i=1 " i=1

Notice that each coordinate of A has size ©(1/n). The above reasoning shows that, in order for Az
to have coordinate size ©(1) (assuming x does), then ©(1/n) is the right coordinate size for A, in

Zin the sense that the the variance of the entries are ©(1)

*Here “correlated” formally means v depends on W' in a Tensor Program. This essentially captures all
scenarios of “v correlated with W that occurs in deep learning.

30ur intuition here is derived from the assumption that width is much larger than training time; of course, as
illustrated by our myriad experiments, these intuition are very useful even when this is not the case, such as
when training to convergence.

31E.g. in a convnet, the (pre-)activations are iid across channels, but correlated across pixels
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the general case that v’ and x are correlated (as is generically the case during gradient descent, with
A = AW for some weights IV and x being the previous activations)[]

L.1.3 Nonlinear Tensor Product Matrix (e.g. Adam Updates)

When using Adam or another adaptive optimizer that normalizes the gradient coordinatewise before
applying them, we need to modify our argument slightly to obtain the right coordinate size scaling of
the matrix. The gradient update A, after such normalization, will take the form of

Anp =P(ul, ... ,ufi,vé, e ,vg), for some 1 : R?* — R and vectors u’, v/e R".  (7)

We say a matrix of this form is a nonlinear tensor product matrix.

First, note the tensor product matrices (e.g. the form of SGD update) discussed previously
Eq. (7)

already takes this form, with ¢ (ul, ..., uf, v}, ..., v5) = n~ (ulvg + -+ ufvk), so

is a strict generalization of linear tensor products. Next, for the example of Adam, each gradient
update is y/c where p (resp. o2) is the moving average of previous (unnormalized) gradients (resp.
the coordinatewise square of the same)FE] If these unnormalized gradients are the outer products
u! @ !, ..., u* ® v¥, then the update has coordinates

def i i F
(/.L/O')alg = w(u(lw s ,uﬁ,v};, s 7’015) = Z%‘Uavg/‘ /Zwl(uav5)27 3

where ~y; and w; are the weights involved in the moving averages.

Now suppose we have some A € R"*" of the form where u?, v* € R™ have approximately
iid coordinates (of size ©(1)), and ¢ = n~ 14 where v doesn’t depend on 7 (in terms of Adam where
th- @®)

1) corresponds to the v of | this corresponds to using a learning rate of 1/n). Then for z € R"
having approximately iid coordinates of size ©(1), by Law of Large Numbers,

(Ax), =

S|

n

- - 1 ky gpdef
Zw(ué,...,u};,v}g,...,vg)xﬁ ~Egul, .. uk zv 2252wk, ).
B=1

Here we made the obvious definition
U:RF SR, U(r,...,m) CEG(, . 2., 20 20,
Thus Az also has approximately iid coordinates (of size ©(1)),

def

zA gzt 7.

For example, in the SGD example with A = u ® v/n and 1 (uq, v5) = uavs, this formula gives
ZAT = U (Z%) where ¥(z) = zE Z Z*, recovering the earlier derivation.

In any case, the point here is that A has coordinate size ©(1/n), and this is the unique scaling that
leads to Az having coordinate size O(1).

L.1.4 Vector Case (e.g. Readout Layer)

The vector A case is similar to the tensor product cases above.

L.1.5 Gaussian Matrix (e.g. Hidden Weights Initialization)

Now consider the case where A € R™*™ is random Gaussian matrix with A,3 ~ N(0,1/n) and
x € R™ has approximately iid coordinates distributed like Z*. In the context of neural network
training, A should be thought of as a randomly initialized weight matrix, and « for example can be
taken to be an activation vector in the first forward pass.

*2In some corner cases when z is uncorrelated with v, then vz = @(,/n) by Central Limit, so actually
Az has ©(1/4/n) coordinates. However, this case does not come up much in the context of training neural
networks.

33 Adam also has bias correction for the moving averages which can be accomodated easily, but for simplicity
we omit them here.
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A Quick Intuition By standard random matrix theory, A has ©(1) operator norm with high
probability. Thus, with high probability, for any vector x, we have || Az| =~ ||z|, even if x is
correlated with A. If Az’s coordinates are “evenly distributed”, then this would imply Ax has ©(1)
coordinates if = does. However, this is not so clear. Below we provide intuitions for why this would
be the case.

Intuition for Evenness of Coordinate Distribution If x is independent from A (or sufficiently
uncorrelated), then each coordinate (Ax),, has variance E(Z%)? = ©(1) (so by definition has size
©(1)). Thus, here A having ©(1/4/n) coordinates leads to Az having ©(1) coordinates, in contrast
to the tensor product case above.

