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Abstract

We consider the problem of robust parameter esti-
mation from observational data in the context of
linear structural equation models (LSEMs). Un-
der various conditions on LSEMs and the model
parameters the prior work provides efficient algo-
rithms to recover the parameters. However, these
results are often about generic identifiability. In
practice, generic identifiability is not sufficient and
we need robust identifiability: small changes in the
observational data should not affect the parame-
ters by a huge amount. Robust identifiability has
received far less attention and remains poorly un-
derstood. Sankararaman et al. (2019) recently pro-
vided a set of sufficient conditions on parameters
under which robust identifiability is feasible. How-
ever, a limitation of their work is that their results
only apply to a small sub-class of LSEMs, called
“bow-free paths.” In this work, we show that for
any “bow-free model”, in all but 1

poly(n) -measure
of instances robust identifiability holds. Moreover,
whenever an instance is robustly identifiable, the
algorithm proposed in Foygel et al., (2012) can
be used to recover the parameters in a robust fash-
ion. In contrast, for generic identifiability Foygel
et al., (2012) proved that with measure 1, instances
are generically identifiable. Thus, we show that
robust identifiability is a strictly harder problem
than generic identifiability. Finally, we validate our
results on both simulated and real-world datasets.

1 INTRODUCTION

Causal inference is a central problem in a variety of fields
in the natural and social sciences. The goal of causal in-
ference is to design methodologies that infer if a group of
events cause a particular phenomenon or not. A canonical

Figure 1: Illustration of a 2-bow-free graph where the maxi-
mum in-degree and out-degree in any vertex is 2. Black solid
lines represent causal edges and red dotted lines represent
correlation of the noise parameters.

example is the age-old debate on whether smoking causes
cancer (Terry [1964]). The causal inference problem has
been extensively studied in statistics, economics, epidemi-
ology, computer science among others (e.g., Guyon et al.
[2010], Holland et al. [1985], Pearl [2009], Peters et al.
[2017], Pearl and Mackenzie [2018]) and several schools
of thought exist. One important and popular model is the
linear structural equation model (LSEM); see, e.g., Bentler
and Weeks [1980] and Bollen [1989]. Informally, the exper-
imenter has a model of the world and a dataset (represented
as samples from a latent distribution) collected during the
experiment. The goal is to use the samples and the model
to infer the strength of dependencies between various quan-
tities of interest. In LSEM, the experimenter’s model is a
Gaussian linear model which is formally defined as follows.

The model of the causal relationship is given by a mixed
graph G = (V,E, F ), where the vertex set V of size n
corresponds to the set of observable random variables. Let
X ∈ Rn×1 denote the vector of random variables corre-
sponding to the vertices in V . The set E of directed edges
captures the direction of causality in the model: an edge
from vertex u to vertex v implies that Xu causes Xv. We
will assume that the edges in E form an acyclic directed
graph. The set F of bidirected edges denotes the presence
of confounding effects (described shortly). Let η ∈ Rn×1
denote a vector of noise random variables whose covari-
ance matrix is given by Ω ∈ Rn×n. We assume that η is
a zero-mean multivariate Gaussian random variable. Let
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Λ ∈ Rn×n denote the matrix of edge weights on the di-
rected edges; the entries in Λ can be interpreted as encoding
the strength of causal influence.

The LSEM model posits that the dependencies between ob-
served variables are linear: the effect on a particular random
variable Xu is jointly determined by its immediate parents
in the directed component of the graph plus a Gaussian noise
(ηu), which we can represent as

X = ΛTX + η. (1)

The edge set E puts constraint on the zero pattern of Λ: if
(u, v) /∈ E, then Λ(u,v) = 0. Let us denote the set of such
matrices by W (E). The bidirected edge set F specifies the
zero pattern of Ω: if u 6= v and (u, v) /∈ F , then Ω(u,v) = 0.
Let PD(F ) denote the set of positive semidefinite matrices
satisfying this constraint, and let PD be the set of positive
semidefinite matrices whose dimensions will be clear from
the context. We assume that the dataset is sampled from a
distribution that is unknown to the experimenter and has the
following properties.

Since the random vector η is a Gaussian random variable
with mean zero, it follows that X is also a Gaussian random
variable with mean zero. Thus, the tuple (Λ,Ω) defines
the distribution of X. We are interested in this map and
its invertibility. Since X is Gaussian, instead of working
with its distribution we can work with its covariance matrix
which is a sufficient statistic. This is what we will do in the
sequel. Let Σ denote the covariance matrix of X and let
ΦG : (Λ,Ω) 7→ Σ be the map of interest. From the linear
relationship in Eq. (1) we have

Σ = (I−Λ)−TΩ(I−Λ)−1. (2)

Hence, the map ΦG : W (E)× PD(F )→ PD is given by

ΦG : (Λ,Ω) 7→ (I−Λ)−TΩ(I−Λ)−1.

