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A Overview

This supplementary material provides more details on network architecture, visualization, and ablation
study of our method. We also analyze the limitation and discuss the impact of our method. Specifically,
in Sec. B, we provide specific network architecture and more details about the superpoint feature
extraction. In Sec. C, we provide more visualization results, quantitative results, and ablation study
of our proposed method. In Sec. D, we discuss the limitations and impacts of our method.

B Network Architecture

Superpoint feature extraction. To extract superpoint features, we first use the submanifold convolu-
tion to extract voxel-level features, where the raw 3D points are converted into voxels by performing
voxelization. Specifically, we follow [5] and use a 3D U-Net structure constructed by five submanifold
convolution blocks. The produced feature dimension of 3D U-Net is 32. Then, we average the voxel
features belonging to the same instance to produce the initial superpoint features, where the super-
points are generated by using the method in [7]. After that, we adopt conditioned edge convolution
network [6] on the superpoint graph to extract superpoint features, where the long-range context
information can be captured through graph convolution. Finally, we can obtain 32-dimensional super-
point features. In addition, we use two classification heads based on voxel features and superpoint
features to predict the semantic classes, respectively.

Edge feature learning network. In the edge feature learning network, we learn edge embeddings
in both the coordinate and feature space to predict edge scores for proposing instances. For edge
embeddings in the coordinate space, we first use a two-layer multi-layer perceptron (MLP) network
to predict the 3-dimensional offsets of superpoints. Then, based on the shifted coordinate space, we
construct the k-NN graphs for each node pair (u, v) ∈ E, where E is the edge set on the superpoint
graph. We adopt a three-layer MLP network to learn channel-wise attention weights in cross-graph
attention for extracting edge embeddings. Similarly, for edge embeddings in the feature space, we
also construct the k-NN graphs for each node pair (u, v) ∈ E, and adopt a three-layer MLP network
to learn channel-wise attention weights in cross-graph attention for extracting edge embeddings.
Finally, for each (u, v) ∈ E, we combine the edge embeddings in both the coordinate and feature
spaces and the geometric distance (L2 distance) between u and v in the shifted coordinated space.
The two-layer MLP network followed by Sigmoid is used to produce edge scores of the superpoint
graph.

Superpoint graph cut network. In the superpoint graph network, we present the bilateral graph
attention to extract instance embeddings. Specifically, we first adopt the three-layer MLP network

†Equal Contributions, ∗Corresponding authors.
Le Hui, Linghua Tang, Yaqi Shen, Jin Xie, and Jian Yang are with PCA Lab, Key Lab of Intelligent

Perception and Systems for High-Dimensional Information of Ministry of Education, and Jiangsu Key Lab of
Image and Video Understanding for Social Security, School of Computer Science and Engineering, Nanjing
University of Science and Technology, China.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



on the coordinate and feature spaces to capture the geometry differences between the superpoints of
the instance and the instance centroid, respectively. Here we can obtain two attention weights from
the coordinate and feature spaces. Then, we execute element-wise production of the two attention
weights to obtain the bilateral weight. After that, we use the softmax function to normalize the
bilateral weight. Finally, we sum the weighed superpoint embeddings within the instance to obtain
the instance embedding.

C More Results

C.1 Quantitative Results

ScanNet v2 test set. In Table 1, we also report the 3D instance segmentation results on the ScanNet
v2 test set in terms of AP, AP50, AP25. Note that the results in the table are mean average precision
over 18 categories. It can be observed that our method achieves the best results in terms of AP and
the second-best results in terms of AP50 and AP25. For AP25, the results of our method are 14%,
12%, and 16% lower than those of SoftGroup [9] in the categories of the bookshelf, other furniture,
and refrigerator, respectively. These three categories bring about 3% performance drop on the mean
AP25 over all categories. Similarly, these categories also lead to the performance drop in terms of
AP50. In addition, the samples of these three categories are much smaller than other categories, such
as the chair, table, and cabinet. We visualize the ScanNet v2 test set and observe that the numbers of
the bookshelf and refrigerator are about 12 and 13 samples. Due to the small number of samples,
the performance on these categories fluctuates greatly. If you predict one more correct instance, the
performance will be improved by about 8%. Therefore, about two object prediction errors cause
the performance gap in these categories that have a small number of samples. Nonetheless, our
method can achieve high-quality object instances with higher IoU scores. Since other methods cannot
effectively obtain high-quality instances, i.e., IoU score > 0.5, our method achieves the best results
on AP.

