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Enhancing Multi-view Graph Neural Network with Cross-view
Confluent Message Passing
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ABSTRACT
With the growing diversity of data sources, multi-view learning
methods have attracted considerable attention. Among these, by
modeling the multi-view data as multi-view graphs, multi-view
Graph Neural Networks (GNNs) have shown encouraging perfor-
mance on various multi-view learning tasks. The message passing
is the critical mechanism empowering GNNs with superior ca-
pacity to process complex graph data. However, most multi-view
GNNs are designed on the well-established overall framework,
overlooking the intrinsic challenges of the message passing on
multi-view scenarios. To clarify this, we first revisit the message
passing mechanism from a graph smoothing perspective, revealing
the key to designing a multi-view message passing. Following the
analysis, in this paper, we propose an enhanced GNN framework
termed Confluent Graph Neural Networks (CGNN), with Cross-
view Confulent Message Passing (CCMP) tailored for multi-view
learning. Inspired by the optimization of an improved multi-view
graph smoothing problem, CCMP contains three sub-modules that
enable the interaction between graph structures and consistent
representations, which makes it aware of consistency and comple-
mentarity information across views. Extensive experiments on four
types of data including multi-modality data demonstrate that our
proposed model exhibits superior effectiveness and robustness.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; Neural networks.

KEYWORDS
Graph neural networks, Message passing, Multi-view learning, Rep-
resentation learning

1 INTRODUCTION
Multimedia technology has constantly developed, allowing data
to be collected in a variety of ways. For instance, text, images and
social relationships are used to describe personal information of the
same group of users. This type of data including multiple sources
can be referred to as multi-view data that provides diverse perspec-
tives of an entity and retains richer information than single-view
data [5, 27]. For comprehensively utilizing features from multiple
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Figure 1: Top: Pre-fusionmodels integrate multi-view graphs
into a whole graph for a consistent representation. Middle:
Post-fusion approaches separately implement message pass-
ing on each graph followed by merging the obtained results.
Bottom: Our CGNN achieves interactions between graph
structures and consistent representations.

views to learn intrinsic representations, many traditional multi-
view algorithms have been proposed in a variety of situations,
including data mining [20, 39] and natural language processing
[4, 23]. These methods have achieved excellent performance in
various downstream tasks. However, the inherent or implicit con-
nections between entities exist in real scenarios, and graphs are a
data form capable of modeling such complex relationships. Benefit-
ing from the powerful expressive capability of graphs, numerous
traditional multi-view methods have been extended to graph learn-
ing and have achieved fulfillment [35, 44]. They attain a consistent
graph structure via projecting graphs learned by multiple views
onto a shared subspace or adopting the weighted fusion manner.
Although these approaches successfully integrate the knowledge
implied in graphs, they are limited in ego information and fail to
benefit from the message passing.

The knowledge-fitting capability of neural networks enables
complicated patterns and semantics in data to be captured. Graph
Neural Networks (GNNs) [22], as powerful deep learning-based
methods for propagating signals along graph-structured data, ex-
pand the convolution to non-Euclidean space and have become
one of the hottest topics in numerous domains, including fraud
detection [38, 49], computer vision [26, 53] and other areas [9, 33].
To leverage GNNs to mine more complex contacts and principles
among multiple views, multi-view GNNs have emerged. For exam-
ple, Li et al. [25] firstly combined the multi-view learning and GNNs
to adaptively excavate relationships among views. Wu et al. [46]
proposed an interpretable network to explore the multi-view data
from the feature and topology spaces. Gong et al. [14] leveraged
the self-paced way to add improved pseudo labels from other views
to the target view to further optimize the model. Nonetheless, they
learn the fixed graph based on the 𝑘-nearest neighbor algorithm or
the distance between node pairs to perform the message passing,
which treats vital and noisy edges as equal.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The overview of the proposed CGNN. The network contains three sub-modules: (a) S-Block aims to learn edge-level
coefficients. (b) 𝝁-Block explores view-level coefficients. (c) Z-Block learns the consistent representation across views.

As one of the critical steps of GNNs, the message passing mech-
anism performed on graph structures learns rich contextual seman-
tics using relationships between nodes. Thus, most studies have
been devoted to enhancing the graph structure by adjusting edges
for discriminative node representations [24, 40]. GAT [37], as a
classic method for graph enhancement, utilizes learned representa-
tions to assign different weights to node pairs, thereby filtering out
abnormal connections. Following this line of thought, diverse vari-
ants [19, 47] are proposed to process complex multi-view graphs.
Among these, pre-fusion and post-fusion mechanisms are two main
pipelines for learning a consistent representation. The first one
consolidates multi-view graphs first to capture an overall graph,
and then it is used to accomplish the message passing for the consis-
tent representation, as illustrated in Figure 1-Top. The second one
realizes the message passing separately on each graph, and then in-
tegrates gained representations into consistent results, as shown in
Figure 1-Middle. These approaches built upon well-established net-
works have exhibited superb performance by modeling multi-view
data as multi-view graphs. However, they overlook interactions
between graph structures and consistent representation, in which
the latter can direct the augmentation and incorporation of the
former for more discriminative representations.

To address the above challenges, we propose an effective multi-
view GNN framework, named Confluent Graph Neural Networks
(CGNN), with Cross-view Confulent Message Passing (CCMP). Con-
cretely, we first reveal the key to devising a multi-view message
passing by revisiting the message passing mechanism from a graph
smoothing perspective. To enhance information aggregation from
complex messages across various views, we introduce an explicit
optimization objective that considers the interaction between multi-
view graph structures and consistent representations. The layers in
CCMP are transparently derived through alternating optimization
of the objective, which includes three sub-modules dynamically

supervising from each other: S-Block exploring graph structures, 𝜇-
Block learning view-level coefficients, and Z-Block excavating con-
sistent representations, as displayed in Figure 1-Bottom. These three
sub-modules facilitate cross-view message flow at the node level.
Specifically, each edge senses consistent information encoded in the
learned representation and the importance of different views. Sub-
sequently, the message passing is applied in the optimized graphs
with consistent and complementary awareness to learn the final
representation. The flowchart of CGNN is shown in Figure 2. Our
contributions are summarized as
• We bridge multi-view message passing to the graph smooth-
ing problem of GNNs and further reveal the key to designing
multi-view message passing.
• We propose a node-level message passing induced by an
improved multi-view graph smoothing problem and then in-
tegrate it into an efficient and robust model, termed, CGNN.
• Extensive experiments on four types of data indicate the
superiority of the proposed framework. Moreover, CGNN
works robustly on graphs with noisy edges.

