
A Practical Considerations

In this section, we outline several useful tips and tricks that can improve the quality of hyperparameter
transfer in practice.

A.1 Zero Initialization for Output Layers

We find that the optimal hyperparameters of small and large width models match more closely when
we initialize output layers at 0 (i.e. with variance σ2/fan_in where σ = 0 instead of positive σ).
This is because the neural network in µP is approximately a Gaussian process (GP) at initialization
with variance on the order Θ(σ2/width) (contrast this with SP networks, which approximates a GP
with Θ(σ2) variance) [41, 45]. Of course, when width is large, this variance vanishes, but this can
be far from so in the small proxy model. This discrepancy in the initial GP can cause the training
trajectory of the proxy model to be very different from the trajectory of the large target model,
causing a mismatch in the optimal hyperparameters. By initializing the output layer at 0, we remove
this mismatch in the initial GP. Empirically we do not find this modification to be detrimental to
performance.

A.2 Activation Functions
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Figure 6: Squashing activation functions reduce transfer quality. MLP of different hidden sizes
with tanh activation trained for 20 epoch on CIFAR-10 using SGD. Left uses cross-entropy as loss
function; right uses mean square error; columns alternate between standard parametrization (SP) and
maximal update parametrization (µP). Compared to ReLU, tanh exhibits slower convergence for µP,
yet it still outperforms SP when width is increased

When the network is narrow, its approximation to the infinite-width behavior becomes crude, which
is manifested as large fluctuations in preactivation coordinates. When using a squashing activation
functions like softmax or tanh, this causes narrower networks to saturate the activation more than
wider ones, which results in a systematic bias in the gradients and therefore the hyperparameter
landscape. This can be seen in Fig. 6, where we use tanh as the network activation function.

Therefore, we recommend replacing non-essential squashing activation functions with ReLU, whose
derivative depends only on the sign of the pre-activation. A similar reasoning can be applied to
superlinear activation functions, where the distribution of activation values can have heavy tails,
leading to slow convergence to the infinite-width limit. However, such activations are rarely used in
practice.

A.3 Enlarge dk

We find that small dhead = dk can lead to a highly noisy HP landscape, as shown in Fig. 7. This
can significiantly decrease the quality of random HP search on the small proxy model. To solve this,
we find it useful to decouple dk from dmodel (so that dmodel 6= dk · nhead) and maintain a relatively
large dk even as dmodel is shrunk in the proxy model. For example, pegging dk = 32 is generally
effective. Training or inference speed are not usually affected much by the larger dk because of
CUDA optimizations. By Appendix G.2, this decoupling of dk from dmodel is theoretically justified,
and as shown in Fig. 7, it significantly denoises the HP landscape.

A.4 Non-Gaussian vs Gaussian Initialization

We find non-Gaussian (e.g. uniform) initialization can sometimes cause wider models to perform
worse than narrower models, whereas we do not find this behavior for Gaussian initialization. This is
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Figure 7: Enlarging dk makes µTransfer more precise. Here we plot all curves after subtracting
their minima for easier visual comparison. Transformer on IWSLT 14 similar to the setup in Ap-
pendix H.1 where the dmodel = 512 for a width multiplier of 1, nhead = 4, and dq = dk. (Left) We
leave dq = dk = dmodel/nhead, so dk = 8 for width-multiplier 0.0625. The optimum for the attention
logit multiplier cattn is noisy and does not accurately transfer across width. (Right) We enlarge
dq = dk to a minimum of 128. The HP landscape is much smoother than in (Left), and the optima
align between narrow and wide models.
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Figure 8: Logits and attention logits, but not word embeddings, of a Transformer blow up with
width in SP after 1 step of training. In contrast, all three are well-behaved with width in µP. Here
we measure how much different values change coordinatewise from initialization over 4 steps of
Adam updates, as a function of width. Specifically, we plot the standard deviation of the coordinates
of xt − x0, for t = 0, . . . , 4, and x ∈ {logits, attention logits, word embeddings}, where t = 0
indicates initialization.

consistent with theory, since in the large width limit, one should expect non-Gaussian initialization
will behave like Gaussian initializations anyway (essentially due to Central Limit Theorem, or more
precisely, universality), but the non-Gaussianity slows down the convergence to this limit.

A.5 Using a Larger Sequence Length

For Transformers, we empirically find that we can better transfer initialization standard deviation
from a narrower model (to a wide model) if we use a larger sequence length. It is not clear why this
is the case. We leave an explanation to future work.

B The Defects of SP and How µP Fixes Them

The question of SP vs µP has already been studied at length in [45]. Here we aim to recapitulate the
key insights, with more explanations given in Appendix L.3.

An Instructive Example As shown in [45] and Appendix L.3, in SP, the network output will blow
up with width after 1 step of SGD. It’s instructive to consider a 1-hidden-layer linear perceptron
f(x) = V >Ux with scalar inputs and outputs, as well as weights V,U ∈ Rn×1. In SP, Vα ∼

16



N (0, 1/n) ad Uα ∼ N (0, 1) for each α ∈ [n]. This sampling ensures that f(x) = Θ(|x|) at
initialization. After 1 step of SGD with learning rate 1, the new weights are V ′ ← V + θU,U ′ ←
U + θV , where θ is some scalar of size Θ(1) depending on the inputs, labels, and loss function. But
now

f(x) = V ′>U ′x = (V >U + θU>U + θV >V + θ2U>V )x (5)

blows up with width n because U>U = Θ(n) by Law of Large Numbers.

Now consider the same network in µP. According to Table 3, we now have Vα ∼ N (0, 1/n2) in
contrast to SP, but Uα ∼ N (0, 1) as before, with learning rates ηV = 1/n, ηU = n. After 1 step of
SGD, we now have

f(x) = (V >U + θn−1U>U + θnV >V + θ2U>V )x,

and one can verify this is Θ(1) and thus does not blow up with width.19

Some Layers Update Too Fast, Others Too Slow One can observe the same behavior in more
advanced architectures like Transformers and optimizers like Adam; in fact, in SP, other hidden
quantities like attention logits will also blow up with width after 1 step, but in µP still remain bounded,
as shown in Fig. 8(middle).

One might think scaling down the learning rate with width can solve this problem in SP. However,
other hidden activations like the word embedding (Fig. 8(right)) in a Transformer update by a width-
independent amount for each step of training, so scaling down the learning rate will effectively mean
the word embeddings are not learned in large width models. Similar conclusions apply to other
models like ResNet (in fact, one can observe in the SP linear MLP example above, the input layer
is updated much more slowly than the output layer). On the other hand, µP is designed so that all
hidden activations update with the same speed in terms of width (see Appendix L.2 for why).

Performance Advantage of µP This is why a wide model tuned with µTransfer should in general
outperform its SP counterpart with (global) learning rate tuned. For example, this is the case for
the width-8192 Transformer in Fig. 1, where, in SP, the optimal learning rate needs to mollify the
blow-up in quantities like logits and attention logits, but this implies others like word embeddings do
not learn appreciably. This performance advantage means µTransfer does more than just predicting
the optimal learning rate of wide SP models. Relatedly, we observe, for any fixed HP combination,
training performance never decreases with width in µP, in contrast to SP (e.g., the µP curves in
Figs. 1, 3 and 16 do not cross, but the SP curves do; see also Appendix D).

C Parametrization Matters: A Primer for Multiple Hyperparameters

Here we give more intuition why we need to reparametrize all hyperparameters. In practice, neural
networks have multitudes of hyperparameters all interacting together. In our example of Section 2,
hyperparameter optimization would be akin to minimizing the function20

Fn(c1, . . . , ck)
def
= E

x1,...,xn

f((c1 + · · ·+ ck)(x1 + · · ·+ xn)).

where x1, . . . , xn are as in Eq. (1) and c1, . . . , ck are analogous to k hyperparameters. For the same
reasoning in Section 2, the correct parametrization is in (α1, . . . , αk) where αi = ci

√
n.

While this is straightforward, in practice, researchers often fix some hyperparameters (e.g., they tune
only learning rate but neglects to scale parameter multipliers or initialization correctly). For example,
if we only partially reparametrize and optimize in α1 while fixing c2, . . . , ck, then the optimal α1 is
(α1)∗ = α∗− (c1 + . . .+ ck)

√
n where α∗ is the optimal α for Eq. (1). Thus, as n→∞, (α1)∗ still

blows up even though we parametrized α1 correctly. More generally, the incorrect parametrization
of some hyperparameters forces other hyperparameters to increasingly compensate for it as width
grows, distorting their optima, even if the latter are correctly parametrized.