The (global) identifiability question for G, namely are the
parameters (Λ,Ω) recoverable from Σ for all Σ ∈ PD,
has a positive answer iff ΦG is invertible. The class of
mixed graphs G for which ΦG is invertible has been pre-
cisely characterized by Drton et al. [2011]. But this turns
out to be too strong a restriction and a slightly weaker no-
tion of generic identifiability is considered. A mixed graph
G is said to be generically identifiable if for almost all
(Λ,Ω) ∈ W (E) × PD(F ), we can recover these param-
eters from ΦG(Λ,Ω). Here “almost all” is meant in the
measure-theoretic sense for any reasonable measure such as
the Lebesgue or Gaussian measure on W (E)× PD(F ).

A central question in the study of LSEMs is determining if
a mixed graph is generically identifiable (GI) and estimating
the parameters from the covariance matrix when GI does
hold. While mixed graphs for which GI holds have not been
completely characterized, many classes of such graphs have

been found, (e.g., Brito and Pearl [2006], Drton and Weihs
[2016], Drton et al. [2011], Foygel et al. [2012], McDon-
ald [2002]). In particular, bow-free graphs (Brito and Pearl
[2006]) form one such class and will be studied in this pa-
per. For this class, we can first compute the matrix Λ from
the covariance matrix Σ and then recover Ω by comput-
ing (I−Λ)TΣ(I−Λ). Since this does not involve matrix
inversion, this can be done in a robust manner. Note that
this Ω may not satisfy the zero-patterns mandated by the
model; however, this can be remedied by solving the convex
optimization problem for finding the closest PSD matrix
satisfying the required zero-pattern. Triangle inequality im-
plies that the optimal solution to the convex optimization
problem is a PSD matrix that is also close to the original
Ω with the same zero-patterns. Thus, we will be primarily
interested in the inverse map

Ψ−1G : Σ→ Λ. (3)

Much of the prior work has focused on designing algorithms
with the assumption that the exact joint distribution over the
variables is available, which in turn gives exact Σ. However,
in practice, the data is noisy and inaccurate and the joint
distribution is generated via finitely many samples from this
noisy data. This leads to the question of (generic) robust
identifiability (RI): if Σ is perturbed slightly, does Ψ−1G (Σ)
change only slightly? We will formalize this notion in terms
of the condition number. For parameter estimation algo-
rithms to be useful we need robust identifiability to hold
because of unavoidable inaccuracies in the input in prac-
tice.1 Motivated by this, the key question we consider in this
paper is the following.

Are bow-free LSEMs robustly identifiable?

Our contributions and discussion. We answer the ques-
tion in affirmative, by showing that the space of instances
for which the identifiability algorithm in Foygel et al. [2012]
is robust is large. In other words, for a natural measure over
the space of parameters (Λ,Ω) for acyclic graphs satisfy-
ing bow-free condition, the probability that an instance can
be robustly identified using the algorithm in Foygel et al.
[2012] is at least 1− 1

poly(n) , where n denotes the number
of observable variables in the system. This is in contrast
to generic identifiability, where the authors in Foygel et al.
[2012] show that the probability is 1. To achieve this, we
prove a stronger statement, namely, sufficient conditions
for robust identifiability an arbitrary instance should satisfy
when perturbed with adversarial noise (See Fig. 2 where ran-
dom instances violating it can lead to exponential growth of
condition number). Then we show that when the instances

1In fact, Schulman and Srivastava [2016] and Sankararaman
et al. [2019] construct families of examples where the inaccuracies
compound to lead to a large error in the final output in semi-
Markovian models and LSEMs respectively.



Figure 2: Randomly generated instance that is ill-
conditioned when it violates Assumption (A.3) in Model 1.
We generate a fixed graph that is layered (i.e., edge in topo-
logical order i only goes to that in topological order i+ 1)
with max-degree of 4. For every directed edge i → j we
have λi,j ∼ U [−1.2, 1.2] and Ω is randomly generated
according to Model 2.

are sampled from a natural measure over the set of instances
(i.e., uniform distribution over Λ and Wishart distribution
over Ω), it satisfies the sufficient condition with probability
at least 1− 1

poly(n) . We corroborate our theoretical analysis
with simulations on a gene expression dataset used in Drton
et al. [2009] and also on additional simulated datasets. Our
paper has both conceptual and technical novelty compared
to Sankararaman et al. [2019]. First, Sankararaman et al.
[2019] analyze the error accumulated on every edge; such a
strategy fails for anything beyond paths. Here, we instead
analyze the total error accumulated across many edges to-
gether. The key challenge is in finding the right set of edges
to be grouped. Here we show that we need to analyze the
total error in computing the weight parameter of all the in-
coming edges to a vertex v. On the technical side, while we
use the same high-level idea of induction, we need to work
with matrices instead of scalars. This brings up many new
non-trivial challenges requiring matrix-theoretic arguments.