2 RELATEDWORK
2.1 Multi-view Leaning
For capturing the consistency and complementarity hidden in multi-
view features to gain intrinsic semantics, many traditional algo-
rithms have been proposed. For example, Xu et al. [50] leveraged
relationships among views to recover the missing instances from
a shared subspace. Cai et al. [3] designed a scaled simplex repre-
sentation to achieve non-negative coefficients, and adopted the
tensorized manner to explore the common and complementary
information across views. Actually, connections between entities
exist in real scenarios, and graphs, as a data form capable of de-
scribing such interactions, can aid in modeling complex data. Due
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to the powerful expressive capability of graphs, graph learning
and multi-view methods are combined to learn informative repre-
sentations. For instance, Fang et al. [12] combined the adaptively
integrated bipartite graphs with the learning of clustering struc-
ture to efficient clustering. Zhou et al. [56] constructed a graph
filter based on multiple graph learning to explore the information
from all views. These approaches can integrate the knowledge im-
plied in graphs into objectives or constraints, thereby exploring the
consistency and complementarity in multi-view graphs. In order
to apply the advantages of neural networks to explore deep se-
mantics among views, deep-based multi-view networks have been
researched. Liu ey al. [28] introduced autoencoders to view-specific
features and used contrastive learning to extract the common in-
formation among views. Jin et al. [21] constructed the sample-level
alignment to mine the intra-view relationships and capture the
inter-view semantics by prototype-to-prototype correspondence.

2.2 Message Passing Mechanism
To handle a large amount of graph-structured data present in the
real world, GNNs-based paradigms have been extensively stud-
ied to perform the message passing along the graph structure for
discriminative representations. However, noise and interference
inherent in graphs could significantly impact the expressive power
of GNNs, which is detrimental to downstream tasks. In light of
this, many previous results have been devoted to improving graph
structures and achieving notable accomplishments [11, 51]. These
methods of modeling graph structures can be divided into three
pipelines. The first is similarity-based approaches that utilize inner
products or Gaussian kernel functions to compute the similarity
between node representations, thereby assigning weights to edges.
For example, Zhu et al. [58] computed the weight edges by fusing
the topological and semantic knowledge from graphs to render
the learned representations robust. The second approaches involve
using neural networks to learn edge weights. For instance, Zhao
et al. [55] designed neural edge predictors to enhance the intra-class
links and separate the inter-class connections. The third modeling
algorithms construct a learnable parameter matrix that is continu-
ally optimized during network optimization processes. For example,
Ying et al. [52] utilized a mutual information-based loss to identify
the important subgraphs. These models utilize optimized graph
structures to aggregate neighbors for obtaining reliable represen-
tations. However, they lack interactions between graph structures
and consistent representation.

3 PROPOSED METHOD
Notations. The major notations used throughout the paper are

described below. Consider a multi-view graph G = {G𝑣}𝑉
𝑣=1, where

𝑉 is the number of views and G𝑣 is the 𝑣-th view data. For the 𝑣-th
view G𝑣 , we have the adjacency matrix A𝑣 ∈ {0, 1}𝑛×𝑛 . The graph
Laplacian matrix is defined as L𝑣 = D𝑣 − A𝑣 , where D𝑣

𝑖𝑖
=
∑

𝑗A𝑣
𝑖 𝑗

and A𝑣
𝑖 𝑗

= 1 denotes the existence of edge 𝑒𝑖 𝑗 ∈ E linking node 𝑣𝑖
and 𝑣 𝑗 in the 𝑣-th view. X ∈ R𝑛×𝑚 is the feature matrix containing
the node information, where each node is associated with an𝑚-
dimensional feature vector.

3.1 Understanding Message Passing via Graph
Smoothing

Insights into Message Passing:We first review the key compo-
nent of GNNs, that is, the message passing mechanism. Take the
classical GCN as an example, the message passing process can be
typically formed as a matrix-form graph convolution:

Z(𝑙+1) = ÂZ(𝑙 ) , (1)

where Â = D̃−
1
2 ÃD̃−

1
2 , Ã = A + I, and D̃ is the degree matrix of Ã.

Some previous work has revealed that Eq. (1) equals to iteratively
solve the following graph smoothing regularization:

min
Z

Tr
(
Z⊤L̂Z

)
, (2)

where the normalized Laplacian L̂ = I − Â is adopted. Actually,
Problem (2) can be rewritten in a node-form:

min
Z

1
2

∑︁
𝑖, 𝑗

A𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥22, (3)

where z̄𝑖 = z𝑖/
√
𝑑𝑖 and 𝑑𝑖 = D̃𝑖𝑖 . It imposes a graph smoothing

regularization that makes the representations of any two connected
nodes more similar in the learned low-dimensional space. This
node-form graph smoothing regularization essentially explains the
message passing operation. More specifically, for the 𝑖-th node, the
message passing is performed by

z(𝑙+1)
𝑖

=
1
𝑑𝑖
z(𝑙 )
𝑖
+
∑︁
𝑗≠𝑖

A𝑖 𝑗
1√︁
𝑑𝑖𝑑 𝑗

z(𝑙 )
𝑗
, (4)

which collects the message from neighbors of the node 𝑖 to update
its representation. Problem (3) provides an insightful understanding
of the message passing mechanism, and we further analyze it in
the multi-view scenario.
Towards Multi-view Message Passing: Although the multi-view
graph typically contains diverse types of relations, it potentially
possesses cross-view consistent and complementary information,
as these relations share the same node set. Therefore, multi-view
GNNs aim to integrate information from these complex relations to
learn a consistent representation. For example, from the perspective
of graph smoothing, a typical multi-view GNN corresponds to the
following graph smoothing problem:

min
Z

1
2

∑︁
𝑣

∑︁
𝑖, 𝑗

A𝑣
𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥

2
2 . (5)