19Note in this example, Glorot initialization [10] (i.e. with variance 1/(fan_in + fan_out)) would scale
asymptotically the same as µP and thus is similarly well-behaved. However, if one adds layernorm or batchnorm,
then Glorot will cause logit blowup like SP, but µP still will not.

20Here, for simplicity of the example, we model the interaction between “hyperparameters” c1, . . . , ck as
additive, but in real neural networks such interactions are usually much more complicated.
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Figure 9: Wider is always better in training loss under µP, but not in SP, given the same HP.
Learning curves for µP and SP with different learning rates, aggregated over 5 seeds. (Left) Wider
µP models always achieve better training loss at any time in training. (Middle) If using a small
learning rate, SP models can appear to do so up to some large width, at which point the pattern fails
(at width 2048 in our plot). (Right) If using a large learning rate, SP model can do worse with width;
here the SP model is identical to the µP model in (Left) at width 128.
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Figure 10: Stress-testing “wider-is-better” in µP.
Here we trained a GPT-3 transformer with 4 layers
and widths from 256 to 32,768. Modulo a brief
period around 1e8 training tokens, wider is better
throughout training.

In earlier plots like Figs. 1 and 3, we saw that
at the end of training, wider is always better
in µP but not in SP. In fact, we find this to
be true throughout training, as seen in Fig. 9,
modulo noise from random initialization and/or
data ordering, and assuming the output layer is
zero-initialized (which has no impact on perfor-
mance as discussed in Appendix A.1). We then
stress-tested this on a µP GPT-3 Transformer
(on the GPT-3 training data) by scaling width
from 256 to 32,768 using a fixed set of HPs
(Fig. 10). Wider models consistently match
or outperform narrower models at each point
in training (except a brief period around 1e8
training tokens, likely due to noise because
we ran only 1 seed due to computational cost).
Our observation suggests that wider models are
strictly more data-efficient if scaled appropri-
ately. By checking “wider-is-better” early in
training, one can also cheaply debug a µP implementation.

E Useful Hyperparameter Transfer: A Theoretical Puzzle

We want to tune HPs on a small model with width N such that its HP landscape looks like that of
a large model with width� N . Our intuition in Section 2 and Appendices C and L leads us to µP.
However, for this to be useful, we do not want the small model (as a function) after training to be
close to that of the large model — otherwise there is no point in training the large model to begin
with. So N 1) must be large enough so that the HP optimum converges, but 2) cannot be so large
that the functional dynamics (and the loss) converges. The fact that such N exists, as demonstrated
by our experiments, shows that: In some sense, the HP optimum is a “macroscopic” or “coarse”
variable which converges quickly with width, while the neural network function (and its loss) is a very
“microscopic” or “fine” detail that converges much more slowly with width. However, theoretically,
it is unclear why this should happen, and where else we should expect such useful HP transfer. We
leave an explanation to future work.
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F Detailed Discussions on Related Works

F.1 Hyperparameter Tuning

Many have sought to speedup HP tuning beyond the simple grid or random search. Snoek et al.
[34] treated HP tuning as an optimization process and used Bayesian optimization by treating the
performance of each HP combination as a sample from a Gaussian process (GP). Snoek et al. [35]
further improved the runtime by swapping the GP with a neural network. Another thread of work
investigated how massively parallel infrasture can be used for efficient tuning under the multi-arm
bandit problem [15, 18]. There are also dedicated tools such as Optuna [4] and Talos [3] which
integrate with existing deep learning frameworks and provide an easy way to apply more advanced
tuning techniques.

Our approach is distinct from all of the above in that it does not work on the HP optimization process
itself. Instead, it decouples the size of the target model from the tuning cost, which was not feasible
prior to this work. This means that no matter how large the target model is, we can always use a
fixed-sized proxy model to probe its HP landscape Nevertheless, our method is complementary,
as the above approaches can naturally be applied to the tuning of the proxy model; it is only for
scientific reasons that we use either grid search or random search throughout this work.

F.2 Previously Proposed Scaling Rules of Hyperparameters

(Learning Rate, Batch Size) Scaling [33] proposed to scale learning rate with batch size while
fixing the total epochs of training; [11] proposed to scale learning rate as

√
batchsize while fixing

the total number of steps of training. However, [31] showed that there’s no consistent (learning
rate, batch size) scaling law across a range of dataset and models. Later, [23] studied the trade-off
of training steps vs computation as a result of changing batch size. They proposed an equation of
a/(1 + b/batchsize), where a and b are task- and model-specific constants, for the optimal learning
rate (see their fig 3 and fig 5). This law suggests that for sufficiently large batch size, the optimal
learning rate is roughly constant.21 This supports our results here as well as the empirical results in
[31, fig 8].

Learning Rate Scaling with Width Assuming that the optimal learning rate should scale with
batch size following [33], [26] empirically investigated how the “noise ratio” LR/batchsize scales
with width for MLP and CNNs in NTK parametrization (NTP) or standard parametrization (NTP)
trained with SGD. They claimed that, in networks without batch normalization, the optimal noise
ratio is constant in SP but scales like 1/width for NTP. However, they found this law breaks down
for networks with normalization.

Here in our work, Fig. 3 contradicts their results on SP MLP by showing the optimal learning rate
(fixing batch size) shifts with width. We believe this difference is 1) due to their erroneous assumption
that optimal learning rate scales with batch size (as debunked by [23, 31]) and 2) because their SP
experiments were done by fixing the learning rate and only sweeping batch size.

Furthermore, Fig. 1 clearly shows the optimal learning rate is not constant in SP for Transformers
(trained with Adam). Other differences in our works include our applicability to 1) networks with
normalization, 2) Adam and other adaptive optimizers, 3) our empirical validation of transfer across
depth and sequence length, and 4) explicit validation of tuning via µTransfer on large models like
BERT-large.

Finally, as argued in [45] and Appendix L.3, SP and NTP lead to bad infinite-width limits in contrast
to µP and hence are suboptimal for wide neural networks. For example, sufficiently wide neural
networks in SP and NTP would lose the ability to learn features, as concretely demonstrated on
word2vec in [45].

Input Layer Parametrization While typically, the input layer is initialized with fanin initialization,
in language models where the input and output layers are shared (corresponding to word embeddings),
it can actually be more natural to use a fanout initialization (corresponding to fanin initialization of

21while the optimal learning is roughly linear in batch size when the latter is small
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the output layer). In fact, we found that fairseq [25] by default actually implements our proposed
input layer parametrization (both the fanout initialization and the

√
fan_out multiplier).22

From the Theory of Infinite-Width to the Practice of Finite-Width Neural Networks and Back
[45] introduced µP as the unique parametrization that enables all layers of a neural network to learn
features in the infinite-width limit, especially in contrast to the NTK parametrization [14] (which
gives rise to the NTK limit) that does not learn features in the limit. Based on this theoretical insight,
in Appendix L.3, we argue that µP should also be the unique parametrization that allows HP transfer
across width; in short this is because it both 1) preserves feature learning, so that performance on
feature learning tasks (such as language model pretraining) does not become trivial in the limit, and
2) ensures each parameter tensor is not stuck at initialization in the large width limit, so that its
learning rate does not become meaningless. At the same time, our results here suggest that µP is
indeed the correct parametrization for large neural networks and thus provide empirical motivation
for the theoretical study of the infinite-width µP limit.

G Which Hyperparameters Can Be Transferred? (Continued)

G.1 Further Discussions on Hyperparameter Categories

Below, we discuss the reasoning behind each kind, which are supported by our empirical evidence
collected in Fig. 4 on Transformers as well as those in Appendix I.1 on ResNet.

Transferable Hyperparameters In Table 2, we summarize which HPs can be transferred across
training scale. The transfer across width, as explained in Section 2, is theoretically justified, while we
present the transfer across the other dimensions as empirical results.

These cover most of the well-known and important HPs when the need for regularization is not
paramount, e.g., during large scale language model pretraining. Parameter Multipliers are not well-
known HPs, yet we include them here as they serve a bridge between SP and µP and can impact
model performance in practice. Concretely, any SP and µP neural networks of the same width can
have their Parameter Multipliers tuned so that their training dynamics become identical.

Hyperparameters That Don’t Transfer Well Not all HPs transfer well even if we use µP. In
particular, those whose primary function is to regularize training to mitigate “overfitting" tend not to
transfer well. Indeed, intuitively, regularization needs to be applied more heavily in larger models, so
naturally we do not expect the same regularization HPs to stay constant across model sizes.