When z is correlated with A, it turns out the same scaling applies (©(1/+/n) is the unique scaling for
A’s entries such so that Az has ©(1) entries), but the reasoning is much more subtle: In the context
of neural network training, it turns out all scenario where z is correlated with A can be reduced
to the case where 2 = ¢(A Ty, ...) for some coordinatewise nonlinearity ¢ and some other vector

R”E[] Let’s consider a very simple example with x = AT 1 for the all 1s vector 1 € R™ (which has
coordinate size ©(1) as can be checked easily). Then, for each index « € [n], we can calculate

(AAT)a =) AapAyp =D Adp+ DY AapAys.
By B

B vFo

Since E A% ; = 1/n, by the Law of Large Number, the first sum )~ ; A2 ; ~ 1. On the other hand,
there are n summands of the form }___ , AasA+p, all iid with variance 2=l = ©(1/n). Thus by
the Central Limit Theorem, we expect 35>, AapAys ~ N (0, 1). Therefore, each coordinate
of (AAT1), looks like 1 + A(0,1) = N(1,1) and thus has size ©(1); again this is caused by A
having ©(1/+/n) coordinates.

This example can be generalized to more general x that is correlated with A, but the mathematics is
quite involved. See [44] for more details.

L.2 Deriving yP for Any Architecture

Armed with the insight from the last section, we now outline the key steps to derive uP in Table 3 for
any architecture. In practice, P implies the following desiderata

Desiderata L.1. At any time during training

1. Every (pre)activation vector in a network should have ©(1)-sized coordinatesﬁ]
2. Neural network output should be O(1).

3. All parameters should be updated as much as possible (in terms of scaling in width) without
leading to divergence.

Let’s briefly justify these desiderata. For the desideratum (1} if the coordinates are w(1) or o(1),
then for sufficiently wide networks their values will go out of floating point range. This problem is
particularly acute for low-precision formats that are essential for training large models such as BERT
or GPT. Moreover, a general nonlinearity is only well-behaved if its input is in a fixed range (although
this is not a problem for homogeneous nonlinearities like relu). For example, for tanh nonlinearity, if
the preactivation is vanishing o(1), then tanh is essentially linear; if the preactivation is exploding
w(1), then the tanh gradient vanishes.

For the desideratum 2] a similar justification applies to the numerical fidelity of the loss function and
loss derivative. Note that, with desideratum [3| this means the network output should be ©(1) after
training (but it can go to zero at initialization).

Finally, desideratum means that 1) we are doing “maximal feature learning” [45] and 2) every
parameter contribute meaningfully in the infinite-width limit. This ensures that learning rate “plays
the same role” in the finite-width case as in the infinite-width limit. For example, it prevents the
scenario where a weight matrix gets stuck at initialization in the limit for any learning rate (so

3*This is because every “reasonable” deep learning computation can be expressed in a Tensor Program.
%1n a convnet, a (pre-)activation vector corresponds to a single pixel across all channels; in general , we
expect (pre-)activations are iid across channels, but correlated across pixels
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learning rate does not matter) but evolves nontrivially in any finite-width network (so learning rate
does matter).

These desiderata will essentially uniquely single out pP. More formally, ¢P is the unique parametriza-
tion that admits feature learning in all parameters of the neural network [45], and this property
theoretically guarantees HP transfer across width (for sufficiently large width). However, for the sake
of reaching a broader audience, we will focus more on the intuitive derivations from the desiderata
rather than on this formal aspect.

Below, we first assume for simplicity that the width of every layer is n, and we focus only on dense
weights. Later, we will discuss convolutions and varying the widths between layers.

L.2.1 P Derivation From the Desiderata

Output Weights Suppose W € R'*" is an output weight. By desideratum the input z to W
has ©(1)-sized coordinates. Thus W should have ©(1/n) coordinates so that Wz = O(1). We
can initialize W with ©(1/n) coordinates and scale its (per-layer) LR so that AW has ©(1/n)
coordinates as well. This means initializing W5 ~ N (0,0(1/n?)) and use ©(1/n) learning rate
for both SGD and Adam.

Hidden Weights Consider a square weight matrix W € R™*". Desiderata [l| guarantees that the
input 2 to W has ©(1)-sized coordinates. Generally, 2 will be correlated with T¥. By [Table 14} we
can immediately derive

Initialization W should be randomly initialized with coordinate size ©(1/1/n)
LR The learning rate should be scaled so that AW has coordinate size ©(1/n)

so that (W + AW)z is O(1) if z is, inductively satisfying desideratum[I] With Adam, this just
means the per-layer LR is ©(1/n). With SGD and the scaling of output layers above, we can calculate
that the gradient of W has ©(1/n) coordinates, so the ©(1) SGD LR derived above suffices as well.

Input Weights Suppose W € R™*? is an input weight. To satisfy desideratum (i.e. for any
input £, W¢ should have O(1) coordinates), we want W to have ©(1) coordinates. We can initialize
W with ©(1) coordinates and scale its (per-layer) LR so that ATV has ©(1) coordinates as well.
This implies initialization variance of ©(1) (or ©(1/fan_in) since fan_in = ©(1) here) and Adam
learning rate ©(n). As above, we can calculate that the gradient of W has ©(1/n) coordinates, so
we want SGD learning rate O(n).