However, the interaction between consistent representation and
relations is not well-considered, such that the consistency and
complementarity encoded in representation Z are learned on fixed
graph structures. In other words, the edges are not aware of cross-
view consistency. To tackle this, we design a better multi-view
graph smoothing:

min
Z

1
2

∑︁
𝑣

∑︁
𝑖, 𝑗

𝜔𝑣
𝑖 𝑗A

𝑣
𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥

2
2, (6)

where𝜔𝑣
𝑖 𝑗
is an edge-level coefficient calculated on z𝑖 and z𝑗 , which

measures the importance of edge 𝑒𝑖 𝑗 to the consistent representation
Z. Although this formulation weights each edge for every view
to make the edges aware of the consistent and complementary
information, this approach inherently overlooks the heterogeneity
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of relationships across different views. Consequently, we further
consider the following problem

min
Z

1
2

∑︁
𝑣

∑︁
𝑖, 𝑗

𝜇𝑣𝜔
𝑣
𝑖 𝑗A

𝑣
𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥

2
2, (7)

where 𝜇𝑣 is the view-level coefficient which measures the impor-
tance of different views, and it is also supposed to be associated
with the consistent representation Z.

Then we determine how these coefficients interact with Z. Moti-
vated by the Iterative Reweighted Least Square (IRLS) method [16],
we propose to define𝜔𝑣

𝑖 𝑗
as𝜔𝑣

𝑖 𝑗
= 1/∥z̄𝑖 − z̄𝑗 ∥𝛾2 . In this manner, each

edge in every view is reweighted by the consistent representation,
which is denoted as S𝑣

𝑖 𝑗
= A𝑣

𝑖 𝑗
/∥z̄𝑖 − z̄𝑗 ∥𝛾2 . The problem becomes

min
Z,S𝑣

1
2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥
2
2 . (8)

As a result, the geometric structure in the consistent embedding
space of Z influences the weighting of edges in each view, and these
reweighted edges, in turn, encode structural information into the Z
obtained in the next iteration. For 𝜇𝑣 , we directly set it as a variable,
leading to an auto-weighted optimization problem:

min
Z,S𝑣 ,𝝁

𝜆1
2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥
2
2 + 𝜆2∥𝝁∥22,

𝑠 .𝑡 .

𝑉∑︁
𝑣=1

𝜇𝑣 = 1, 𝜇𝑣 ≥ 0, 𝑣 ∈ {1, 2, ...,𝑉 },
(9)

where 𝝁 = [𝜇1, . . . , 𝜇𝑉 ], and ∥𝝁∥22 is a regularization term to avoid
trivial solutions and promote a balanced representation across
views. 𝜆1 and 𝜆2 are two trade-off parameters. 𝜇𝑣 ≥ 0 denotes
the weight assigned to the 𝑣-th view, ensuring that the sum of
weights equals 1 to constrain the search space.

Upon establishing the graph smoothing problem, an additional
fitting term is required to constrain the similarity between node
representations and original features, fully leveraging the feature
information. In conclusion, we present a novel graph-smoothing-
based framework that integrates node feature learning and graph
structure learning in a unified approach:

min
Z,S𝑣 ,𝝁

∥Z − X∥2𝐹 +
𝜆1
2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥
2
2 + 𝜆2∥𝝁∥22,

𝑠 .𝑡 .

𝑉∑︁
𝑣=1

𝜇𝑣 = 1, 𝜇𝑣 ≥ 0, 𝑣 ∈ {1, 2, ...,𝑉 },
(10)

where S𝑣
𝑖 𝑗

= A𝑣
𝑖 𝑗
/∥z̄𝑖 − z̄𝑗 ∥𝛾2 .

3.2 Cross-view Confluent Message Passing
Jointly optimizing Z, S, and 𝝁 in Problem (10) poses a significant
challenge. Unlike conventional optimization problems for GNN
model design that solely involve the representation variable, Prob-
lem (10) is nonconvex. To obtain an efficient iterative algorithm
conducive to back-propagation training, we propose employing an
alternating optimization schema to update Z, S, and 𝝁 iteratively.

Update View-level Coefficients 𝝁: To update 𝝁, we fix Z and S,
then the objective function in Problem (10) reduces to:

min
𝝁
L :=

∑︁
𝑣

𝜇𝑣𝑡𝑣 +
𝜆2
𝜆1
∥𝝁∥22 ,

𝑠 .𝑡 .

𝑉∑︁
𝑣=1

𝜇𝑣 = 1, 𝜇𝑣 ≥ 0, 𝑣 ∈ {1, 2, ...,𝑉 },
(11)

where 𝑡𝑣 = 1
2
∑
𝑖, 𝑗 S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥22. When 𝜆2

𝜆1
= 0, the coefficients

will be focused on a particular view and it degenerates into the
single-view scenario. When 𝜆2

𝜆1
= +∞, it is equivalent to the average

fusion strategy, i.e., 𝜇𝑣 = 1
𝑉
. Otherwise, Problem (11) serves as the

problem of minimizing a convex function 𝑓 (·) on the unit simplex
△ = {𝝁 ∈ R𝑉 :

∑𝑉
𝑣=1𝜇𝑣 = 1, 𝝁 ≥ 0}. The Entropic Mirror Descent

Algorithm (EMDA) [2] can be used to update 𝝁. For 𝝁 (𝑙 ) in the 𝑙-th
layer, start with 𝝁1 ∈ { 1

𝑉
, ..., 1

𝑉
} and generate for 𝑘 = 1, ... until

convergence and obtain the optimal solution as follows:

𝜇
(𝑙 )
𝑣 ← 𝜇𝑘+1𝑣 =

𝜇𝑘𝑣 𝑒
−𝑅𝑘 𝑓 ′𝑣 (𝝁𝑘 )∑𝑉

𝑣=1 𝜇
𝑘
𝑣 𝑒
−𝑅𝑘 𝑓 ′𝑣 (𝝁𝑘 )

, 𝑅𝑘 =

√
2lnV
𝐿𝑓
√
𝑘
, (12)

where 𝑓 ′ (𝝁) = (𝑓 ′1 (𝝁), ..., 𝑓
′
𝑉
(𝝁))T ∈ 𝜕𝑓 (𝝁) and 𝑓 ′𝑣 (𝝁𝑘 ) =

2𝜆2
𝜆1
𝜇𝑘𝑣 +

𝑡𝑣 . The objective function 𝑓 (·) is a convex Lipschitz continuous
function with Lipschitz constant 𝐿𝑓 with respect to a fixed given
norm ∥·∥1, i.e., 𝐿𝑓 =

2𝜆2
𝜆1
+ ∥𝒕 ∥1 ≥ ∥ 𝑓 ′ (𝝁)∥1, where 𝒕 = {𝑡1, ..., 𝑡𝑉 }.

Update Graph Structure Matrix S: Similar to IRLS, with fixed 𝝁
and Z, S𝑣 can be updated by reweighting the adjacency matrix A𝑣 :

[S𝑣𝑖 𝑗 ]
(𝑙 ) = [𝜔𝑣

𝑖 𝑗 ]
(𝑙 )A𝑣

𝑖 𝑗 , [𝜔
𝑣
𝑖 𝑗 ]
(𝑙 ) = 1/∥z̄(𝑙 )

𝑖
− z̄(𝑙 )

𝑗
∥𝛾2 . (13)

Through Eq. (13), each edge can dynamically adjust its weight
according to the pair-wise representation distance by iteratively
updating the matrix S𝑣 .
Update Node Representation Z: Finally, Z can be updated with
fixed 𝝁 and S, the subproblem for Z becomes:

min
Z
L := ∥Z − X∥2𝐹 +

𝜆1
2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥
2
2 . (14)

We calculate the derivative with respect to Z and set it to zero:

Z = (I + 𝜆1
∑︁
𝑣

𝜇𝑣 L̂𝑣S)
−1X =

1
1 + 𝜆1

(
I − 𝜆1

1 + 𝜆1

∑︁
𝑣

𝜇𝑣 Ŝ𝑣
)−1X, (15)

where L̂𝑣S = I − Ŝ𝑣 , Ŝ𝑣 = (D̃𝑣)−
1
2 S̃𝑣 (D̃𝑣)−

1
2 and S̃𝑣 = S𝑣 + I. Since

𝜆1
1+𝜆1

< 1 for ∀𝜆1 > 0, and matrix
∑

𝑣 𝜇𝑣 Ŝ𝑣 has absolute eigenvalues
bounded by 1, thus all its positive powers have bounded opera-
tor norm. Then the inverse matrix can be decomposed efficiently
with 𝑙 → ∞ using Taylor series, that is

(
I − 𝜆1

1+𝜆1

∑
𝑣 𝜇𝑣 Ŝ𝑣

)−1
=

lim𝑙→∞
∑𝑙
𝑖=0

∑
𝑣

( 𝜆1
1+𝜆1

)𝑖
𝜇𝑣 [Ŝ𝑣] (𝑖 ) . So we consider solving Eq. (15)

iteratively and the detailed derivations are in Appendix A. In con-
clusion, we derive a newmessage passing mechanism, named Cross-
view Confulent Message Passing (CCMP), summarized as follows:

z(𝑙+1)
𝑖

=
𝜆1

1 + 𝜆1

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇
(𝑙 )
𝑣 [Ŝ𝑣𝑖 𝑗 ]

(𝑙 )z(𝑙 )
𝑗
+ 1

1 + 𝜆1
x𝑖 , (16)

where z(𝑙 )
𝑖

is the representation of node 𝑖 from the 𝑙-th layer.
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The CCMP learns the dynamic graph structures S and the view-
level coefficients 𝝁 by extracting information from both consistent
representations and relations simultaneously. The graph structures
S adjust the edge weights to evaluate their significance in captur-
ing consistent representations through the connected node pairs’
representations. The view-level coefficients 𝝁 associate each edge
with various views in a cross-view manner. Therefore, during the
message passing process, the overarching consistent representation
information and the distinctive information across various views
can flow between each edge. Moreover, the term 1

1+𝜆1
x𝑖 in Eq. (16)

can be regarded as a residual unit that helps the model mitigate
over-smoothing issues.
Discussion on Robustness: Due to the graphs’ advantages to
represent both entities and their relations, constructing graphs
on real-world data (e.g. multi-modality data) can lead to better
modeling of them. However, there is no such thing as a free lunch,
the noisy edges come during the collection or construction process
of graphs, which destroys the performance of GNNs. Many studies
have pointed out that classical GNNs lack robustness, we then
analyze that issue from the perspective of graph smoothing and
demonstrate that our proposed method is more robust.

The problem of classical GNN is based on ℓ2-norm-based graph
smoothing (Eq. (3)), and our method (Eq. (9)) can be rewritten

min
Z,S𝑣 ,𝝁

𝜆1
2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣A𝑣
𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥

𝑝

2 + 𝜆2∥𝝁∥22,

𝑠 .𝑡 .