To the best of our knowledge, there is no strict separation between HPs that regularize and those that
don’t. However, conventional wisdom tells us that there exists a spectrum of how much regularizing
effect a HP has. For example, dropout probability and weight decay are among those whose primary
function is to regularize, whereas batch size and learning rate might regularize training in some cases
but affect the dynamics more so in other ways. Our empirical exploration tells us that the former do
not transfer well, while the latter do. Our subsequent discussion will focus on the latter; we leave to
future works the expansion to the former.

Hyperparameters Transfered Across We have left out a category of HPs that defines the training
scale, or in practical terms, training cost. This includes 1) those that define how many operations a
model’s forward/backward pass takes, such as the model’s width, depth, and in the case of language
modeling, sequence length; and 2) those that define how many such passes are performed, such as
batch size and number of training steps.

As recent works have shown [6, 16], improvements along any of these scale dimensions lead to
apparently sustainable gain in performance; as a result, we are primarily interested in transferring
other HPs across these dimensions that define scale, rather than finding the optimal scale.23 This
category of HPs is particularly crucial as one can speedup training by downsizing in one or multiple

22But it certainly does not implement other parts of our parametrization, like Adam learning rate scaling or
the output multiplier.

23In particular, we are not fixing the total training FLOPs when we scale, which requires understanding the
tradeoff of different scale HPs. For example, when we transfer across batch size, we fix the number of steps of
training (not the number of epochs), so that the total FLOPs scales linearly.

20



𝑊𝐾 𝑊𝑄
𝑊𝑉

𝑑𝑘 𝑑𝑘 𝑑𝑣

Self-attn (paramless)

𝑊𝑂

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑓𝑛

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑚𝑜𝑑𝑒𝑙

Sk
ip

 c
o

n
n

ec
ti

o
n

Sk
ip

 c
o

n
n

ec
ti

o
n

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑓𝑛

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑣 ⋅ 𝑛ℎ𝑒𝑎𝑑

𝑛𝑜. ℎ𝑒𝑎𝑑𝑠 = 𝑛ℎ𝑒𝑎𝑑

Sk
ip

 c
o

n
n

ec
ti

o
n

Sk
ip

 c
o

n
n

ec
ti

o
n

(a) Single-head attention (b) Multi-head attention

Figure 11: Schematics of each Transformer layer. Commonly, the key and value dimensions dk and
dv are both set to dmodel/nhead, and this is referred to as dhead.

such dimensions. Indeed, it’s very common for practitioners to implicitly transfer HPs across the
number of training samples by tuning on only a subset of the full training data.

Our insights from the infinite-width limit inspired us to explore HP tranfer across width, which
does not work under SP as we have shown earlier. Building upon our success with width, which
is well explained theoretically, we hope to push the limit of compute-saving by investigating the
other dimensions empirically. To the best of our knowledge, the transferability of optimal HPs across
depth, batch size, sequence length, and training time has not been rigorously investigated previously,
with the main exception of the literature on (learning rate, batch size) scaling [31, 33] where our
transferability result of learning rate across batch size recapitulates [23].24 See Appendix F.2 on how
our results relate to prior works. We will primarily focus on the Transformer architecture in the main
text with evidence for ResNet in Appendix I.1.

G.2 On the Definitions of Width

Our theory allows more general notions of width. This is especially relevant in Transformers,
where dmodel, dhead = dk, dv, nhead, dffn (see Fig. 11) can all be construed as measures of width.
We briefly discuss these here, with more theoretical justification in Appendix L.2.1 and empirical
validation below.

Varying Width Ratio So far we have assumed that every hidden layer is widened by the same
factor. But in fact we can widen different hidden layers differently. This is useful, for example, in a
Transformer where we may want to use a smaller dffn during tuning. If we are using Adam, as long
as the width of every layer still tends to infinity, we still obtain approximately the same limit25, so the
µTransfer remains theoretically justified.

See Fig. 12 for an empirical validation on IWSLT-14 using a Transformer.

Number of Attention Heads In attention-based models, one typically splits hidden size into
multiple attention heads following dmodel = dhead × nhead. So far we have assumed dhead and
dmodel to be width, but it’s possible and potentially advantageous to fix dhead and treat nhead as
the width, or increasing both simultaneously. This allows our technique to handle many popular
models, including GPT-3 [6], which scale up by fixing dhead and increasing nhead. See Fig. 13 for
an empirical validation on Wikitext-2.

24There’s also a literature on the proper initialization for training deep networks effectively (e.g. [5, 13, 21,
30, 47, 48, 51]), but they do not study the transferability per se. See Appendix F.2

25This also applies for SGD, but we need more involved scaling to keep the limit approximately the same.
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multipliers for output and key weights, and σ is initialization standard deviation.

Varying Just the Width of Attention Heads A specific useful instance of varying width ratio is
decoupling the key and value dimensions dk and dv and scaling dk differently from (typically larger
than) dmodel/nhead. This works as long as we use 1/d scaled-attention as in Definition 4.1 (instead
of 1/

√
d as is done commonly). When tuning on the small proxy model, if dk is too small, the HP

landscape can be quite noisy. Keeping dk relatively large while shrinking all other dimensions solves
this problem, while still obtaining significant speedup.

H Experimental Details

H.1 IWSLT

IWSLT14 De-En is a well-known machine translation benchmark. We use a Transformer implemented
in fairseq [25] with a default dmodel = 1/4dffn = 512 and dk = dq = dv = dmodel/nhead = 128
(amounting to 40M parameters), which we denote as the 1x model. For transfer, we tune on a proxy
model with the same nhead but with dmodel and other dimensions 4 times smaller; we will call this
the 0.25x model (but it has 4M parameters). All models are trained with Adam for 100 epochs and
validated at the end of every epoch. We tune via random search the learning rate η, the output layer
parameter multiplier αoutput, and the attention key-projection weight multiplier αattn following the
grid

• η: 5× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}
• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}
• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}

H.2 WMT

We scale up to WMT14 En-De using the large Transformer from [37], with a dmodel = 1/4dffn =
1024 and dq = dk = dv = dmodel/nhead = 64. We use the exact same setup and reproduce their
result as our baseline. Then, we build the proxy model by shrinking the target model’s dmodel from
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the original 1024 to 256, dffn from 4096 to 256 and nhead from 16 to 4. This reduces the total
parameter count from 211M to 15M. We then perform the HP search on the proxy model and take the
best according to validation loss, before testing on the target model. We tune via random search the
learning rate η, the output layer parameter multiplier αoutput, and the attention key-projection weight
multiplier αattn following the grid

• η: 6× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}
• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}
• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}

H.3 BERT

Details of BERT Prototype Our proxy model has 10 Transformer layers with dmodel = dffn =
256. We also reduce the number of attention heads to 8 with a dhead of 32. We call it BERT Prototype
since we can increase its width and depth according to our definitions to recover both BERT Base and
BERT Large, which enables us to sweep HPs once and use for both models. Overall, BERT Prototype
has 13M trainable parameters, a fraction of the 110M in BERT Base and the 350M in BERT Large.

Hyperparameters Tuned for Pretraining We tune the following HPs for pretraining: Adam
learning rate η, embedding learning rate ηemb, output weight multiplier αoutput, attention logits
multiplier αattn, layernorm gain multiplier αLNgain

, and bias multiplier αbias.

We sample 256 combinations from the follow grid:

• η: 1× 10−4 × 2z,where z ∈ {1.5, 2, 2.5, 3, 3.5}
• ηemb: 1× 10−4 × 2z,where z ∈ {−1,−0.5, 0, 0.5, 1}
• αoutput: 2z,where z ∈ {2, 4, 6}
• αattn: 2z,where z ∈ {3, 3.5, 4, ..., 7}
• αLNgain

: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}
• αbias: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}

The ranges are chosen to include the implicit choices of these HPs in SP BERT Large.

Finetuning Procedure and Hyperparameters We hand-pick the finetuning HPs after training the
full-sized model. As regularization is an essential ingredient in successful finetuning, we do not
transfer such HPs (at least via the suite of techniques presented in this work) (see Table 1). We focus
on MNLI [40] and QQP, which are two representative tasks from GLUE [38]. Following [22], we
used Adam [17] with a learning rate of 5× 10−5 and a batch size of 64. The maximum number of
epochs was set to 5. A linear learning rate decay schedule with warm-up of 0.1 was used. All the
texts were tokenized using wordpieces and were chopped to spans no longer than 128 tokens.

H.4 GPT-3

Baseline 6.7B GPT-3 Transformer As the GPT-3 codebase has evolved since the publication of
[6], we re-trained the 6.7B model from scratch to remove changes in our codebase as a possible
confounder. The main difference to [6] is a modified learning rate decay schedule, where the learning
rate is decayed to zero at the end of training rather than being decayed to 0.1 of the initial value.