ScanNet v2 validation set. In addition to the mean AP, AP50, and AP25 in the main paper, we
report the detailed performance of each category in Table 2. Note that the results of SoftGroup [9]
are obtained by using the pretrained models provided by the official code. Note that the obtained
results are slightly lower than those listed in the main paper of SoftGroup. It can be observed that
the performance gap between our method and SoftGroup is small on the bookshelf and refrigerator
categories. Compared with the test set of 100 scenes, the validation set has 312 scenes. The
numbers of samples of the bookshelf and refrigerator are 77 and 57, respectively. Compared with the
performance gap in the test set of these two categories, the performance gap in the validation set is
reduced. Considering our method performs well in most of the categories, our method achieves the
best results in terms of AP, AP50, and AP25.

C.2 Ablation Study

Analysis of area constraint. We perform the ablation study on the ScanNet v2 validation set to
demonstrate the effectiveness of the area constraint used for learning compact offset on the superpoint
graph. Specifically, we compute the mean absolute error (dubbed “Offset MAE”) that indicates the
L1 distance between the shifted superpoint centers and the instance centers. We also compute the
standard deviation (dubbed “Offset SD”) of the L2 distance between the shifted superpoint centers
and the instance centers. In Table 3, we report the Offset MAE, Offset SD, as well as the AP, AP50,
and AP25. It can be observed that our method equipped with the area constraint (dubbed “GraphCut
w/ area constraint”) can achieve the best results. In Figure 1, we also visualize the shifted superpoint
centers, which are computed by adding the original superpoint centers and the predicted superpoint
offsets. Note that the nodes of the superpoint graph “GraphCut w/ area constraint” and “GraphCut
w/o area constraint” are colored with the same color as the graph-level instance ground truth for a
better view.