𝑉∑︁
𝑣=1

𝜇𝑣 = 1, 𝜇𝑣 > 0, 𝑣 ∈ {1, 2, ...,𝑉 },
(17)

where 𝑝 = 2 − 𝛾, 1 < 𝑝 < 2. In problem (17), we derive a ℓ2,𝑝 -norm-
based graph smoothing problem. ∥z̄𝑖 − z̄𝑗 ∥𝑝2 with 1 < 𝑝 < 2 is a
more robust regularizer in comaprison to ∥z̄𝑖 − z̄𝑗 ∥22. Particularly,
a smaller 𝑝 leads to a shaper regularizer, and when 𝑝 → 1, ∥z̄𝑖 −
z̄𝑗 ∥𝑝2 approaches a discrete operator: if z̄𝑖 − z̄𝑗 ≠ 0. Therefore,∑
𝑖, 𝑗 A𝑖 𝑗 ∥z̄𝑖−z̄𝑗 ∥𝑝2 is an effective relaxation of

∑
𝑖, 𝑗 A𝑖 𝑗1{z̄𝑖−z̄𝑗 ≠ 0}

when 1 < 𝑝 < 2. Additionally, minimizing
∑
𝑖, 𝑗 A𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥𝑝2 is

able to isolate the outliers in {z̄𝑖 − z̄𝑗 }𝑛𝑖,𝑗=1.
Specifically, Problem (17) can be regarded as weighting A𝑣

𝑖 𝑗
with

1/∥z̄𝑖−z̄𝑗 ∥2−𝑝2 based on the ℓ2-norm-based graph smoothing. In this
way, the variation of node embeddings on edges (measured by the
norm of graph gradient) can be used to detect the existence of outlier
edges according to homophily assumption [1, 10]. When nodes 𝑖
and 𝑗 are connected but dissimilar, the resulting edge is likely an
outlier edge. Consequently, a small weight would be assigned to
this edge accordingly, meaning that A𝑖 𝑗/∥z̄𝑖 − z̄𝑗 ∥2−𝑝2 would have a
small value. Thus the robustness of the model is greatly enhanced
by reducing the impact of outlier edges.

3.3 The Overall Model Architecture
In this subsection, we design the architecture of CGNN using Cross-
view Confulent Message Passing. Given node features x𝑖 ∈ R𝑛×𝑚 of
node 𝑖 , the maximum layer number of 𝐿, and view-level coefficients
update function U(·) given by Eq. (12), we perform the proposed

architecture:

z(0)
𝑖

= ReLU(x𝑖W1),

𝜇
(𝑙 )
𝑣 = U(𝜇1

𝑣, 𝒕
(𝑙 ) , 𝜆1, 𝜆2),

[𝜔𝑣
𝑖 𝑗 ]
(𝑙 ) = 1/∥z̄(𝑙 )

𝑖
− z̄(𝑙 )

𝑗
∥𝛾2 ,

[S𝑣𝑖 𝑗 ]
(𝑙 ) = [𝜔𝑣

𝑖 𝑗 ]
(𝑙 )A𝑣

𝑖 𝑗 ,

z(𝑙+1)
𝑖

=
𝜆1

1 + 𝜆1

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇
(𝑙 )
𝑣 [Ŝ𝑣𝑖 𝑗 ]

(𝑙 )z(𝑙 )
𝑗
+ 1

1 + 𝜆1
z(0)
𝑖
,

z𝑜𝑢𝑡 = softmax(z(𝐿)
𝑖

W2),

(18)

where 𝑙 = 0, 1, ..., 𝐿−1 and 𝑡 (𝑙 )𝑣 = 1
2
∑
𝑖, 𝑗 [S𝑣𝑖 𝑗 ]

(𝑙 ) ∥z̄(𝑙 )
𝑖
− z̄(𝑙 )

𝑗
∥22, 𝒕

(𝑙 ) =

{𝑡 (𝑙 )1 , ..., 𝑡
(𝑙 )
𝑉
}. z𝑜𝑢𝑡 is the output representation and 𝑐 denotes the

number of classes.W1 ∈ R𝑚×𝑑 andW2 ∈ R𝑑×𝑐 are the trainable
weight of the neural network. The loss function is chosen as the
cross-entropy loss defined by the z𝑜𝑢𝑡 and labels for training data.
Computation Complexity: Recall that the number of nodes is 𝑛,
node feature dimension is𝑚, and |E | is the number of edges. The
time complexity of transformation for input is O(𝑛𝑚𝑑), and that of
the one for output is O(𝑛𝑑𝑐). The time complexity of coefficient 𝝁
is O(𝐾𝑉 |E |𝑑), where 𝐾 is the iteration number. For S and Z, it has
a time complexity of O(𝐿𝑉 (𝐾𝑉 |E |𝑑 + |E|𝑑)), so the overall time
complexity is O((𝑛𝑚 + 𝐿𝐾𝑉 2 |E |)𝑑) when 𝑐 ≪ 𝑚. Generally, our
method is efficient.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate CGNN by an-
swering the following Research Questions (RQ):
• RQ1:Does CGNNoutperform competitors in semi-supervised
classification when processing various graph data?
• RQ2: How do reweighted edges boost the robustness?
• RQ3: How does the view-level dynamic coefficients work?
• RQ4: How does each component or hyperparameter affect
the performance of CGNN?

4.1 Experimental Settings
4.1.1 Datasets. To validate the effectiveness of the proposed model
on various data types, we conduct experiments on six single-view
datasets (Cora, Citeseer, Pubmed, ACM, BlogCatalog, UAI); ten
multi-view ones including four multi-relational (ACM, DBLP, IMDB,
YELP), three multi-attribute (MINST, HW, Animals) and three multi-
modality (BDGP, ESP-Game, MIRFlickr). To distinguish two differ-
ent ACM datasets, we use ACM-S to denote ACM for single-view
and ACM-M to denote ACM for multi-relational.

4.1.2 Compared Methods. For verifying the superiority of the pro-
posed model, we compare CGNN with nine GNN-based models
used for single-view graph (GCN [22], GAT [37], SGC [45], APPNP
[13], ScGCN [29], AdaGCN [34], AMGCN [43], SSGC [57], DefGCN
[32]); seven approaches designed for multi-relational graphs (HAN
[42], DMGI [31], IGNN [15], MRGCN [18], SSDCM [30], MHGCN
[54], AMOGCN [8]); eight methods devised for multi-attribute and
multi-modality graphs (MVAR [36], Co-GCN [25], HLR-M2VS [48],
ERL-MVSC [17], DSRL [41], LGCN-FF [7], IMvGCN [46], JFGCN
[6]).
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Table 1: ACC (mean and std%) of ten models on single-view graph, where the best and the second-best performance are
highlighted in bold and underlined, respectively. OOM is Out-of-Memory (24GB).

