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ABSTRACT
In this appendix, we first provide detailed derivations mentioned in

the main paper for better understanding. Then, we present exper-

imental settings, including dataset statistics and hyperparameter

selection. Finally, we supplement some experimental results and a

training algorithm.

A DERIVATIONS
Here, we first provide detailed derivations about graph Laplacian

regularization:

1

2

∑︁
𝑖 𝑗

A𝑖 𝑗 | |
z𝑖√
𝑑𝑖
−
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𝑑 𝑗

| |2
2

=
1

2

∑︁
𝑖 𝑗

A𝑖 𝑗 (
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− 2
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1

2 AD−
1

2 )Z
)

=Tr

(
Z⊤L̂Z

)

(1)

We further elaborate on how vanilla GCN and CGCN are induced

by optimization problems.

Theorem A.1. Given Z(0) = X, the message passing of the vanilla
GCN [1]

Z(𝑙+1) = ÂZ(𝑙 ) (2)

is optimizing the following objective

min

Z

∑︁
𝑖 𝑗

A𝑖 𝑗 ∥
z𝑖√
𝑑𝑖
−

z𝑗√︁
𝑑 𝑗
∥2

2
. (3)

Proof. According to Eq. (1), Problem (3) is equal to

min

Z
L(Z) := Tr(Z⊤L̂Z). (4)

Taking derivative of L(Z) w.r.t Z, we have

L̂Z = 0 ⇒ (I − Â)Z = 0 ⇒ Z = ÂZ, (5)

which can be regarded as a limit distribution Z𝑙𝑖𝑚 = ÂZ𝑙𝑖𝑚 . There-

fore we solve Problem (3) in an iterative form

Z(𝑙+1) = ÂZ(𝑙 ) , (6)

that is Z(𝑙 ) = Â(𝑙 )X. Eq. (6) is to approximate the limit with 𝑙 →
∞. □

Theorem A.2. the Cross-view Confulent Message Passing (CCMP)
(with computed [S𝑣] (𝑙 ) ) of CGCN

z(𝑙+1)
𝑖

=
𝜆1

1 + 𝜆1

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇
(𝑙 )
𝑣 [Ŝ𝑣𝑖 𝑗 ]

(𝑙 )z(𝑙 )
𝑗
+ 1

1 + 𝜆1

x𝑖 (7)

is optimizing the following objective

min

Z
L := ∥Z − X∥2𝐹 +

𝜆1

2

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇𝑣S𝑣𝑖 𝑗 ∥z̄𝑖 − z̄𝑗 ∥
2

2
. (8)

Proof. According to Eq. (1), Problem (8) is equal to

min

Z
L := ∥Z − X∥2𝐹 + 𝜆1

∑︁
𝑣

𝜇𝑣Tr(Z⊤L̂𝑣SZ) (9)

Taking derivative of Eq. (9) w.r.t Z, we have

Z + 𝜆1

∑︁
𝑣

𝜇𝑣 L̂𝑣SZ − X = 0 ⇒ (I + 𝜆1

∑︁
𝑣

𝜇𝑣 L̂𝑣S)Z = X.
(10)

Since L̂𝑣S is semi-definite positive, we further obtain

Z = (I + 𝜆1

∑︁
𝑣

𝜇𝑣 L̂𝑣S)
−1X =

(
I + 𝜆1 (I −

∑︁
𝑣

𝜇𝑣 Ŝ𝑣)
)−1X,

(11)

where L̂𝑣S = I − Ŝ𝑣 . By simple algebra, it can be transformed to

Z =
1

1 + 𝜆1

(
I − 𝜆1
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∑︁
𝑣

𝜇𝑣 Ŝ𝑣
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Then
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𝑣
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that is
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∑
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( 𝜆1

1+𝜆1

)𝑖
𝜇𝑣 [Ŝ𝑣] (𝑖 ) ,

so we denote the calculated Z with the 𝑙-th order approximation

of the matrix inversion as Z(𝑙 ) = 1

1+𝜆1

∑𝑙
𝑖=0

∑
𝑣

( 𝜆1

1+𝜆1

)𝑖
𝜇𝑣 [Ŝ𝑣] (𝑖 )X.