Random Search using Reduced-Width Proxy Model In order to find a good set of hyperparam-
eters for the µTransfer version of the 6.7B model, we performed a hyperparameter search over a
reduced version of the model (i.e., the proxy model), where the width is set to 256 hidden units.
This proxy model inherits changes from the evolved GPT-3 codebase: it uses relative [8] (instead of
absolute) position encoding. Early on, we noted that on the proxy model, linear learning rate decay
outperformed the default cosine schedule, so all subsequent experiments for the proxy models use a
linear decay schedule. By Fig. 4, µTransferring this linear decay schedule to the full model sould
maintain such a performance advantage over the cosine schedule.

The hyperparameter search space consists of the following hyperparameters:

• learning rate: Sampled from 10Uniform(−4,−1)
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Figure 14: Results of the random search over reduced-width proxy models trained on 4 (left) and 16
(right) billion tokens. Only the best performing runs are highlighted.

• initialization scale: All the parameters are multiplied - sampled from 10Uniform(−1,1)

• attention temperature: Reciprocal of the multiplier applied to the input to attention soft-
max. Sampled from 4Uniform(−1,1).

• output temperature: Reciprocal of the multiplier applied to the input to softmax that
produces the distribution over output tokens. Sampled from 4Uniform(−1,1).

• embedding multiplier: Scalar by which we multiply the output of the embedding layer.
Sampled from 10Uniform(−1,1).

• relative position embedding multiplier: Scalar by which we multiply vectors representing
relative position. Sampled from 10Uniform(−1,1).

In order to make the search more efficient we reduced the total number of training tokens. We
hypothesized that tuning hyperparameters on a reduced total number of tokens does not significantly
affect optimal hyperparameters. To verify, we trained two different horizons and compared the results.
While the target model was to be trained on 300 billion tokens, we tuned the proxy model on only
subsets consisting of 4 billion and 16 billion tokens. This impacts both the total training time and and
the length of the linear learning rate decay schedule. Other than hyperparameters explicitly listed
above and the training horizon, the rest was the same as what we intended to use for the full width
6.7B training run.

Analyzing the Results of the Random Search We performed 467 training runs of the proxy
model, out of which 350 were for 4 billion tokens (286 completed without diverging) and 117 for
16b tokens (80 completed without diverging). See Fig. 14 for summary of the results.

As suspected, we observed that the results are well-aligned for both 4 and 16 billion tokens versions.
We observe learning rate and initialization scale impact the results the most. Based on the results we
chose 0.006 for the former and 2.5 for the latter. Since most other hyperparameters appear to have
negligible effect on performance, they were kept at their default values of 1, the only exception being
the embedding scale, where higher values seem to perform better and it was therefore set to 10.

Training the µTransfer Model We encountered frequent divergences in our initial attempt to train
the µTransfer model. We traced the issue back to underflow of FP16 tensors in the backwards pass
and therefore switched to training the model in FP32. This allowed us to finish the training run
without divergences. We hypothesize that the divergence issue is related to µTransfer picking more
aggressive hyperparameters, for example a higher learning rate on linear weight tensors compared
to the original model. In order to exclude code differences as a possible confounder, we re-trained
GPT-3 6.7B from scratch using the original hyperparameters. The only difference compared to the
version published in [6] is that the learning rate was decayed fully, whereas the learning rate of the
model from [6] was only decayed to 10% of its starting value. The retrained model performs slightly
worse than the original published in [6]. We suspect that this is because it made less progress during
the last phase of training where the learning rate is close to zero. The training curves of the µTransfer
model and the re-run of the original 6.7B can be seen in Fig. 15. Detailed evaluation results can be
found in Table 8 and Table 9.
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Figure 15: The training curves of the GPT-3 6.7B model with µTransfer (orange) and a re-run
with the original settings from [6] (blue). The µTransfer model was trained using FP32 activations
and weights after initially encountering stability issues with the hyperparameters computed using
µP, while the re-run used the original FP16 training. The µTransfer model seems to underperform in
the middle of training, but achieves a much better final validation loss once the learning rate is fully
decayed. The µTransfer model uses a linear learning rate decay schedule while the original model
uses a cosine schedule.

Ratio of Tuning Cost to Pretraining Cost in FLOPs can be approximated as

s(t1N1 + t2N2)

ST
≈ 0.07

where

• s = 40 Million is number of parameters of the proxy model
• S = 6.7 Billion is number of parameters of the target model
• t1 = 4 Billion is the number of training tokens for the short horizon HP search, and
N1 = 350 is the corresponding number of random HP search trials.

• t2 = 16 Billion is the number of training tokens for the longer horizon HP search, and
N1 = 117 is the corresponding number of random HP search trials.

• T = 300 Billion is the number of training tokens for the 6.7B target model.

Here we are using the fact that the training FLOPs of a Transformer per token is roughly proportional
to its number of parameters.

I Additional Experiments

I.1 Experiments on ResNets

I.1.1 ResNet on CIFAR-10

Setup For this case we use Davidnet [2], a ResNet variant that trains quickly on CIFAR-10, so as
to efficiently investigate its HP landscape. We train with SGD on CIFAR-10 for 10 epochs; all results
are averaged over 15 random seeds. We use a width multiplier to identify models of different width,
and a multiplier of 1 corresponds to the original model in [2]. We look at validation accuracy here as
the model barely overfits, and our observations will hold for the training accuracy as well. We first
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Table 8: Full evaluation results of our GPT-3 6.7B models: The new model tuned with µTransfer
(marked µP), the original model from [6], and a re-training of this model from scratch with the
original hyperparameter settings (marked re-run). The sampling-based evaluations shown here are
a subset of the ones from [6]. Since the sampling-based evaluations are subject to high variance,
Wikitext 103 and the LM1B benchmark have been added to help distinguish the relative performance
of the µP and non-µP model. Note that Wikitext-103 [24] and the LM1B [7] benchmarks overlap
with the training dataset. Accuracies and F1 scores have been multiplied by 100. The perplexities
reported in this table are based on a custom BPE encoding and are not comparable to other results in
the literature. The number k of examples in the context for each task is identical to [6].
Note: Zero-shot, One-Shot and Few-Shot refer to the number of additional query and answer pairs
passed in the context when performing the sampling-based evaluations, not the ”shots” involved in
hyperparameter transfer.

Zero-shot One-shot Few-shot

Task Split Metric µP [6] re-run µP [6] re-run µP [6] re-run

Validation dataset valid ce 1.98 2.03
PTB test ppl 11.4 13.0
Wikitext 103 test ppl 8.56 9.13
LM1B test ppl 20.5 21.7

HellaSwag dev acc 72.0 67.4 66.7 71.1 66.5 65.9 72.4 67.3 66.4
LAMBADA test acc 73.5 70.3 70.8 69.9 65.4 64.8 74.7 79.1 77.1
StoryCloze test acc 79.4 77.7 77.3 80.6 78.7 78.3 84.2 81.2 81.1
NaturalQS test acc 9.86 5.79 7.20 14.7 9.78 10.6 20.2 17.0 15.7
TriviaQA dev acc 47.0 38.7 37.5 50.4 44.4 42.5 55.5 51.6 49.9
WebQS test acc 11.3 7.73 9.79 20.2 15.1 16.2 33.0 27.7 28.2
Ro→En 16 test BLEU-sb 26.9 8.75 13.7 36.5 34.2 33.5 38.2 36.2 35.6
En→Ro 16 test BLEU-sb 18.1 5.31 4.40 21.0 18.2 17.3 22.0 19.6 18.8
Fr→En 14 test BLEU-sb 29.8 15.5 19.6 31.7 31.6 30.1 38.0 36.4 36.5
En→Fr 14 test BLEU-sb 29.6 11.4 11.6 28.8 28.3 26.0 33.3 33.3 31.2
De→En 16 test BLEU-sb 31.7 18.2 21.7 33.3 31.9 31.1 38.9 36.5 36.2
En→De 16 test BLEU-sb 23.1 9.36 9.00 24.6 21.7 21.1 27.6 24.1 24.5
Winograd test acc 85.3 85.7 86.8 84.6 84.6 84.2 86.4 85.4 83.9
Winogrande dev acc 66.8 64.5 62.5 67.6 65.8 64.5 71.0 67.4 67.2
PIQA dev acc 79.1 78.0 78.0 77.3 76.3 76.9 79.2 77.8 77.7
ARC (Challenge) test acc 42.1 41.4 42.5 44.0 41.5 42.4 43.8 43.7 42.7
ARC (Easy) test acc 64.3 60.2 61.9 65.3 62.6 63.4 67.3 65.8 65.3
OpenBookQA test acc 54.4 50.4 52.6 56.4 53.0 52.8 58.4 55.2 54.4
Quac dev f1 41.8 36.1 38.2 43.1 39.0 39.5 44.0 39.9 39.9
RACE-h test acc 45.0 44.1 43.2 44.9 44.3 42.9 45.2 44.7 43.4
RACE-m test acc 58.4 54.4 54.0 57.9 54.7 53.8 58.6 55.4 55.4
SQuADv2 dev f1 59.9 52.7 50.9 64.9 57.1 54.7 68.9 62.1 58.4
CoQA dev f1 78.5 72.8 72.9 80.9 75.1 74.4 81.3 77.3 75.4
DROP dev f1 17.1 17.0 17.4 23.3 27.3 25.7 33.9 29.7 28.7
BoolQ dev acc 69.4 65.4 60.9 74.1 68.7 65.0 73.9 70.0 69.7
CB dev acc 21.4 28.6 37.5 60.7 33.9 32.1 62.5 60.7 66.1
Copa dev acc 82.0 80.0 77.0 81.0 82.0 81.0 88.0 83.0 82.0
RTE dev acc 55.2 55.2 46.2 61.0 54.9 58.8 52.7 49.5 59.9
WiC dev acc 0. 0. 0. 50.0 50.3 50.3 50.5 53.1 51.3
ANLI R1 test acc 33.7 32.3 33.4 32.4 31.6 31.7 30.9 33.1 30.7
ANLI R2 test acc 33.8 33.5 33.0 34.8 33.9 33.7 35.0 33.3 32.2
ANLI R3 test acc 32.7 34.8 33.4 34.8 33.1 33.3 36.9 33.9 32.3
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Table 9: Evaluation results comparing the GPT-3 6.7B model trained with µTransfer against the
twice as large GPT-3 13B model from [6]. The two models have similar performance on most of the
evaluation tasks.