It is occasionally pointed out that the algorithms mentioned
above (e.g., Foygel et al. [2012]) are designed for the pur-
pose of identifiability and not for parameter estimation, and
as such should not be used for the latter. While, a priori, this
could be true, for the specific case of the above algorithms
we do not see any reason for not using them for parameter
estimation other than the fact that they assume access to the
exact covariance matrix. That the access to the exact covari-
ance matrix is not essential under reasonable conditions on
parameters is in fact the main point of our paper. This shows
that the algorithms designed assuming exact access can be
used for parameter estimation in realistic situations. It’s
also pertinent to note here that the field of robust statistics
seeks to deal with similar situations (under various models
of perturbations, often adversarial) by designing new algo-
rithms with the explicit goal of robust identifiability (see
Diakonikolas and Kane [2019] and references therin for a

recent survey). Our results show that under a reasonable
model of perturbation, existing algorithms are already ro-
bust. We are not aware of any work on LSEMs in the robust
statistics literature.

A related point is that if one were to not use the above algo-
rithms for parameter estimation then one needs alternative
algorithms. Unfortunately, we are not aware of any algo-
rithms with provable guarantees for parameter estimation
other than the ones mentioned above—regardless of the
access to the covariance matrix being exact or not. RICF
algorithm (Drton et al. [2009]) is designed expressly for
parameter estimation using the maximum likelihood princi-
ple from finitely many samples. Maximum likelihood based
algorithms come equipped with confidence intervals which
provide an estimate of uncertainty in parameter estimation
and could potentially be useful for our problem. Unfortu-
nately this is not the case: For one, we are not aware of a
quantitative analysis using confidence intervals. Second, we
allow adversarial perturbations for which confidence inter-
vals are not applicable. Third, while practically useful, RICF
does not provide any theoretical guarantees on finding the
correct parameters. It only guarantees that the parameters it
finds achieve a local maximum of the likelihood (there are
empirical indications that under some conditions it does find
the global maximum). Thus, there is a need for algorithms
for parameter estimation with provable guarantees without
assuming exact access to the covariance matrix or the distri-
bution. As already mentioned, in this paper we show that the
existing identifiability algorithms are in fact such algorithms
under reasonable conditions on parameters. For another dis-
cussion of the identifiability vs. estimation issue we refer
the reader to a recent manuscript (Maclaren and Nicholson
[2019]), though they do not provide any positive result like
ours.

Related work. The issue of robust identifiability for
causal models has started to gain attention only recently.
Schulman and Srivastava [2016], Sankararaman et al.
[2019], Maclaren and Nicholson [2019], Gordon et al.
[2021] are the only papers we are aware of. Schulman and
Srivastava [2016] showed by means of an example that
the recovered parameters can be very sensitive to errors
in the data and so robust recovery is not always possible.
They worked in the setting of semi-Markovian models (see,
e.g., Shpitser and Pearl [2008]). Their example is carefully
constructed for the purpose of showing that robust recovery
is not possible, and it is not clear if such examples are likely
to arise in practice. In other words, their result leaves open
the possibility that robust recovery may be possible for a
large part of parameter space (according to some reasonable
probability measure). A result in this direction was provided
by Sankararaman et al. [2019] for a subclass of LSEMs. For
bow-free paths they show that if the parameters are chosen
from a certain random distribution then the parameters are
robustly identifiable with high probability. Our results in



the present paper build upon Sankararaman et al. [2019]. In
particular, our Lemma 1 generalizes Lemma 1 in Sankarara-
man et al. [2019]. Moreover, given this lemma, the proof
for the bound on the condition number follows as in prior
work. Finally, Maclaren and Nicholson [2019] provide an
abstract framework for studying the robust identifiability
problems within the context of causal inference. They also
relate it to the extensive literature on similar problems in
statistics and inverse problems and provide an entry point to
this literature.

Ghoshal and Honorio [2018, 2017] gave an algorithm for
parameter estimation and structure learning for linear SEMs
from observational data with theoretically good sample and
computational complexity and under stochastic noise under
certain conditions on the parameters. However, they make
the strong assumption that the noise covariance matrix Ω
is diagonal (and in the second paper under the stronger
assumption that Ω is a multiple of the identity) which may
be overly restrictive in many settings (Drton et al. [2009]).
Thus their result is not comparable to ours.