Thus, we have the iterative form

Z(𝑙+1) =
𝜆1

1 + 𝜆1

∑︁
𝑣

𝜇𝑣 [Ŝ𝑣] (𝑙 )Z(𝑙 ) +
1

1 + 𝜆1

X. (14)

Writing it in node-level form gives the CCMP:

z(𝑙+1)
𝑖

=
𝜆1

1 + 𝜆1

∑︁
𝑖, 𝑗

∑︁
𝑣

𝜇
(𝑙 )
𝑣 [Ŝ𝑣𝑖 𝑗 ]

(𝑙 )z(𝑙 )
𝑗
+ 1

1 + 𝜆1

x𝑖 , (15)

which completes the proof. □
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Table 1: Detailed statistics of single-view graph.

Datasets Nodes Edges Classes Features Traning Nodes

Cora 2,708 5,429 7 1,433 Citation network

Citeseer 3,327 4,732 6 3,703 Citation network

Pubmed 19,717 44,324 3 500 Citation network

ACM-S 3,025 13,128 3 1,870 Paper network

BlogCatalog 5,196 171,743 6 8,189 Social network

UAI 3,067 28,311 19 4,973 Webpage network

Table 2: Detailed statistics of multi-relational graphs.

Datasets Nodes Features Views Classes

ACM 3,025 1,870 2 3

DBLP 4,057 334 3 4

IMDB 4,780 1,232 3 3

YELP 2,614 82 3 3

Table 3: Detailed statistics of multi-attribute and multi-
modality graphs.

Datasets Nodes Features Views Classes

MNIST 10,000 48 3 10

HW 2,000 1,715 6 10

Animals 10,158 8,192 2 50

BDGP 2,500 1,829 2 5

ESP-Game 11,032 200 2 7

MIRFlickr 12,154 200 2 7

B DETAILED EXPERIMENTAL SETTINGS
B.1 Datasets
In this paper, four types of datasets are adopted, including six single-

view datasets (Cora, Citeseer, Pubmed, ACM, BlogCatalog, UAI),

fourmulti-relational graphs (ACM, DBLP, IMDB, YELP), threemulti-

attribute graphs (MINST, HW, Animals), and three multi-modality

graphs (BDGP, ESP-Game, MIRFlickr). The detailed statistics of

these datasets are illustrated in Tables 1, 2 and 3, respectively. Note

that the number of features in Tables 3 is the sum of feature dimen-

sions of all views.

B.2 Hyperparameter Settings
For CGCN, the hyperparameter configuration is as follows: learning

rate = 0.01, dropout = 0.5, weight decay = 5E-4, number of layers =

2, and fixed hidden unit size of 32. The values of hyperparameter 𝛼

(𝛼 = 1

1+𝜆1

) are searched from the set {0.1, 0.2, 0.3, 0.4, 0.5}, hyperpa-
rameter 𝜆2 is searched from {50, 60, 70, 80, 90}, and hyperparameter

𝛾 is searched from { 1

2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
}. For other baseline methods,

we adopt the default parameter settings provided by the authors’

implementations.

Figure 1: Parameter sensitivity on six single-view graph
datasets.
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Figure 2: Weight density distributions of normal and adver-
sarial edges on the learned graph. We implement CGNN w
and w/o CCMP on views 1-3 of IMDB datasets.

C SUPPLEMENTAL EXPERIMENTS
C.1 Robustness Analysis of Graph Structures
Attack Settings. In robustness analysis, we employ the state-of-the-

art method Mettack to generate adversarial perturbations. Mettack

[2] specifically targets graph structures during training, and the

largest connected components of the graphs are utilized during the
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(a) DBLP (b) IMDB (c) YELP (d) Animals (e) BDGP

(f) DBLP (g) IMDB (h) YELP (i) Animals (j) BDGP

Figure 3: Parameter sensitivity on five multi-view graph datasets. (a)-(e) Performance with different combinations of 𝛼 and 𝜆2.
(f)-(j) Performance curves as 𝛾 ranges in { 1

2
, · · · , 1

7
}.

attack. The perturbation rate represents the ratio of changed edges.