Zero-shot One-shot Few-shot

Task Split Metric 6.7B+µP 13B[6] 6.7B+µP 13B[6] 6.7B+µP 13B[6]

HellaSwag dev acc 72.0 70.9 71.1 70.0 72.4 71.3
LAMBADA test acc 73.5 72.5 69.9 69.0 74.7 81.3
StoryCloze test acc 79.4 79.5 80.6 79.7 84.2 83.0
NaturalQS test acc 9.86 7.84 14.7 13.7 20.2 21.0
TriviaQA dev acc 47.0 41.8 50.4 51.3 55.5 57.5
WebQS test acc 11.3 8.22 20.2 19.0 33.0 33.5
Ro→En 16 test BLEU-sb 26.9 20.8 36.5 36.7 38.2 38.4
En→Ro 16 test BLEU-sb 18.1 6.43 21.0 20.8 22.0 21.8
Fr→En 14 test BLEU-sb 29.8 22.4 31.7 31.4 38.0 38.3
En→Fr 14 test BLEU-sb 29.6 15.3 28.8 30.1 33.3 35.5
De→En 16 test BLEU-sb 31.7 24.4 33.3 34.5 38.9 39.1
En→De 16 test BLEU-sb 23.1 11.0 24.6 23.3 27.6 27.7
Winograd test acc 85.3 87.9 84.6 86.1 86.4 82.4
Winogrande dev acc 66.8 67.9 67.6 66.9 71.0 70.0
PIQA dev acc 79.1 78.5 77.3 77.8 79.2 79.9
ARC (Challenge) test acc 42.1 43.7 44.0 43.1 43.8 44.8
ARC (Easy) test acc 64.3 63.8 65.3 66.8 67.3 69.1
OpenBookQA test acc 54.4 55.6 56.4 55.8 58.4 60.8
Quac dev f1 41.8 38.4 43.1 40.6 44.0 40.9
RACE-h test acc 45.0 44.6 44.9 44.6 45.2 45.1
RACE-m test acc 58.4 56.7 57.9 56.9 58.6 58.1
SQuADv2 dev f1 59.9 56.3 64.9 61.8 68.9 67.7
CoQA dev f1 78.5 76.3 80.9 77.9 81.3 79.9
DROP dev f1 17.1 24.0 23.3 29.2 33.9 32.3
BoolQ dev acc 69.4 66.2 74.1 69.0 73.9 70.2
CB dev acc 21.4 19.6 60.7 55.4 62.5 66.1
Copa dev acc 82.0 84.0 81.0 86.0 88.0 86.0
RTE dev acc 55.2 62.8 61.0 56.3 52.7 60.6
WiC dev acc 0. 0. 50.0 50.0 50.5 51.1
ANLI R1 test acc 33.7 33.2 32.4 32.7 30.9 33.3
ANLI R2 test acc 33.8 33.5 34.8 33.9 35.0 32.6
ANLI R3 test acc 32.7 34.4 34.8 32.5 36.9 34.5

conduct a learning rate sweep for models of different widths using SP; the result is shown in Fig. 16,
on the left.

Hyperparameter Stability Note that the best model with a width multiplier of 8 under-performs
that with a multiplier of 4. We run the same sweep with µP, along with a sweep of the output
multiplier (αoutput); the result is shown in Fig. 16, on the right. We notice that wider models always
perform better under µP and that the optimal learning rate η and αoutput are stable across width.

Hyperparameter Transfer Next, we perform a grid search for learning rate (η) and αoutput on
the 0.5x model for both SP and µP.26 Then, we take the best combination and test on the 8x model,
simulating how a practitioner might use µTransfer. The result is shown in Table 10, where µP
outperforms SP by 0.43%± .001%.

I.1.2 Wide ResNet on ImageNet

Setup For this case we use Wide-Resnet, or WRN [50], a ResNet variant with more channels per
layer, to further showcase µTransfer across width, i.e., number of channels. We train with SGD
on ImageNet for 50 epochs following standard data augmentation procedures. We use a width
multiplier to identify models of different width, and a multiplier of 1 corresponds to the original
WRN-50-2-bottleneck in [50].

26Here we tune the 0.5x model instead of the 1x model to simulate the situation that one does “exploratory
work” on the 1x model but, when scaling up, would like to tune faster by using a smaller proxy model.
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Figure 16: ResNet on CIFAR-10 for different widths (compared to a base network). On the left, the
widest network SP underperforms; on the right, the µP network has a more consistent HP landscape
and performs better. Both networks are tuned at the smallest width for the HP (η or αoutput) not in
the x-axis.

Table 10: CIFAR10: Transferring the best learning rate (η) and αoutput from widening factor 0.5
to 8; µP significantly outperforms SP given the same search grid. The best HPs are different as the
models are parametrized to be identical at 1x width.26

Transfer Setup Best η Best αoutput Valid. Acc. (0.5x) Valid. Acc. (8x)

SP 0.707 4 92.82% 94.86%
µP 0.5 4 92.78% 95.29%

Hyperparameter Transfer We start with a proxy model with a width multiplier of 0.125 and tune
several HPs using the following grid:

• η: 1× 2.048× 2z,where z ∈ {−5,−4,−3, ..., 4}

• αoutput: 10× 2z,where z ∈ {−5,−4,−3, ..., 4}

• weight decay co-efficient γ: 3.05× 10−5 × 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}

• SGD momentum β: 0.875× 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}

The grid is centered around the default HPs used by [1] for ResNet-50; while not expected to be
competitive for WRN, they represent a reasonable starting point for our experiment.

We randomly sample 64 HP combinations from the grid and train for 50 epochs, before selecting
the one with the highest top-1 validation accuracy. Then, we scale up the model following both µP
and SP and run with the same HPs we just selected. The result is shown in Table 11, where µP
outperforms SP by 0.41% in terms of top-1 validation accuracy.

Table 11: Imagenet: Transferring the best learning rate (η), αoutput, γ, and β from widening factor
0.125 to 1; µP significantly outperforms SP given the same search grid.

Transfer Setup Best η Best αoutput Best γ Best β Valid. Acc. (0.125x) Valid. Acc. (1x)

SP 32.768 .625 .000015 .4375 58.12% 76.75%
µP 32.768 .625 .000015 .4375 58.12% 77.16%

I.2 Experiments on Transformers

I.2.1 Verifying Transfer across Batch Size, Sequence Length, and Training Time on
Wikitext-2

See Fig. 19.
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Figure 17: Empirical validation of µTransfer for Post-LN Transformers. Same setting as Fig. 4.

I.3 Post-Layernorm Transformers

Fig. 17 shows the transferability of learning rate, αoutput, initialization standard deviation, and Adam
β2 across width, batch size, sequence length, and training steps for post-layernorm Transformers.
However, in general, we find transfer across depth to be fragile.