Methods/Datasets GCN GAT SGC APPNP ScGCN AdaGCN AMGCN SSGC DefGCN CGNN (Ours)
Cora 79.32 (0.91) 79.11 (0.83) 77.14 (0.05) 77.94 (0.13) 77.86 (0.92) 75.42 (0.03) 79.32 (0.67) 80.24 (0.81) 77.83 (1.03) 81.50 (0.22)

Citeseer 69.25 (0.54) 68.37 (0.53) 67.08 (0.01) 66.83 (0.03) 67.91 (0.25) 66.78 (0.25) 71.92 (0.81) 71.03 (0.63) 67.59 (1.75) 69.60 (1.07)
Pubmed 77.65 (2.37) 77.62 (2.21) 78.27 (0.89) 78.55 (1.13) 76.70 (0.52) 77.54 (0.48) OOM 78.93 (0.36) 73.92 (0.52) 80.13 (0.54)
ACM-S 88.52 (0.73) 84.63 (0.54) 80.42 (0.13) 83.26 (0.13) 87.52 (0.71) 85.10 (0.96) 89.93 (0.42) 85.42 (0.28) 87.83 (0.30) 90.23 (0.21)

BlogCatalog 84.67 (1.14) 65.30 (1.72) 73.52 (0.28) 81.75 (0.10) 68.58 (1.43) 80.71 (0.79) 85.86 (0.90) 82.30 (0.84) 82.84 (3.47) 96.17 (0.19)
UAI 53.67 (2.12) 49.71 (3.02) 56.53 (3.55) 60.23 (0.16) 37.72 (3.68) 45.92 (7.61) 64.32 (0.95) 59.73 (1.04) 57.82 (1.84) 67.40 (0.85)

Table 2: Macro-F1 and Micro-F1 (mean and std%) of nine networks with various percentages of training samples on multi-
relational graphs, in which the best and the second-best performance are highlighted in bold and underlined, respectively.

Datasets Metrics Training GCN HAN DMGI IGNN MRGCN SSDCM MHGCN AMOGCN CGNN

ACM-M

Macro-F1
20% 76.66 (5.19) 87.95 (0.42) 66.73 (1.84) 82.90 (0.03) 87.58 (0.19) 84.34 (3.46) 60.15 (1.50) 90.14 (0.48) 93.84 (0.30)
40% 78.34 (3.76) 91.28 (0.33) 71.17 (2.24) 85.01 (1.01) 88.44 (0.20) 85.05 (3.66) 60.72 (0.40) 91.03 (0.50) 94.52 (0.37)
60% 79.10 (3.58) 89.22 (0.53) 68.38 (1.57) 87.29 (0.07) 91.49 (0.43) 86.44 (1.37) 90.90 (2.78) 90.96 (0.78) 94.83 (0.29)

Micro-F1
20% 78.01 (4.54) 87.98 (0.38) 70.43 (1.13) 82.70 (0.03) 87.45 (0.24) 85.23 (2.86) 72.80 (0.65) 90.01 (0.50) 93.59 (0.29)
40% 79.36 (3.27) 91.20 (0.33) 74.06 (1.50) 84.91 (1.01) 88.32 (0.20) 85.77 (3.09) 73.17 (1.05) 90.97 (0.51) 94.48 (0.37)
60% 80.01 (3.23) 89.21 (0.54) 71.80 (1.01) 87.39 (0.07) 91.43 (0.44) 86.96 (1.04) 90.86 (2.65) 90.81 (0.79) 94.77 (0.29)

DBLP

Macro-F1
20% 90.70 (0.64) 89.30 (0.21) 75.35 (1.28) 86.81 (0.01) 89.49 (1.61) 55.72 (2.71) 92.52 (0.29) 92.27 (0.42) 93.01 (0.12)
40% 89.86 (0.26) 90.02 (0.34) 81.47 (0.76) 88.40 (0.01) 91.15 (0.08) 79.88 (2.13) 92.00 (0.22) 92.24 (0.29) 92.71 (0.15)
60% 90.26 (0.50) 90.70 (0.27) 77.72 (1.41) 87.76 (0.00) 91.07 (0.13) 80.69 (2.05) 92.02 (0.48) 92.36 (0.18) 92.45 (0.28)

Micro-F1
20% 91.38 (0.52) 90.44 (0.20) 81.21 (0.72) 87.50 (0.01) 90.47 (1.23) 62.82 (3.90) 92.97 (0.23) 92.80 (0.37) 93.19 (0.12)
40% 90.62 (0.18) 90.46 (0.28) 83.77 (0.51) 88.41 (0.01) 91.71 (0.12) 80.64 (2.11) 92.74 (0.25) 92.70 (0.26) 93.10 (0.15)
60% 90.97 (0.56) 91.20 (0.29) 82.81 (0.78) 88.33 (0.00) 91.59 (0.12) 81.37 (2.03) 91.28 (0.45) 92.73 (0.16) 92.83 (0.27)

IMDB

Macro-F1
20% 23.57 (0.04) 23.99 (1.19) 38.28 (3.12) 45.31 (0.00) 45.17 (2.31) 35.29 (3.54) 51.38 (1.24) 49.11 (0.75) 52.74 (2.59)
40% 24.38 (0.53) 23.11 (1.91) 50.81 (0.01) 50.80 (0.10) 45.74 (1.28) 38.86 (0.02) 52.04 (0.26) 50.86 (0.74) 52.47 (0.68)
60% 25.49 (1.36) 24.90 (1.62) 40.37 (1.90) 53.60 (0.01) 49.15 (2.63) 39.44 (0.03) 52.44 (1.53) 52.38 (0.44) 50.79 (1.55)