For instance, a 25% perturbation rate implies that the number of

adversarial edges added is 25% of the original edge count.

Robustness of Multi-view Datasets.We present additional re-

sults on multi-view datasets. Specifically, we apply Mettack to each

view of the IMDB dataset with a 25% perturbation rate. Figure 2

illustrates the weight density distribution of normal and adversar-

ial edges with and without CCMP across three views. The figure

shows that adversarial edges are assigned lower weights than nor-

mal edges, and the reduction in Macro-F1 post-attack has been

significantly mitigated. Similar to the single-view scenario, our

proposed CCMP demonstrates robustness on multi-view datasets.

C.2 Parameter Sensitivity
In this subsection, we supplement the parameter analysis to both

single-view graphs and the remaining multi-view graphs.

Single-view Graph. For single-view graphs, we investigate the

sensitivity of hyperparameters 𝛼 (𝛼 = 1

1+𝜆1

) and 𝛾 , as depicted in

Figure 1. When varying 𝛼 from 0.1 to 0.5, the performance of CGCN

consistency improves, with peak performance observed at 𝛼 = 0.1

or 0.3. Similarly, varying 𝛾 from
1

2
to

1

7
shows results consistently

at a promising level, with slight fluctuations across all datasets.

These findings suggest that our proposed CGNNmaintains stability

across most datasets, underscoring the efficacy of our approach in

addressing single-view semi-supervised classification tasks.

Multi-view Graphs. We present the parameter analysis of five

multi-view datasets not included in the main paper. The perfor-

mance of CGCN concerning (𝛼 ,𝜆2) is illustrated in Figure 3 (a)-(e).

Optimal values are observed when 𝛼 ranges from 0.1 to 0.3 for

multi-relational datasets and the Animals dataset, while 𝛼 = 0.5 is

optimal for the BDGP dataset. Our observation validates that the

judicious introduction of the graph smoothing term can enhance

the model. Optimal selection of the hyperparameter 𝛼 leads to sta-

ble and consistently superior performance of 𝜆2, indicating the

effectiveness of the regularization term ∥𝝁∥2
2
in balancing multiple

views. The impact of 𝛾 on performance is shown in Figure 3 (f)-(j).

When varying 𝛾 from
1

2
to

1

7
, a marginal enhancement is noted at

𝛾 = 1

4
or

1

5
, followed by a subsequent decline in the multi-relational

datasets and Animals dataset. Conversely, the performance of the

BDGP dataset consistently improves, reaching its peak at 𝛾 = 1

7
.

Overall, the model consistently maintains a relatively satisfactory

performance across variations in 𝛾 , highlighting the stability of the

hyperparameter 𝛾 . It reflects the model’s ability to capture infor-

mation effectively through dynamic graph structures guided by

edge-level coefficients.

D TRAINING ALGORITHM
Algorithm 1 shows the updating process of variables in the main

paper.

Algorithm 1: CGCN

Input:Multi-view graph G = {G𝑣}𝑉
𝑣=1

, feature matrix X,
layer number 𝐿, iteration number 𝐾 ,

hyperparameters 𝜆1, 𝜆2, 𝛾 .

Output: Node embedding z𝑜𝑢𝑡 .
1 InitializeW1 andW2;

2 z(0)
𝑖

= ReLU(x𝑖W1);
3 for 𝑙 = 0→ (𝐿 − 1) do
4 for 𝑘 = 1→ (𝐾 − 1) do
5 Initialize 𝝁1 = { 1

𝑉
, ..., 1

𝑉
};

6 Calculate 𝜇𝑘+1𝑣 with Eq. (12);

7 When convergence, terminate the loop to

8 obtain 𝜇
(𝑙 )
𝑣 ← 𝜇𝑘+1𝑣 ;

9 Calculate [S𝑣
𝑖 𝑗
] (𝑙 ) with Eq. (13);

10 Calculate z(𝑙+1)
𝑖

with Equ. (16);

11 z𝑜𝑢𝑡 = softmax(z(𝐿)
𝑖

W2);
12 return Node embedding z𝑜𝑢𝑡 .
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