Analysis of soft threshold θ. To mitigate semantic prediction errors, we use the soft threshold θ to
associate the superpoints with multiple classes. Here, we adjust the θ from 0 to 1 to conduct ablation
studies on the ScanNet v2 validation set. Table 4 lists the average precision for different values of
the θ. It can be observed that the performance is stable between 0.1 to 0.4 for θ. According to the
experimental results, we set θ = 0.2 in this paper.
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Table 1: Instance segmentation results on the ScanNet v2 hidden test set in terms of mAP, mAP50, and
mAP25. Note that the best results are highlighted in bold and the second-best results are underlined.
The reported results are from the ScanNet benchmark on 19/5/2022.
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3D-SIS [4] 16.1 40.7 15.5 6.8 4.3 34.6 0.1 13.4 0.5 8.8 10.6 3.7 13.5 32.1 2.8 33.9 11.6 46.6 9.3
GSPN [13] 15.8 35.6 17.3 11.3 14.0 35.9 1.2 2.3 3.9 13.4 12.3 0.8 8.9 14.9 11.7 22.1 12.8 56.3 9.4
3D-MPA [2] 35.5 45.7 48.4 29.9 27.7 59.1 4.7 33.2 21.2 21.7 27.8 19.3 41.3 41.0 19.5 57.4 35.2 84.9 21.3
PointGroup [5] 40.7 63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.0 25.6 56.2 34.1 86.0 29.1
SSTNet [7] 50.6 73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0
HAIS [1] 45.7 70.4 56.1 45.7 36.4 67.3 4.6 54.7 19.4 30.8 42.6 28.8 45.4 71.1 26.2 56.3 43.4 88.9 34.4
SoftGroup [9] 50.4 66.7 57.9 37.2 38.1 69.4 7.2 67.7 30.3 38.7 53.1 31.9 58.2 75.4 31.8 64.3 49.2 90.7 38.8
GraphCut (ours) 55.2 100 61.1 43.8 39.2 71.4 13.9 59.8 32.7 38.9 51.0 59.8 42.7 75.4 46.3 76.1 58.8 90.3 32.9
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3D-SIS [4] 38.2 100 43.2 24.5 19.0 57.7 1.3 26.3 3.3 32.0 24.0 7.5 42.2 85.7 11.7 69.9 27.1 88.3 23.5
GSPN [13] 30.6 50.0 40.5 31.1 34.8 58.9 5.4 6.8 12.6 28.3 29.0 2.8 21.9 21.4 33.1 39.6 27.5 82.1 24.5
3D-MPA [2] 61.1 100 83.3 76.5 52.6 75.6 13.6 58.8 47.0 43.8 43.2 35.8 65.0 85.7 42.9 76.5 55.7 100 43.0
PointGroup [5] 63.6 100 76.5 62.4 50.5 79.7 11.6 69.6 38.4 44.1 55.9 47.6 59.6 100 66.6 75.6 55.6 99.7 51.3
SSTNet [7] 69.8 100 69.7 88.8 55.6 80.3 38.7 62.6 41.7 55.6 58.5 70.2 60.0 100 82.4 72.0 69.2 100 50.9
HAIS [1] 69.9 100 84.9 82.0 67.5 80.8 27.9 75.7 46.5 51.7 59.6 55.9 60.0 100 65.4 76.7 67.6 99.4 56.0
SoftGroup [9] 76.1 100 80.8 84.5 71.6 86.2 24.3 82.4 65.5 62.0 73.4 69.9 79.1 98.1 71.6 84.4 76.9 100 59.4
GraphCut (ours) 73.2 100 78.8 72.4 64.2 85.9 24.8 78.7 61.8 59.6 65.3 72.2 58.3 100 76.6 86.1 82.5 100 50.4
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3D-SIS [4] 55.8 100 77.3 61.4 50.3 69.1 20.0 41.2 49.8 54.6 31.1 10.3 60.0 85.7 38.2 79.9 44.5 93.8 37.1
GSPN [13] 54.4 50.0 65.5 66.1 66.3 76.5 43.2 21.4 61.2 58.4 49.9 20.4 28.6 42.9 65.5 65.0 53.9 95.0 49.9
3D-MPA [2] 73.7 100 93.3 78.5 79.4 83.1 27.9 58.8 69.5 61.6 55.9 55.6 65.0 100 80.9 87.5 69.6 100 60.8
PointGroup [5] 77.8 100 90.0 79.8 71.5 86.3 49.3 70.6 89.5 56.9 70.1 57.6 63.9 100 88.0 85.1 71.9 99.7 70.9
SSTNet [7] 78.9 100 84.0 88.8 71.7 83.5 71.7 68.4 62.7 72.4 65.2 72.7 60.0 100 91.2 82.2 75.7 100 69.1
HAIS [1] 80.3 100 99.4 82.0 75.9 85.5 55.4 88.2 82.7 61.5 67.6 63.8 64.6 100 91.2 79.7 76.7 99.4 72.6
SoftGroup [9] 86.5 100 96.9 86.0 86.0 91.3 55.8 89.9 91.1 76.0 82.8 73.6 80.2 98.1 91.9 87.5 87.7 100 82.0
GraphCut (ours) 83.2 100 92.2 72.4 79.8 90.2 70.1 85.6 85.9 71.5 70.6 74.8 64.0 100 93.4 86.2 88.0 100 72.9