There is also a significant body of work on problems such as
model misspecification. These are related to but are distinct
from the problem studied in the present paper. We refer to
[Sankararaman et al., 2019, Sec. 1.2] for references and
commentary on the differences. A very recent example in
the same vein is (Cinelli et al. [2019]). Again, while sharing
similar general motivation, this work is complementary to
ours.

2 PRELIMINARIES

Notation. Throughout this paper, we use the notation G =
(V,E, F ) to represent a causal mixed graph structure where
V denotes the set of vertices, E denotes the set of directed
(causal) edges and F denotes the set of bidirected (covari-
ance of noise) edges. For simplicity, we assume that the
vertices in the set V are indexed {1, 2, . . . , |V |}. Through-
out this paper, we assume that the directed edges E in-
duce an acyclic graph. For a matrix A, we use the notation
‖A‖ := maxx 6=0

‖Ax‖2
‖x‖2 to denote the spectral norm of this

matrix. For a vector b, we denote ‖b‖ =
√

bT · b to be the
2-norm. We use many standard properties of the spectral
norm in the proofs of this paper. Lemma ?? in the appendix
summarizes these for completeness. We use σ1(A), λ1(A)
to denote the largest singular and eigenvalue respectively,
of matrix A. We let Λ[I, J],Ω[I, J],Σ[I, J] ∈ R|I|×|J| to
denote the sub-matrix of Λ,Ω,Σ respectively, correspond-
ing to vertices in the index set I and J . For two given
vertices u, v ∈ V , we use Λu,v,Ωu,v,Σu,v to refer to
the (u, v)-entry of respective matrices. We use poly(n) to
denote a function which is polynomial in n. U [a, b] de-
notes the uniform distribution on the interval [a, b] with
pdf f(x) = 1/(b− a).

We denote layer(i) to be the set of vertices such that v ∈
layer(i) if and only if the longest directed path ending in
v has length i. Thus, layer(1) denotes the set of vertices
with no incoming directed edge. For any vertex v, we denote
pa(v) to be the set of vertices in V such that there is a
directed edge from every vertex in pa(v) to v. Additionally,
we use the notation spa(v) := pa(pa(v)). Since the graph
is acyclic, there exists a topological sort order of the vertices
V (Foygel et al. [2012]). Throughout this paper, we assume
that n is an asymptotic parameter; thus o(1) denotes terms
that go to 0 as n goes to infinity.

Definition 1 (k-bow-free causal graphs). A causal graph
G = (V,E, F ) is called a k-bow-free causal graph if it has
the following properties.

1. Bow-free. The graph is bow-free i.e., between any two
vertices u and v, there is never both a directed and
bidirected edge.

2. Maximum in-degree or out-degree of k. For any ver-
tex v ∈ V , the total number of directed edges coming
into v is at most k. Likewise, the total number of di-
rected edges leaving v is also k. Thus, |pa(v)| ≤ k for
every v ∈ V .

Figure 1 pictorially denotes an example of k-bow-free causal
graph. Throughout this paper, k should be viewed as a small
constant (for instance in our experiments k is either 2 or 7).
As in prior work (Sankararaman et al. [2019], Schulman and
Srivastava [2016]), we use the notion of condition number to
measure the robustness of the models. Before we define the
condition number, we define the relative distance between
two matrices. Given matrices A,B ∈ Rn×m, we define the
relative distance, denoted by Rel(A,B) as the following:
Rel(A,B) := max 1≤i≤n,

1≤j≤m:
|Ai,j |6=0

|Ai,j−Bi,j |
|Ai,j | . The `∞-condition

number is defined as follows.

Definition 2 (Relative `∞-condition number). Let Σ be a
given data covariance matrix and Λ be the correspond-
ing parameter matrix. Let a γ-perturbed family of matri-
ces be denoted by Fγ (i.e., set of matrices Σ̃γ such that
Rel(Σ, Σ̃γ) ≤ γ). For any Σ̃γ ∈ Fγ let the corresponding
recovered parameter matrix be denoted by Λ̃γ . Then the
relative `∞-condition number is defined as,

κ(Λ,Σ) := supγ< 1
n4

ess supΣ̃γ∈Fγ
Rel(Λ,Λ̃γ)

Rel(Σ,Σ̃γ)
. (4)

Condition number as the notion of stability is useful since
a bound on this quantity translates to an upper-bound on
the sample complexity. More precisely, to get an error of
ε in the output polynomial in 1/ε, condition number and
other parameters of the input number of samples suffice
(e.g., Srivastava et al. [2013]).