Micro-F1
20% 54.60 (0.01) 55.90 (1.21) 57.03 (0.42) 54.81 (0.00) 47.69 (2.28) 50.83 (2.69) 62.12 (0.95) 61.03(1.27) 62.96 (0.38)
40% 54.72 (0.02) 54.25 (0.77) 59.22 (0.01) 59.18 (0.03) 48.27 (0.90) 51.56 (0.01) 61.44 (0.36) 63.81 (0.20) 64.61 (0.32)
60% 54.94 (0.27) 56.21 (0.57) 58.86 (0.28) 61.22 (0.11) 51.81 (3.51) 54.04 (0.02) 62.67 (0.46) 62.08 (0.26) 63.52 (0.70)

YELP

Macro-F1
20% 55.46 (0.89) 55.39 (4.52) 52.72 (2.27) 71.40 (0.01) 54.35 (0.39) 55.86 (2.99) 60.85 (1.02) 70.77 (2.32) 93.18 (0.18)
40% 55.65 (1.01) 55.59 (4.80) 55.54 (3.24) 73.33 (0.01) 54.74 (0.91) 69.54 (2.04) 60.07 (1.01) 70.97 (1.81) 93.50 (0.32)
60% 60.44 (2.17) 56.26 (5.77) 53.94 (3.25) 75.30 (0.01) 53.54 (0.04) 69.44 (2.06) 56.62 (1.18) 73.26 (1.08) 93.75 (0.47)

Micro-F1
20% 74.02 (0.35) 68.00 (5.03) 69.52 (0.68) 75.01 (0.01) 73.70 (0.46) 68.87 (5.54) 73.28 (0.24) 77.43 (0.36) 92.40 (0.23)
40% 74.13 (0.49) 69.69 (6.25) 72.60 (0.25) 75.91 (0.01) 73.53 (0.50) 75.77 (2.10) 73.01 (0.49) 78.81 (0.19) 92.67 (0.34)
60% 75.70 (0.94) 68.02 (6.63) 71.00 (0.39) 77.51 (0.01) 72.55 (0.06) 74.91 (2.19) 73.21 (1.00) 79.69 (0.47) 93.07 (0.42)

4.1.3 Experimental Settings. For the performance evaluation, we
conduct 5 runs for semi-supervised classification on all datasets and
record the mean and standard deviation. The detailed experimental
settings are provided in Appendix B.

4.2 Performance on Various Graph data (RQ1)
In the subsection, we focus on constructing semi-supervised classi-
fication experiments to validate whether the proposed CGNN can
effectively process various types of graph data.

4.2.1 Comparison on Single-view Graph. When the number of
views equals 1, the formula (10) can be utilized for the datasets
with only one view. For ten methods devised for single-view graph,
20 labeled samples per class are randomly chosen for training, 500
samples are selected for validation, and 1000 samples are used for
testing. Comparative results are shown in Table 1, and we summa-
rize the following several observations from this table:

• Ourmodel CGNNoutperforms other competitors and achieves
the optimal performance on most datasets.
• Especially on BlogCatalog, we improve the accuracy by
10.31% over the second-best method AMGCN.

It is noted that compared with other models with graph enhance-
ment GAT, ScGCN and DefGCN, CGNN obtains significant im-
provement. These results can be attributed to the effectiveness of
CGNN with reweighted edges guided by the final representation.

4.2.2 Comparison on Multi-view Graphs. For the sake of displaying
the advancement of our method in handling multi-view graphs,
we conduct diverse experiments on three kinds of datasets with
multiple views. Experimental setups and analyses on these datasets
are as follows: 1)Multi-relational Graphs denote that there are
multiple relationship types between nodes in the graph structure.
We record Macro-F1 and Miscro-F1 of all models in Table 2. Here,
the training percentage varies in {20%, 40%, 60%}, and the validation
and test ratios are fixed at 10% and the rest, respectively. From this
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Table 3: ACC (mean and std%) of nine approaches on multi-attribute and multi-modality graphs, in which the optimal and the
suboptimal performance are highlighted in bold and underlined, respectively.

Methods/Datasets MVAR Co-GCN HLR-M2VS ERL-MVSC DSRL LGCN-FF IMvGCN JFGCN CGNN

MNIST 85.54 (1.93) 90.41 (1.47) 83.06 (2.53) 91.36 (0.66) 89.04 (6.48) 89.96 (0.34) 91.92 (1.45) 89.33 (1.89) 92.65 (0.30)
HW 78.43 (2.16) 91.44 (4.39) 86.04 (2.00) 89.81 (1.08) 95.55 (2.43) 96.23 (0.43) 92.53 (1.28) 92.98 (4.57) 97.50 (0.06)
Animals 81.51 (0.54) 79.72 (1.38) 72.87 (0.48) 69.98 (0.57) 80.19 (4.34) 74.42 (1.02) 68.81 (0.27) 80.31 (0.17) 84.04 (0.04)
BDGP 94.81 (1.46) 94.56 (1.73) 94.31 (1.18) 93.48 (0.81) 98.58 (0.91) 98.74 (0.16) 93.34 (0.45) 98.52 (0.48) 99.15 (0.05)
ESP-Game 79.15 (2.62) 75.94 (3.51) 66.97 (0.67) 68.56 (0.42) 79.85 (6.01) 68.80 (0.37) 71.34 (0.74) 53.96 (4.39) 82.03 (0.38)
MIRFlickr 67.15 (0.49) 59.24 (2.69) 57.01 (0.74) 58.93 (0.62) 68.71 (7.62) 41.24 (0.74) 58.89 (1.02) 48.36 (3.54) 70.02 (0.28)

table, we can observe that for most methods, performance improves
with an increase in the number of training samples. Among them,
CGNN gains the best Macro-F1 and Miscro-F1 on most datasets for
distinct ratios of training samples; 2) Multi-attribute and Multi-
modality Graphs are constructed based on various data features,
where each feature corresponds to a graph. We run nine approaches
with the fixed training/validation/test split as 10%/10%/80%, and
experimental results are presented in Table 3. It is obvious that
the champion and runners-up are typically GNN-based methods,
validating the role of message passing in performance improvement.
Among them, CGNN is the best due to its advanced cross-view
confluent message passing mechanism.