Table 2: The detailed instance segmentation results on the ScanNet v2 validation set in terms of mAP,
mAP50, and mAP25. Note that the best results are highlighted in bold.
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SoftGroup [9] 45.7 67.1 45.9 35.4 38.7 72.0 14.5 39.8 28.6 33.7 41.4 34.9 49.2 50.4 38.1 52.2 54.8 93.3 32.7
GraphCut (ours) 52.2 65.6 60.1 24.0 41.8 82.1 27.2 43.6 34.1 44.6 50.1 54.0 55.1 56.7 58.4 52.2 58.8 96.9 35.2
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SoftGroup [9] 67.1 87.1 69.9 66.4 62.2 84.8 41.5 58.4 59.1 50.8 60.2 54.4 68.4 68.6 65.5 72.4 78.8 100 58.6
GraphCut (ours) 69.1 84.8 81.9 48.8 62.1 93.9 44.1 60.5 62.8 62.0 62.9 60.6 66.2 70.2 77.6 71.2 80.0 100 56.0
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SoftGroup [9] 78.6 87.1 76.6 76.3 76.7 88.6 72.3 76.1 81.2 61.3 71.7 65.4 73.1 75.2 85.6 88.0 85.7 100 73.6
GraphCut (ours) 79.3 86.7 84.8 68.2 74.2 96.2 71.7 76.2 80.2 76.1 70.4 66.5 66.8 79.9 90.6 83.8 85.4 100 74.0
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Table 3: Ablation study on the ScanNet v2 validation set for area constraint. “Offset MAE” denotes
the mean absolute error (i.e., L1 distance) between the shifted superpoint centers and the instance
centers, and “Offset SD” denotes the standard deviation of the L2 distance between the shifted
superpoint centers and the instance centers. The best results are highlighted in bold.

Method Offset MAE Offset SD AP AP50 AP25

GraphCut w/o area constraint 0.373 0.182 51.3 68.0 78.6
GraphCut w/ area constraint 0.319 0.115 52.2 69.1 79.3

Table 4: Ablation study on the ScanNet v2 validation set for different values of the hyper-parameter
θ. The best results are highlighted in bold.

Metrics θ = 0.01 θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

AP 46.4 52.1 52.2 52.0 51.5 50.6 49.3 46.3 42.5 34.3
AP50 60.5 69.0 69.1 69.2 68.9 67.5 66.1 63.1 58.9 49.4
AP25 68.4 68.9 79.3 79.1 79.0 78.3 77.3 75.1 72.0 62.6

Graph-level 

Instance GT

GraphCut w/

area constraint

GraphCut w/o

area constraint

Point-level 

Instance GT

Figure 1: The visualization results of superpoint offsets on the superpoint graph. Note that the nodes
of the superpoint graphs “GraphCut w/ area constraint” and “GraphCut w/o area constraint” are
colored with the same color as the graph-level instance ground truth for a better view.
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Input Instance GT GraphCut (ours) SoftGroup

Figure 2: The visualization results of our method and previous state-of-the-art method SoftGroup [9]
on the ScanNet v2 validation set. Red rectangles show the differences between the two methods of
3D instance segmentation.

refrigerator

refrigerator cabinet

cabinet

Figure 3: The visualization samples of the refrigerators and cabinets on the ScanNet v2 validation set.

C.3 Visualization Results

Visualization results. In Figure 2, we show more visualization results of 3D instance segmentation
on the ScanNet v2 validation set. Compared with SoftGroup [9], our method can effectively segment
clustered objects, such as chairs.

Visual process of graph cutting. In order to show the detailed 3D instance segmentation process
of our method, we provide the visualization results of each step of our method in Figures 4 and 5.
Specifically, given a raw point cloud, we first oversegment it into superpoints and then construct
superpoint graph. After that, we perform superpoint graph cutting on the superpoint graph, where the
red edges are cut and the blue edges are remained. In this way, we can obtain graph-level instances of
the point cloud. Finally, we convert graph-level instances into point-level instances. Note that the
instances are randomly colored.
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Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Figure 4: The 3D instance segmentation process of our method on the ScanNet v2 validation set.
Note that instances are randomly colored.
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Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Superpoint Graph Superpoint Input

Instance GTGraph Cutting

red edge: cut
blue edge: remain

Graph-level Instance Point-level Instance

remove wall and floor

Figure 5: The 3D instance segmentation process of our method on the ScanNet v2 validation set.
Note that instances are randomly colored.
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Table 5: Inference time of different methods on the ScanNet v2 validation set. For a fair comparison,
the runtime is computed on the same TITAN X GPU model.