2.1 REQUIRED BACKGROUND FROM PRIOR
WORK

We give a self-contained background needed from Foygel
et al. [2012] for our paper.

Definition 3 (Half-trek (Foygel et al. [2012])). For any
given vertex v ∈ V , the set htr(v) denotes the set of vertices
that can be reached from v via a path of the form,

v ↔ v1 → v2 → . . .→ vd or, v → v2 → . . .→ vd.

Definition 4 (Parameter Recovery Algorithm from Foygel
et al. [2012]). Consider a vertex v ∈ V such that
pa(pa(v)) 6= φ. The goal is to compute the vector
Λ[pa(v), {v}]. Let Yv = {y1, y2, . . . , yk} be a given set
of vertices corresponding to vertex v. Let pa(v) =
{p1, p2, . . . , pk} denote the set of parents of v. Let A be
a matrix such that Ai,j = [(I−Λ)T ·Σ]yi,pj if yi ∈ htr(v)
and Ai,j = [Σ]yi,pj otherwise. Likewise, let b denote a
vector such that bi = [(I−Λ)T ·Σ]yi,v if yi ∈ htv(v) and
bi = [Σ]yi,v otherwise. Then we have,

Λ[pa(v), v] = A−1 · b. (5)

For vertices v ∈ V such that pa(pa(v)) = φ we compute
Λ[pa(v), {v}] using the expression,

Λ[pa(v), v] = Σ−1[pa(v), pa(v)] ·Σ[pa(v), v]. (6)

3 INVERSE PROBLEM WITH
ADVERSARIAL NOISE

In this section, we consider LSEMs with k-bow-free graph
and show that under a sufficient condition (formally defined
in the assumptions of Model 1), these models can be robustly
identified using the algorithm in Foygel et al. [2012] in the
presence of adversarial noise. The model we consider is as
follows.

Model 1. We consider the following model of perturbation.
Assume that we are given a data covariance matrix Σ. Let
E ∈ Rn×n denote the matrix of perturbations. Fix a small
0 < γ < 1

n4 . Thus, the perturbed matrix is Σ̃ := Σ + E .
Additionally, we posit the following property on the per-
turbation. For every entry (i, j) we have Ei,j ≤ γ√

k
Σi,j .

WLOG we assume that there exists an entry (i, j) such that
Ei,j = γ√

k
Σi,j . We have the following assumptions for every

vertex v ∈ V .

(A.1) Input Condition Number. The condi-
tion number of the principal sub-matrix
Σ[pa(v), pa(v)], defined as κ(Σ[pa(v), pa(v)]) :=

‖Σ−1[pa(v), pa(v)]‖‖Σ[pa(v), pa(v)]‖ ≤ κ0 ≤ 1
2γ .

(A.2) Diagonal dominance. For some 0 < α < 1, the
following hold:

‖Σ[pa(v), v]‖ ≤ α‖Σ[pa(v), pa(v)]‖,
‖Σ[spa(v), pa(v)]‖ ≤ α‖Σ[pa(v), pa(v)]‖ and
‖Σ[spa(v), v]‖ ≤ α‖Σ[pa(v), pa(v)]‖.

(A.3) Normalized parameters. We have ‖Λ[spa(v), pa(v)]‖ ≤
β < 1. Additionally, for every directed edge (u→ v)
in the causal DAG, we have |Λu,v| ≥ 1

λ >
1
n2 where

Λu,v represents the edge-weight.

Intuition on the assumptions. Before we state our theorem,
we provide some intuition on the assumptions. An upper-
bound on the condition number of the input matrix (as in
Assumption (A.1)) is a necessary condition even in the sim-
plest case of robustly solving a system of linear equations.
More specifically, the relative error in solving a system of
linear equations compared to a perturbed instance is upper-
bounded by the condition number of the constraint matrix
(Example 3.4 in Stewart [1998]). Since LSEMs significantly
generalize this, it is natural that such a condition should be
necessary. Assumption (A.3) states that ‖Λ‖ corresponding
to all incoming edges for any set of vertices pa(v) is upper-
bounded by a constant less than 1. Intuitively, it means that
the total “information” passed from the vertices appearing
earlier in the topological order to those in the later parts
does not blow up. The a priori limiting assumption is As-
sumption (A.2); this is required for technical reasons to
make the analysis go through. Intuitively, this assumption is
a version of the diagonal-dominance in matrices; however,
we require a comparison between a principal sub-matrix
and a neighboring k-dimensional sub-matrix. We show in
Section 4 that under an arguably natural generative model
for LSEMs, with high probability the generated LSEM sat-
isfies Assumption (A.2) suggesting that it is in fact not a
strong assumption.