I.3.1 Hyperparameter Instability of SP Transformers

Fig. 18 and Fig. 20 show the HP instability inherent in SP Transformers.

J Implementing µTransfer in a Jiffy

As we have shown, one can enable µTransfer by just reparametrizing the desired model in Maximal
Update Parametrization (µP). While conceptually simple, switching from Standard Parametrization
(SP) to µP can be error-prone, as popular deep learning frameworks are built around SP. We strive to
build a tool that fulfills two goals:

1. Minimize code changes when switching to µP;

2. Keep model behavior invariant, under this switch, at a given base model shape.
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Figure 18: Post-layernorm Transformer with SP and µP on Wikitext-2. We sweep one HP across
width (dmodel) at a time while keeping the rest fixed; we also scale dhead linearly with dmodel and
fixing nhead. αoutput, αattn are multipliers for output and key weights, and σ is initialization standard
deviation. This yields unstable result for SP, as expected, where missing points/curves represent
divergence; in µP, the optimal HP choices stabilize as width increases.
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Figure 19: Empirical validation of Hyperparameter Transfer across Batch Size, Sequence
Length, and Training Time on pre-LN Transformers. Same setting as Fig. 4. Despite some
shift, the optimal HPs are roughly stable when transferring from batch size 32, sequence length 128,
and 5000 training steps.
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Table 12: Alternative (Equivalent) µP Formulation for Easier Implementation. Same format as
in Table 3. In contrast to the formulation in Table 3, here all “vector-like” parameters (i.e. those
that have only one dimension tending to infinity), including input and output weights and biases,
have the same width scaling for initialization variance and SGD/Adam LR (note the 1/fan_in for
input weight/bias init. var. is Θ(1) in width). This has two benefits in practice: 1) implementation
is unified and simplified for all “vector-like” parameters; 2) input and output weights can now be
tied, in contrast to Table 3, which is a common design feature of Transformer models. Note that in
this table, for biases, the fan_in is 1 (compare to PyTorch nn.Linear default initialization of biases,
where fan_in refers to fan_in of the layer.)

Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_in 1 (1/fan_in) 1/fan_in

Multiplier 1 1/fan_in (1) 1
SGD LR η · fan_out (η) η · fan_in (η) η
Adam LR η η η/fan_in (η)

By model shape, we mean the collection of dimensions of all parameters of the model. The latter goal,
which we call parametrization backward compatibility, ensures that any code base works exactly as
before at the base model shape, similar to Eq. (4), e.g. the loss at any time step remains exactly the
same before and after the switch to µP. Of course, when widths start to differ from the base model
shape, the model behavior necessarily changes so that HPs can be transferred.

There are two common approaches to setting the base model shape: 1) If one intends to tune a large
target model, then the user can set the base model shape to be the shape of the target model (e.g.
BERT-large or T5-large), so that the target model itself is in standard parametrization. Then one
can tune a proxy model with e.g. width = 124 to obtain the optimal HPs for the target model. In
addition, if one wishes to scale up further e.g. width = 1024, then these HPs remain optimal. 2)
If one has done exploration on a new idea with a small model and now wishes to scale up, reusing
the HP found during this exploration, then one can set the base model shape to be the shape of the
exploratory small model. Of course, in both scenarios, depth, batch size, and sequence lengths can
be scaled up and down as well according to Fig. 19 (though note that currently we require users to
recreate the base model shape at new depths, since the number of parameters now change with depth).

The mup Package We provide our tool as a Python package called mup designed to work with
PyTorch. The following example illustrates the usage of our package.
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Table 13: µP Formulation in the Style of [45].
Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_out (1/fan_in) 1/fan_in 1/fan_in

Multiplier
√

fan_out (1) 1/
√
fan_in (1) 1

SGD LR η η η
Adam LR η/

√
fan_out (η) η/

√
fan_in (η) η/fan_in (η)

What Happens in the mup Package Under the hood, mup implements the µP formulation in
Table 12. By invoking set_base_shape(model, base_model), each parameter tensor p of model
gets a p.infshape attribute that stores, for each of its dimensions, the corresponding base dimension
and whether that dimension should be considered “infinite” (i.e. will be scaled up/down, e.g.,
dmodel of a Transformer) or “finite” (i.e. will be fixed, e.g., vocabulary size). This information
is used in the initializers and optimizers to automatically scale the parameters or learning rates
to be compliant with µP. For example, by Table 12, the Adam learning rate of hidden weights p
is calculated as η/p.infshape.width_mult(), where p.infshape.width_mult() essentially
calculates fan_in

base_fan_in .

K Reverse-µTransfer for Diagnosing Training Instability in Large Models

Large Transformers are famously fickle to train [20, 29]. We note that a possible source of this
instability for larger transformers is the failure of naive hyperparameter transfer via the standard
parametrization. This is certainly consistent with Fig. 1, which shows that the optimal learning
rate for small Transformers can lead to trivial performance in large Transformers. We support this
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hypothesis further by reverse-µTransferring the instability-inducing HPs from a large Transformer to
a small one and replicating the training instability. This is shown in Fig. 21.

Practically, this reverse-µTransfer technique can be used to diagnose or debug training instability
problems of large models. We offer two case studies toward this claim.

1) When training transformers of width 8192 on Wikitext-2, we found certain HP combinations
caused divergence in the middle of training. We reverse-µTransferred one such HP combination to
a model of width 256 and replicated this divergence. By analyzing this small model’s activations
right before this divergence, we found that the cause is due to attention logits blowing up. Note this
debugging session proceeded much more quickly than if we directly worked with the large model.
Later we confirmed this is indeed the same cause of the width-8192 model’s divergence.

2) A 6B-parameter language model (in standard parametrization) in a separate project experienced
repeated blow-up in the middle of training. We reverse-µTransferred its hyperparameters to a smaller,
100M-parameter model and replicated the training instability. This was solved by a retuning of the
small model via random search.
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Figure 21: Replicating training instability on a small Transformer by reverse-µTransferring
hyperparameters. These experiments concern 2-layer Transformers in Standard Parametrization
(SP) on Wikitext-2, trained with Adam, where width is defined as dmodel = dffn. (Left) LR-vs-
loss for wider and wider Transformers. (Right) Likewise for simulated width: Here each point
(log2 η, loss) for simulated width n indicates the loss from training a width-256 µP Transformer
with base width n and LR η (i.e. loosely speaking, it’s using LR transferred from η in a width-n SP
Transformer). Takeaway: The overall shapes of the curves are identical between the left and right
plots27; in particular, a learning rate leads to instability in a wide model iff it does so when transferred
back to a narrow model.

L An Intuitive Introduction to the Theory of Maximal Update
Parametrization

In what follows, we seek to describe useful intuitions and rule of thumbs that would be helpful
to practitioners and empirical researchers alike in figuring out what is the right neural network
parametrization. The intuitions we shall describe regarding SGD can be made rigorous as in [44, 45];
those regarding Adam are new, and their formalization will be done in an upcoming paper.

L.1 Behaviors of Gaussian Matrices vs Tensor Product Matrices

Central to the derivation of µP for any architecture are key insights on the behaviors of two kinds of
random matrices: 1) iid Gaussian random matrix and 2) tensor product matrix (by which we mean a
sum of outer products) and more generally what we call nonlinear tensor product matrix (see Eq. (7)).
For example, a neural network, randomly initialized in the typical way, will have each weight matrix
look like the former. However, every step of training by gradient descent adds a sum of outer products
to this initial matrix, so that the change in weights constitute a tensor product matrix. For Adam,
the change in weights is not a tensor product but a more general nonlinear tensor product matrix
(see Eq. (7)). In this section, we will particularly focus on the right scaling for the entries of such

27 Note that the curves on the left are “lower” than curves on the right. This just reflects the increasing capacity
of wider models able to fit the training data better, so is orthogonal to our point.
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Table 14: Expected entry size of Av for different matrices A and vector v correlated with each other,
both having entries of size Θ(1).

Standard Gaussian (Nonlinear) Tensor Product Vector
A ∈ Rn×n A ∈ Rn×n A ∈ R1×n

Entry size of Av Θ(
√
n) Θ(n) Θ(n)

matrices, leading to a discussion of the right neural network parametrization in the next section. We
concentrate on the key heuristics but eschew burdensome rigor.