Biases Biases follow the same reasoning as input weights (just think of it as an input weight with
input 1).

Attention Suppose the key dimension dj, is tending to infinity with width with number of heads
Nhead fixed. Then the key-query contraction gk € R scales like ©(dy,) by Law of Large Numbers
(instead of Central Limit Theorem because ¢ and k are generally correlated) and desideratum T} hence
the 1/d;, we propose rather than 1/+/d,.

Now suppose instead that np.q,q tends to infinity with width with dy fixed. Let K,Q €
RNXdkXNhead |/ ¢ RN XdvXThead pe keys, queries, and values across all heads and tokens. Think-
ing of N X dj as constants, we may view attention as a nonlinearity coordinatewise in the npeqq
dimension. Then it’s clear that our parametrization described above already works.

Finally, we may freely let dj, and np,.4 both tend to infinity, and the above reasoning shows that our
parametrization still works.

Changing Width Ratios As noted above, at any time in training, every (pre-)activation vector will
have approximately iid coordinates (of order ©(1) by desideratum El) Another desideratum for pP is
to ensure that this coordinate distribution (at any particular time) stays roughly invariant as widths
increases. When all layer widths are tied, this is automatic if the other desiderata are satisfied, hence
why we did not list this above.

When width ratios vary, this is not automatic. In this case, we need to choose whether to replace each
n with fan-in or fan-out (or some function of them). Making the wrong choices will let the coordinate
distributions vary with width ratios.
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Obviously, we should replace n with fan-in for the output layers and with fan-out for the input layers
since they are the only dimension scaling with n. For the hidden weights, we replace n with fan-in
so that the forward pass is preserved. When using Adam (and assuming the initialization of W is
quickly dominated by the change in W), this ensures that the (pre-)activation coordinate distributions
are preserved at any time during training even if we vary widths in different layers differently. (For
SGD this doesn’t quite work in general because the varying width ratios change the gradient sizes of
different layers differently, whereas Adam always normalizes the gradient coordinatewise).

Convolution A convolution weight tensor W ¢ Rfan-outxfan_inxsixs2 with kernel size s; x so
can be thought of just as a s155 = ©O(1)-sized collection of fan_out x fan_in dense weights. Then
all of our discussions above apply accordingly.

L.3 Why Other Parametrizations Cannot Admit Hyperparameter Transfer

Standard Parametrization (SP) SP doesn’t work essentially because it leads to blow-up in the
infinite-width limit.

1. For Adam with LR ©(1), AW would have ©(1) coordinates, causing preactivations to blow
up like ©(n) by Desideratum|]] and We can avoid this blowup with LR O(1/n),
but this induces a non-maximal feature learning limit, which, as we argue below, cannot
transfer hyperparameters in all situations.

2. For SGD, the gradient of R™*" weight has ©(1/y/n) coordinates, so ©(1) learning rate
would make preactivation scale like ©(y/n) and hence blow up. If we use ©(1/width)
learning rate, then blow-up does not occur. However, this infinite-width limit is in the kernel
regime [45] and thus does not allow HP transfer for the same reason that NTP below does
not.

Neural Tangent Parametrization (NTP) We have concrete examples, e.g. Word2Vec in [45],
where the NTK limit has trivial performance — so HPs have no effect at all — vastly outperformed
by finite-width networks — where HPs matter. More importantly, wider does not always do better
in NTP, especially in tasks where feature learning is crucial [45]. So in the context of modern deep
learning e.g. large language model pretraining, NTP (or SP with O(1/width) LR) does not make
sense for wide neural networks.

Other Parametrizations Recall the Dynamical Dichotomy Theorem proven in [45], which says
that any nontrivial stable “natural parametrization” (formally, “abc-parametrization,” [45]) either
admits a feature learning limit or a kernel limit, but not both.

Our argument above against SP and NTP will also work against any parametrization inducing a kernel
limit. Therefore, it remains to ask, can other feature learning parametrizations transfer HPs?

We argue no. As shown in [45], any other feature learning parametrization differs from uP essentially
only in that some parameters are not updated maximally. By [45, Sec 6.4], in the infinite-width limit,
such parameters can be thought of as being fixed at initialization. Therefore, in such infinite-width
limits, the learning rate of such parameters becomes useless. Therefore, we cannot hope for the HP
landscape of the limit to reflect the HP landscape of finite-width neural networks.

P is the unique feature learning parametrization that updates all parameters maximally, so that the
learning rate of each parameter plays approximately the same role in finite-width neural networks
as in the infinite-width limit. Consequently, the HP landscape of the pP limit should reflect the HP
landscape of finite-width neural networks.
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