The main result of the paper is the following bound on the
`∞-condition number of any bow-free LSEM satisfying the
assumptions in Model 1.

Theorem 1. Consider a k-bow-free causal model denoted
by the mixed graph G = (V,E, F ). If αβκ0 < 0.99 and
ακ0

1−αβκ0

(
1 + κ0(1+β)

1−αβκ0

)
< 0.99

k then for the model of per-
turbations described in Model 1 we have that the condition
number κ(Λ,Σ) ≤ O

(
n2
√
k

)
.

To prove the main theorem, we first show the following
lemma which bounds the difference between the true and
the recovered parameter.

Lemma 1. If αβκ0 < 1 and ακ0

1−αβκ0

(
1 + κ0(1+β)

1−αβκ0

)
<

0.99
k then for every v ∈ layer(j) and every j ≥ 2 we have,
‖Λ[pa(v), v] − Λ̃[pa(v), v]‖ ≤ η · γ, where η is the following



depending on the parameters in Model 1

η := 10 ∗
(
ακ2

0(1+β)(1+β+o(1))
(1−αβκ0)2

+ κ0α(1+β+o(1))
1−αβκ0

)
·(

1− ακ0
1− αβκ0

− ακ20(1 + β)

(1− αβκ0)2

)−1
+ o(1).

Proof outline. At a high level, our proof strategy is similar
in spirit to that of Sankararaman et al. [2019]; they prove
an analogous result for graphs that are paths (for a model
similar to Model 1). However, since we prove such a result
for general graphs, our setting faces many additional tech-
nical challenges. Similar to Sankararaman et al. [2019], we
prove the main technical Lemma 1, using induction over the
layers. For any vertex v, we can compute Λ[pa(v), v] using
equations 5 and 6. Using the induction hypothesis, we get
that Λ for the previously considered layers has a sufficiently
“small” error. Let Av and bv denote A and b from equation
5 for vertex v when working with the true (unperturbed) Σ,
and let Ãv and b̃v denote the corresponding matrices for
Σ̃. We show that the spectral norm of the matrix Ãv −Av

and the norm of the vector b̃v −bv is sufficiently small. We
use this and bounds on the norms of Av and bv to show
that the norm of Ã−1v b̃v − A−1v bv is small. These steps
pose multiple subtle technical challenges in comparison to
Sankararaman et al. [2019], and require new ideas to handle
them.

Proof of Theorem 1. From Lemma 1 we have that
‖Λ[pa(v), v] − Λ̃[pa(v), v]‖ ≤ ηγ. From ?? in Lemma ??
we have that the absolute value of every entry in the ma-
trix (Λ[pa(v), v] − Λ̃[pa(v), v]) is at most ‖Λ[pa(v), v] −
Λ̃[pa(v), v]‖ ≤ ηγ. Combining this with Assumption (A.3)
we have Rel(Λ, Λ̃) ≤ ηγ

λ . Moreover, from Model 1 we have
that Rel(Σ, Σ̃) = γ√

k
. Thus, we get that the condition num-

ber is at most κ(Λ,Σ) ≤ η
√
k

λ . From Assumption (A.3), we
have 1

λ ≥
1
n2 which implies that κ(Λ,Σ) ≤ η

√
kn2. From

the definition of η and the premise of Theorem 1 we have
that η ≤ O

(
1
k

)
. Thus, we get the stated bound.

4 RANDOM MODEL PARAMETERS

In this section, we will consider LSEMs that are generated
from random model parameters and show that they satisfy
the model properties in Model 1. Thus, we show that on a
large set of input parameters the assumptions in Model 1
hold with high-probability. Combining this with Theorem 1
implies that inputs from this parameter space can be robustly
identified using existing algorithms provably.

Model 2 (Generative model). Every non-zero entry in
Λ ∈ Rn×n is an i.i.d. sample from the uniform distribution
U
[
− 1

2kµ ,
1

2kµ

]
\
[
− 1
n2 ,

1
n2

]
for some fixed µ ≥ 10(k + 1).

The matrix Ω ∈ Rn×n is generated as follows. We sam-
ple vectors v1,v2, . . . ,vn ∈ Rd from a d-dimensional unit
sphere such that the following correlation holds. Each vec-
tor vi is a uniform sample from the sub-space perpendicular
to SPAN({vj}j∈VI−1

). The matrix Ω is constructed by let-
ting the (i, j)-th entry be 〈vi,vj〉. Thus, this matrix follows
the zero-patterns mandated by the model.