Key Insights Consider a random vector v ∈ Rn with approximately iid entries and a random
matrix A of either size n × n or 1 × n, both having entries of size Θ(1).28 In the context of deep
learning, v for example can be an activation vector in an MLP, a Gaussian A the hidden weights at
initialization, a (nonlinear) tensor product A the change in hidden weights due to training, and a
vector A the readout layer weights. Then Av corresponds to a part of the next layer preactivation
or the network output. To make sure the preactivations and the output don’t blow up, we thus need
to understand the scale of Av, especially in the general case where A is correlated with v.29 This
is summarized in Table 14, with the derivations below. Intuitively, a (nonlinear) tensor product or
vector A will interact with a correlated v via Law of Large Numbers, hence the n-scaling, while a
Gaussian A interacts with v via Central Limit Theorem, hence the

√
n-scaling.

In the derivations below, we answer a slightly different but equivalent question of “how to scale A
such that Av has entry size Θ(1)?”

L.1.1 Preparation for the Derivations

By the results of [45], each (pre-)activation vector and its gradient vector in a multi-layer perceptron
have approximately iid coordinates in the large width limit,30 and something similar can be said for
more advanced networks such as ResNet and Transformers 31. In particular, to each such vector v,
we can associate a random variable Zv that represents the coordinate distribution of v. If vector u is
correlated with v, then Zu will also be correlated with Zv , and limn→∞ v>u/n = EZuZv .

L.1.2 Linear Tensor Product Matrix (e.g. SGD Updates)

The case of (linear) tensor product matrix can be reduced to the outer product case by linearity. Given
u, v, x ∈ Rn having approximately iid coordinates (of size Θ(1)) like so, we can form the outer
product

A
def
= u⊗ v/n = uv>/n, (6)

which is the form of a single (batch size 1) gradient update to a weight matrix. Then, by Law of
Large Numbers,

Ax = u
v>x

n
≈ cu, where c = EZvZx.

So Ax also has approximately iid coordinates, distributed like ZAx def
= Zu EZvZx. Likewise, if A is

a sum of outer products A =
∑k
i=1 u

i ⊗ vi/n, then

Ax =

k∑
i=1

ui
vi>x

n
, with coordinates distributed as ZAx =

k∑
i=1

Zu
i

EZv
i

Zx.

Notice that each coordinate of A has size Θ(1/n). The above reasoning shows that, in order for Ax
to have coordinate size Θ(1) (assuming x does), then Θ(1/n) is the right coordinate size for A, in

28in the sense that the the variance of the entries are Θ(1)
29Here “correlated” formally means v depends on W> in a Tensor Program. This essentially captures all

scenarios of “v correlated with W ” that occurs in deep learning.
30Our intuition here is derived from the assumption that width is much larger than training time; of course, as

illustrated by our myriad experiments, these intuition are very useful even when this is not the case, such as
when training to convergence.

31E.g. in a convnet, the (pre-)activations are iid across channels, but correlated across pixels
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the general case that vi and x are correlated (as is generically the case during gradient descent, with
A = ∆W for some weights W and x being the previous activations).32

L.1.3 Nonlinear Tensor Product Matrix (e.g. Adam Updates)

When using Adam or another adaptive optimizer that normalizes the gradient coordinatewise before
applying them, we need to modify our argument slightly to obtain the right coordinate size scaling of
the matrix. The gradient update A, after such normalization, will take the form of

Aαβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β), for some ψ : R2k → R and vectors ui, vj∈ Rn. (7)

We say a matrix of this form is a nonlinear tensor product matrix.

First, note the tensor product matrices (e.g. the form of SGD update) discussed previously (Eq. (6))
already takes this form, with ψ(u1α, . . . , u

k
α, v

1
β , . . . , v

k
β) = n−1(u1αv

1
β + · · · + ukαv

k
β), so Eq. (7)

is a strict generalization of linear tensor products. Next, for the example of Adam, each gradient
update is µ/σ where µ (resp. σ2) is the moving average of previous (unnormalized) gradients (resp.
the coordinatewise square of the same).33 If these unnormalized gradients are the outer products
u1 ⊗ v1, . . . , uk ⊗ vk, then the update has coordinates

(µ/σ)αβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)

def
=

∑
i

γiu
i
αv

i
β/

√∑
i

ωi(uiαv
i
β)2, (8)

where γi and ωi are the weights involved in the moving averages.

Now suppose we have some A ∈ Rn×n of the form Eq. (7), where ui, vi ∈ Rn have approximately
iid coordinates (of size Θ(1)), and ψ = n−1ψ̄ where ψ̄ doesn’t depend on n (in terms of Adam where
ψ̄ corresponds to the ψ of Eq. (8), this corresponds to using a learning rate of 1/n). Then for x ∈ Rn
having approximately iid coordinates of size Θ(1), by Law of Large Numbers,

(Ax)α =
1

n

n∑
β=1

ψ̄(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)xβ ≈ E ψ̄(u1α, . . . , u

k
α, Z

v1 , . . . , Zv
k

)Zx
def
= Ψ(u1α, . . . , u

k
α).

Here we made the obvious definition

Ψ : Rk → R, Ψ(r1, . . . , rk)
def
= E ψ̄(r1, . . . , rk, Z

v1 , . . . , Zv
k

)Zx.

Thus Ax also has approximately iid coordinates (of size Θ(1)),

ZAx
def
= Ψ(Zu

1

, . . . , Zu
k

).

For example, in the SGD example with A = u ⊗ v/n and ψ̄(uα, vβ) = uαvβ , this formula gives
ZAx = Ψ(Zu) where Ψ(z) = z EZvZx, recovering the earlier derivation.

In any case, the point here is that A has coordinate size Θ(1/n), and this is the unique scaling that
leads to Ax having coordinate size Θ(1).

L.1.4 Vector Case (e.g. Readout Layer)

The vector A case is similar to the tensor product cases above.

L.1.5 Gaussian Matrix (e.g. Hidden Weights Initialization)

Now consider the case where A ∈ Rn×n is random Gaussian matrix with Aαβ ∼ N (0, 1/n) and
x ∈ Rn has approximately iid coordinates distributed like Zx. In the context of neural network
training, A should be thought of as a randomly initialized weight matrix, and x for example can be
taken to be an activation vector in the first forward pass.

32In some corner cases when x is uncorrelated with v, then v>x = Θ(
√
n) by Central Limit, so actually

Ax has Θ(1/
√
n) coordinates. However, this case does not come up much in the context of training neural

networks.
33Adam also has bias correction for the moving averages which can be accomodated easily, but for simplicity

we omit them here.
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A Quick Intuition By standard random matrix theory, A has Θ(1) operator norm with high
probability. Thus, with high probability, for any vector x, we have ‖Ax‖ ≈ ‖x‖, even if x is
correlated with A. If Ax’s coordinates are “evenly distributed”, then this would imply Ax has Θ(1)
coordinates if x does. However, this is not so clear. Below we provide intuitions for why this would
be the case.

Intuition for Evenness of Coordinate Distribution If x is independent from A (or sufficiently
uncorrelated), then each coordinate (Ax)α has variance E(Zx)2 = Θ(1) (so by definition has size
Θ(1)). Thus, here A having Θ(1/

√
n) coordinates leads to Ax having Θ(1) coordinates, in contrast

to the tensor product case above.

When x is correlated with A, it turns out the same scaling applies (Θ(1/
√
n) is the unique scaling for

A’s entries such so that Ax has Θ(1) entries), but the reasoning is much more subtle: In the context
of neural network training, it turns out all scenario where x is correlated with A can be reduced
to the case where x = φ(A>y, . . .) for some coordinatewise nonlinearity φ and some other vector
Rn.34 Let’s consider a very simple example with x = A>1 for the all 1s vector 1 ∈ Rn (which has
coordinate size Θ(1) as can be checked easily). Then, for each index α ∈ [n], we can calculate

(AA>1)α =
∑
β,γ

AαβAγβ =
∑
β

A2
αβ +

∑
β

∑
γ 6=α

AαβAγβ .

Since EA2
αβ = 1/n, by the Law of Large Number, the first sum

∑
β A

2
αβ ≈ 1. On the other hand,

there are n summands of the form
∑
γ 6=αAαβAγβ , all iid with variance n−1

n2 = Θ(1/n). Thus by
the Central Limit Theorem, we expect

∑
β

∑
γ 6=αAαβAγβ ≈ N (0, 1). Therefore, each coordinate

of (AA>1)α looks like 1 +N (0, 1) = N (1, 1) and thus has size Θ(1); again this is caused by A
having Θ(1/

√
n) coordinates.

This example can be generalized to more general x that is correlated with A, but the mathematics is
quite involved. See [44] for more details.