Method Superpoint (ms) Component Time (ms) Total (ms)

SGPN [10] - Backbone (2080),
Group merging (149000), Block merging (7119) 158439

ASIS [11] - Backbone (2083)
Mean shift (172711), Block merging (7119) 181913

GSPN [13] - Backbone (2083),
Point sampling (9559), Neighbour search (1500) 12702

3D-BoNet [12] - Backbone (2083),
SCN (667), Block merging (7119) 9202

GICN [8] - Backbone (1497),
SCN (667), Block merging (7119) 8615

OccuSeg [3] - Backbone (189),
Supervoxel (1202), Clustering (513) 1904

PointGroup [5] - Backbone (128),
Clustering (221), ScoreNet (103) 452

SSTNet [7] 195 Backbone (125),
Tree Network (229), ScoreNet (74) 623

HAIS [1] - Pointwise prediction (154),
Hier.aggr. (118), Intra-inst.prediction (67) 339

SoftGroup [9] - Pointwise prediction (152),
Soft grouping (123), Top-down refinement (70) 345

GraphCut (ours) 195+15 Extract superpoint features (122),
Edge score prediction (5), Superpoint graph cut (42) 379

C.4 Inference Time

In Table 5, we report the average runtime of different methods on the ScanNet v2 validation set. Note
that except for our method, the rest of the results in this table are derived from SoftGroup [9]. For
a fair comparison, we use the same TITAN X GPU to evaluate the runtime of our method. In our
GPU environment, we re-evaluated the runtime of SoftGroup and found that the runtime (343ms)
is very close to the official time (345ms). Since SSTNet [7] and our GraphCut utilize the same
method to generate superpoints, we add the runtime (195ms) of the superpoint generation to the
total runtime. Note that our method also needs 15ms to construct the superpoint graph. For our
GraphCut, we require 122ms for extracting superpoint features, 5ms for the edge score prediction
network, and 42ms for the superpoint graph cut network. The total runtime of our method is 379ms
(195+15+122+5+42). It can be observed that the runtime of our method outperforms most methods
and is comparable to HAIS [1] and SoftGroup [9].

D Limitations and Impacts

Limitations. In 3D instance segmentation, it requires to recognize the object instance and predict
semantic categories simultaneously. According to the instance segmentation results on the ScanNet
v2 validation set, we found that our method performs worse on the refrigerator category in terms
of average precision (AP). Although our method can recognize the instances of the refrigerator,
the semantic category of the instances is easily predicted to the cabinet, resulting in low AP. In
Figure 3, we visualize the samples of refrigerators and cabinets in the ScanNet v2 validation set.
It can be observed that mini refrigerators are very similar to cabinets, so mini-refrigerators can be
easily classified as cabinets. In addition, we find that the number of samples of the refrigerator is
much smaller than in other categories, such as chairs, tables, and desks. Therefore, the above two
points lead to the low AP of the refrigerator category. In order to improve the AP of the refrigerator
category, we can consider two points: (1) We can mine the context information of the refrigerator
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to infer the refrigerator from the surrounding objects. (2) Executing data augmentation for those
categories have a small number of samples.

Impacts. The proposed method has a potential impact in autonomous cars and transportation. For
autonomous cars, object instances on the road may be incorrectly recognized by the proposed method,
which will increase the risk of safe driving. These issues require further research and consideration
when building upon this work for 3D instance segmentation in autonomous situation.

Ethical consideration. This work is able to facilitate the development of certain applications. For
example, it can help domestic robots avoid potential obstacles in indoor environments. In assisted
driving, it can help the driver recognize potential objects that may affect driving in advance. In
addition, all datasets used in this paper are publicly available as academic research, and the evaluation
metrics used in the experiments are also standard. For negative outcomes, it depends on a specific
task and the criteria for assessing positive and negative.
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