For the Model 2 defined above, we have the following theo-
rem.

Theorem 2. Let µ ≥ 10(k+1), α = 1
µ+o(1), β = 1

µ , λ =

n2, κ0 =
(

1+µ
µ

)4
+ (µ+1)2

5µ2(µ−1) +o(1). Then with probability

at least 1− 1
poly(n) the following hold simultaneously.

1. For every v ∈ V we have κ(Σ[pa(v), pa(v)]) ≤ κ0.

2. For every v ∈ V , we have that ‖Σ[pa(v), v]‖ ≤
α‖Σ[pa(v), pa(v)]‖, ‖Σ[spa(v), pa(v)]‖ ≤
α‖Σ[pa(v), pa(v)]‖ and ‖Σ[spa(v), v]‖ ≤
α‖Σ[pa(v), pa(v)]‖.

3. For every directed edge (u → v) in the causal DAG,
we have that 1

n2 ≤ |Λu,v|. Moreover, for every v ∈ V
we have, ‖Λ[spa(v), pa(v)]‖ ≤ β.

Proof Outline. We prove high-probability bounds on the
norm of sub-matrices of Ω and Λ using the concentration
properties of the inner-product of the random vectors. We
then use the Taylor series expansion for (I−Λ)−1 to obtain
an expression for Σ. Using the various properties of the spec-
tral norm of matrices, and the computed high-probability
bounds we obtain the required bounds.

5 EXPERIMENTS

In this section, we describe the results of our simulation
studies. We first perform simulation studies to identify the
importance of the various assumptions in Model 1 on ran-
dom perturbations. Next we use both real-world and sim-
ulated datasets to study the effect of graph sparsity on the
condition number. Thus, using simulations we complement
our theoretical understanding of the problem and show evi-
dence of good and bad conditioned instances that go well
beyond the sufficient conditions proved.

5.1 SIMULATIONS TO UNDERSTAND THE
IMPORTANCE OF EACH OF THE
ASSUMPTIONS IN MODEL 1

To study the effect of various assumptions on the growth of
condition number, we perform the following study. We gen-
erate Λ and Ω randomly using the same generative model in
Section 4. We generate random perturbations by modifying
each non-zero entry of the associated Σ using aN (0, 1e−2)



random variable independently. We compute the condition
number averaged over 20 independent runs of the pertur-
bation. To violate the various assumptions, we vary the
parameter β that is used to determine the range |λi,j | for a
directed edge i→ j. Recall that since β = 1

µ we also affect
the values of α and κ0. We look at the following scenarios
and compute the growth of the condition number in each of
these cases. Our biggest take-away is that the assumption
that affects the growth of condition number (i.e., exponen-
tial versus polynomial) is Assumption (A.3). Moreover, the
constants proved in theory are worst-case perturbations;
for random perturbations, our simulations show that these
can potentially be significantly improved while maintaining
robustness.

1. All the assumptions in theory are satisfied (Figure 3).

2. All assumptions except Assumption (A.3) are satisfied
(Figure 4).

3. Both Assumption (A.3) and Assumption (A.2) are
slightly violated (Figure 5).

4. Assumption α ∗ β ∗ κ0 < 1 and Assumption (A.3) are
violated (Figure 7).

5. Assumption ακ0

1−αβκ0

(
1 + κ0(1+β)

1−αβκ0

)
< 0.99

k and As-
sumption (A.3) are violated (Figure 6).

6. Large edge weights with β > 1 (Figure 8).

As can be seen from the figures, except in the last scenario
(Figure 8), in all other scenarios the condition number does
not grow exponentially.

5.2 EFFECT OF GRAPH SPARSITY.

We consider general bow-free graphs and random noise.
Before we describe the experimental procedure, we briefly
describe the challenges in running experiments; this explain
why experiments in prior works are almost non-existent.
The key issue with experimentation is that the ground-truth
model is unknown and the datasets do not come with the
true underlying model. In particular, LSEM is a model-
based approach where designing the right model is part
of the hypothesis held by the experimenter. The dataset
only contains the observational data; part of the challenge in
inferring causality using LSEM is in devising an appropriate
model based on domain knowledge. Thus, here and in prior
works (Drton et al. [2009], Sankararaman et al. [2019]) the
experimental setup simulates various possible hypotheses
in the hypothesis space.

Gene expression dataset. We use the dataset that corre-
sponds to experiments on gene expression in Arabidopsis
thaliana from Wille et al. [2004]. We look at the 13 genes
which belong to a single pathway. There are n = 118 mi-
croarray experiments. Thus, the input matrix X ∈ R118×13.