4.3 Robustness Analysis of Graph
Structures (RQ2)

To verify the robustness discussed in Section 3.2, we use the state-
of-the-art adversarial attacks, Mettack [59], to perturb the graph
data with a 25% perturbation rate. Specific implementation details
and robustness analysis on multi-view datasets are available in Ap-
pendix C. The adversary usually adds adversarial edges rather than
deleting edges in structural attacks [59]. We design a visualization
task using the edge-level coefficients 𝝎 in Eq. (18) to calculate the
edge weights. For a fair comparison, we compute the weight for
each edge in the last layer and normalize them. We visualize the
weight density distribution of normal and adversarial edges with
and without CCMP as well as from two datasets respectively in
Figure 3. From the figure, it is evident that the peak of the density
for adversarial edges shifts towards lower weights, whereas the
peak for normal edges remains relatively constant. Meanwhile, the
classification accuracy reduction after the attack has been notice-
ably alleviated. Consistent with earlier discussion, the outlier edge
is allocated a smaller weight, alleviating its impact and validating
the robustness of the learned graph structure.

4.4 View-level Coefficient Visualization (RQ3)
In this subsection, we explore whether the proposed view-level
coefficients generated by CGNN are reasonable. For datasets with
more than two views, we assess the classification performance for
each individual view and rank them in descending order, starting
from the highest F1 score as the 1st F1, followed by the 2nd F1, and
so on up to the 6th F1. The coefficient 𝜇𝑣 of each view (denoted by
color length) and its corresponding F1 rank are presented in Figure
4. We can observe that obtaining better performance is basically
associated with larger coefficient values. Beyond that, we calculated
Pearson correlation coefficients (PCCs) between the F1 scores and
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Figure 3: Weight density distributions of normal and adver-
sarial edges on the learned graph. We implement CGNN w
and w/o CCMP on Cora and Citeseer datasets.
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Figure 4: View-level Coefficient 𝜇𝑣 of each view. Different
colors indicate the ranking of Macro-F1 for each single view,
e.g., the 1st F1 corresponds to the highest Macro-F1.

coefficient 𝝁 for each dataset. The positive correlations observed
in all datasets for the PCCs suggest that the learned view-level
coefficients effectively capture the importance of different views.

4.5 Component and Parameter Analysis (RQ4)
4.5.1 Ablation Study. To evaluate the effectiveness of the proposed
CCMP, we compare CGNN with one variant in single graph sce-
nario: BaseGNN (with message passing of GCN) and three variants
in multi-view scenario: BaseGNN, CGNN-S (without considering



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ACM-S ACM-M ACM-M

S

Figure 5: Performance comparison of CGNN and its variants on various datasets.

(a) MNIST (b) HW (c) ESP-Game (d) MIRflickr (e) ACM-M

(f) MNIST (g) HW (h) ESP-Game (i) MIRflickr (j) ACM-M

Figure 6: Parameter sensitivity on five multi-view graph datasets. (a)-(e) Performance with different combinations of 𝛼 and 𝜆2.
(f)-(j) Performance curves as 𝛾 ranges in { 1

2 , · · · ,
1
7 }.

dynamic graph structures in CCMP) and CGNN-𝝁 (without consid-
ering view-level coefficients in CCMP). Figure 5 presents the node
classification performance across all datasets, which demonstrates:

• For the single graph scenario, the adoption of CCMP leads
to performance improvements on all datasets. It indicates
that the learned graph structures via edge-level coefficients
enable a more effective capture of structural information for
each view.
• For the multi-view graph scenario, CGNN outperforms each
variant in terms of classification performance, validating that
the proposed CCMP can efficiently and rationally leverage
consistency and complementarity information across views.

4.5.2 Parameter Sensitivity. In this subsection, we conduct the pa-
rameter sensitivity to analyze the impact of these parameters on
the models. Due to page limitations, we present results on 2 multi-
attribute datasets, 2 multi-modality datasets, and 1 multi-relational
dataset. Results for the remaining datasets can be found in Appen-
dix C. This paper contains three main hyperparameters: 𝛼 = 1

1+𝜆1
balancing the multi-view graph smoothing term, 𝜆2 adjusting the
regularization term ∥𝝁∥22, and 𝛾 controlling the norm of edge-level
coefficients 𝝎. Figure 6 (a)-(e) plot the performance of CGNN w.r.t.
(𝛼 ,𝜆2) with the fixed𝛾 . It is obvious that themodel’s peak is achieved
when 𝛼 = 0.2 for the multi-relational and multi-modality datasets,

and the optimal value occurs when 𝛼 varies from 0.1 to 0.2 for
the multi-attribute datasets. This indicates that the appropriate
𝛼 can promote the performance and validate the effectiveness of
the graph smoothing term. For the parameter 𝜆2, the model per-
formance varies as it is changed, implying the role of this term
balancing multiple views. Figure 6 (f)-(j) presents the effect of 𝛾 on
the performance. The model stays at a promising level with slight
fluctuations as 𝛾 varies, which supports the validity of the dynamic
graph structures driven by edge-level coefficients.

5 CONCLUSION
In this paper, we revealed the key to designing multi-view mes-
sage passing and connecting it with the graph smoothing problem
of GNNs. Motivated by our findings, we introduced a novel opti-
mization objective that fully utilized the interaction between graph
structures and consistent representation. By iteratively optimizing
the objective, we naturally derived a Cross-view Confluent Mes-
sage Passing (CCMP), seamlessly integrating it into the Confluent
Graph Neural Networks (CGNN). The dynamic weight facilitated
the flow of consistency and complementarity information across
views along edges during the aggregation process. Extensive experi-
ments on node classification tasks on various datasets demonstrated
the effectiveness of the proposed CGNN, and also exhibited the
robustness on graphs with noisy edges.
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