L.2 Deriving µP for Any Architecture

Armed with the insight from the last section, we now outline the key steps to derive µP in Table 3 for
any architecture. In practice, µP implies the following desiderata
Desiderata L.1. At any time during training

1. Every (pre)activation vector in a network should have Θ(1)-sized coordinates35

2. Neural network output should be O(1).

3. All parameters should be updated as much as possible (in terms of scaling in width) without
leading to divergence.

Let’s briefly justify these desiderata. For the desideratum 1, if the coordinates are ω(1) or o(1),
then for sufficiently wide networks their values will go out of floating point range. This problem is
particularly acute for low-precision formats that are essential for training large models such as BERT
or GPT. Moreover, a general nonlinearity is only well-behaved if its input is in a fixed range (although
this is not a problem for homogeneous nonlinearities like relu). For example, for tanh nonlinearity, if
the preactivation is vanishing o(1), then tanh is essentially linear; if the preactivation is exploding
ω(1), then the tanh gradient vanishes.

For the desideratum 2, a similar justification applies to the numerical fidelity of the loss function and
loss derivative. Note that, with desideratum 3, this means the network output should be Θ(1) after
training (but it can go to zero at initialization).

Finally, desideratum 3 means that 1) we are doing “maximal feature learning” [45] and 2) every
parameter contribute meaningfully in the infinite-width limit. This ensures that learning rate “plays
the same role” in the finite-width case as in the infinite-width limit. For example, it prevents the
scenario where a weight matrix gets stuck at initialization in the limit for any learning rate (so

34This is because every “reasonable” deep learning computation can be expressed in a Tensor Program.
35In a convnet, a (pre-)activation vector corresponds to a single pixel across all channels; in general , we

expect (pre-)activations are iid across channels, but correlated across pixels
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learning rate does not matter) but evolves nontrivially in any finite-width network (so learning rate
does matter).

These desiderata will essentially uniquely single out µP. More formally, µP is the unique parametriza-
tion that admits feature learning in all parameters of the neural network [45], and this property
theoretically guarantees HP transfer across width (for sufficiently large width). However, for the sake
of reaching a broader audience, we will focus more on the intuitive derivations from the desiderata
rather than on this formal aspect.

Below, we first assume for simplicity that the width of every layer is n, and we focus only on dense
weights. Later, we will discuss convolutions and varying the widths between layers.

L.2.1 µP Derivation From the Desiderata

Output Weights Suppose W ∈ R1×n is an output weight. By desideratum 1, the input x to W
has Θ(1)-sized coordinates. Thus W should have Θ(1/n) coordinates so that Wx = O(1). We
can initialize W with Θ(1/n) coordinates and scale its (per-layer) LR so that ∆W has Θ(1/n)
coordinates as well. This means initializing Wαβ ∼ N (0,Θ(1/n2)) and use Θ(1/n) learning rate
for both SGD and Adam.

Hidden Weights Consider a square weight matrix W ∈ Rn×n. Desiderata 1 guarantees that the
input x to W has Θ(1)-sized coordinates. Generally, x will be correlated with W . By Table 14, we
can immediately derive

Initialization W should be randomly initialized with coordinate size Θ(1/
√
n)

LR The learning rate should be scaled so that ∆W has coordinate size Θ(1/n)

so that (W0 + ∆W )x is Θ(1) if x is, inductively satisfying desideratum 1. With Adam, this just
means the per-layer LR is Θ(1/n). With SGD and the scaling of output layers above, we can calculate
that the gradient of W has Θ(1/n) coordinates, so the Θ(1) SGD LR derived above suffices as well.

Input Weights Suppose W ∈ Rn×d is an input weight. To satisfy desideratum 1 (i.e. for any
input ξ, Wξ should have Θ(1) coordinates), we want W to have Θ(1) coordinates. We can initialize
W with Θ(1) coordinates and scale its (per-layer) LR so that ∆W has Θ(1) coordinates as well.
This implies initialization variance of Θ(1) (or Θ(1/fan_in) since fan_in = Θ(1) here) and Adam
learning rate Θ(n). As above, we can calculate that the gradient of W has Θ(1/n) coordinates, so
we want SGD learning rate Θ(n).

Biases Biases follow the same reasoning as input weights (just think of it as an input weight with
input 1).

Attention Suppose the key dimension dk is tending to infinity with width with number of heads
nhead fixed. Then the key-query contraction q>k ∈ R scales like Θ(dk) by Law of Large Numbers
(instead of Central Limit Theorem because q and k are generally correlated) and desideratum 1, hence
the 1/dk we propose rather than 1/

√
dk.

Now suppose instead that nhead tends to infinity with width with dk fixed. Let K,Q ∈
RN×dk×nhead , V ∈ RN×dv×nhead be keys, queries, and values across all heads and tokens. Think-
ing of N × dk as constants, we may view attention as a nonlinearity coordinatewise in the nhead
dimension. Then it’s clear that our parametrization described above already works.

Finally, we may freely let dk and nhead both tend to infinity, and the above reasoning shows that our
parametrization still works.

Changing Width Ratios As noted above, at any time in training, every (pre-)activation vector will
have approximately iid coordinates (of order Θ(1) by desideratum 1). Another desideratum for µP is
to ensure that this coordinate distribution (at any particular time) stays roughly invariant as widths
increases. When all layer widths are tied, this is automatic if the other desiderata are satisfied, hence
why we did not list this above.

When width ratios vary, this is not automatic. In this case, we need to choose whether to replace each
n with fan-in or fan-out (or some function of them). Making the wrong choices will let the coordinate
distributions vary with width ratios.
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Obviously, we should replace n with fan-in for the output layers and with fan-out for the input layers
since they are the only dimension scaling with n. For the hidden weights, we replace n with fan-in
so that the forward pass is preserved. When using Adam (and assuming the initialization of W is
quickly dominated by the change in W ), this ensures that the (pre-)activation coordinate distributions
are preserved at any time during training even if we vary widths in different layers differently. (For
SGD this doesn’t quite work in general because the varying width ratios change the gradient sizes of
different layers differently, whereas Adam always normalizes the gradient coordinatewise).

Convolution A convolution weight tensor W ∈ Rfan_out×fan_in×s1×s2 with kernel size s1 × s2
can be thought of just as a s1s2 = Θ(1)-sized collection of fan_out× fan_in dense weights. Then
all of our discussions above apply accordingly.

L.3 Why Other Parametrizations Cannot Admit Hyperparameter Transfer

Standard Parametrization (SP) SP doesn’t work essentially because it leads to blow-up in the
infinite-width limit.

1. For Adam with LR Θ(1), ∆W would have Θ(1) coordinates, causing preactivations to blow
up like Θ(n) by Desideratum 1 and Table 14. We can avoid this blowup with LR Θ(1/n),
but this induces a non-maximal feature learning limit, which, as we argue below, cannot
transfer hyperparameters in all situations.

2. For SGD, the gradient of Rn×n weight has Θ(1/
√
n) coordinates, so Θ(1) learning rate

would make preactivation scale like Θ(
√
n) and hence blow up. If we use Θ(1/width)

learning rate, then blow-up does not occur. However, this infinite-width limit is in the kernel
regime [45] and thus does not allow HP transfer for the same reason that NTP below does
not.

Neural Tangent Parametrization (NTP) We have concrete examples, e.g. Word2Vec in [45],
where the NTK limit has trivial performance — so HPs have no effect at all — vastly outperformed
by finite-width networks — where HPs matter. More importantly, wider does not always do better
in NTP, especially in tasks where feature learning is crucial [45]. So in the context of modern deep
learning e.g. large language model pretraining, NTP (or SP with Θ(1/width) LR) does not make
sense for wide neural networks.

Other Parametrizations Recall the Dynamical Dichotomy Theorem proven in [45], which says
that any nontrivial stable “natural parametrization” (formally, “abc-parametrization,” [45]) either
admits a feature learning limit or a kernel limit, but not both.

Our argument above against SP and NTP will also work against any parametrization inducing a kernel
limit. Therefore, it remains to ask, can other feature learning parametrizations transfer HPs?

We argue no. As shown in [45], any other feature learning parametrization differs from µP essentially
only in that some parameters are not updated maximally. By [45, Sec 6.4], in the infinite-width limit,
such parameters can be thought of as being fixed at initialization. Therefore, in such infinite-width
limits, the learning rate of such parameters becomes useless. Therefore, we cannot hope for the HP
landscape of the limit to reflect the HP landscape of finite-width neural networks.

µP is the unique feature learning parametrization that updates all parameters maximally, so that the
learning rate of each parameter plays approximately the same role in finite-width neural networks
as in the infinite-width limit. Consequently, the HP landscape of the µP limit should reflect the HP
landscape of finite-width neural networks.
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