We have 13 vertices, one corresponding to each of the genes.
First, we choose a random permutation π to order the ver-
tices. For any pair of vertices i, j such that π(i) < π(j) we
add a directed edge from i to j with probability p. For every
vertex j, we choose a vertex i 6= pa(j) uniformly at random
and add a bidirected edge between i and j. For every other
pair of vertices, if there exists no directed edge between
them, we add a bidirected edge with probability 0.1. For a
given value of p, we generate 30 random graph structures
using the above procedure. To evaluate the condition num-
ber, we add independent N (0, ε2) noise to each entry in
the matrix X to obtain the perturbed dataset X̃ε. We then
compute the corresponding covariance matrix Σ̃ε. We use
the algorithm in Foygel et al. [2012] to recover parameters
Λ and Λ̃ε corresponding to the matrices Σ and Σ̃ε. For a
given realization of the random graph, we generate 20 differ-
ent datasets X̃ε. For each of these 20 datasets, we compute
the corresponding covariance matrices and run the param-
eter recovery algorithm Foygel et al. [2012] on them. We
then average the condition numbers (i.e., maximum relative
change in Λ to the maximum relative change in Σ) across
various values realizations of the random graph. Thus, a
single experiment is averaged over the 30 different random
graphs multiplied by the 20 different runs for a fixed graph.
We run two kinds of experiments for each p: (1) in which
we normalize the dataset (i.e., every row in the matrix X
has a norm of 1) (2) in which the dataset is not normalized.
Figure ?? shows the results of our experiments. We run sim-
ulations for p ∈ {0.05, 0.1, 0.2, 0.3, . . . , 0.9}. As can be
seen from the results when the values of p are small (sparse
regime), the average condition number tends to be small.
However, as the value of p becomes large (dense models)
the condition number increases. This can be explained by
the fact that when errors across many edges accumulate, the
total error gets compounded.

Simulated dataset. We consider two sets of experiments
that differ in the number of vertices in any layer: we consider
k = 2 and k = 7. For each setting of k, we consider p = 0.2
(sparse regime) and p = 0.8 (dense regime). When k = 2
we consider graphs where the total number of vertices is
in the set {20, 30, 40, 50} while when k = 7 the number
of vertices were in the set {14, 21, 35, 49}. For each triple
(k, p, n), we generate many random graphs exactly as in
the main section of the experiments. We generate a ran-
dom Λ corresponding to the random graph instance, where
every edge is given a weight uniformly at random from
[− range, range]. We use two values of range in the experi-
ments (range = 1/7 and range = 1). For every bidirected
edge between (i, j) we sample a N (0, 1) random variable
ω and let both Ωi,j = Ωj,i = ω. For every i ∈ [n] we
let Ωi,i to be the sum of absolute values in row i added
to a χ2

1-random variable.2 The construction implies that Ω
is a Symmetric Diagonally Dominant matrix and thus, is

2This is the exact setup in Drton et al. [2009].



Figure 3: All assumptions satisfied Figure 4: Only normalized input violated.

Figure 5: Normalized input and diagonal dominance
marginally violated. Figure 6: Relationship between the constants violated.

Figure 7: α ∗ β ∗ κ0 > 1. Figure 8: β > 1 (y-axis is in log-scale).

Positive Definite. We compute the covariance matrix from
Eq. (2). To compute the condition number, we consider 50
samples from this model and construct the sample covari-
ance matrix Σ̃ which constitutes our perturbed instance.
We then compute the average condition number between
the exact computation of Σ and the one obtained via finite
samples. Figure ??, ??, ?? and ?? denotes the results of
this experiment. As can be seen, in the sparse regime the
condition number is fairly low, while in the dense regime
the condition number is almost a factor of 102. Thus, these
results indicate two things. First, it verifies the claim in this
paper that when the assumptions on range are satisfied the
instances are well-conditioned. Second, it also seems to indi-
cate that when range is large, then some of the assumptions
in Model 1 are also necessary.

6 CONCLUSION

In this paper, we consider the problem of robust identifiabil-
ity in bow-free LSEMs. We give a sufficient condition when
bow-free LSEMs can be identified in a robust manner. As a
corollary, this implies that all but a tiny set of instances are
robustly identifiable. An important open direction is to pro-
vide sufficient conditions for robust identifiability in other
models of causal inference, particularly the semi-Markovian
model (note that Proposition 1.3 in Schulman and Srivas-
tava [2016] is one such sufficient condition). Another is to
combine robust identifiability with model misspecification
(e.g., Cinelli et al. [2019]) where all edges in the model are
not correctly specified; Existing works assume access to the
exact covariance matrix.
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