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Abstract
We present a novel unified bilevel optimization-based framework, PARL, formulated
to address the recently highlighted critical issue of policy alignment in reinforcement
learning using utility or preference-based feedback. We identify a major gap within
current algorithmic designs for solving policy alignment due to a lack of precise
characterization of the dependence of the alignment objective on the data generated
by policy trajectories. This shortfall contributes to the sub-optimal performance
observed in contemporary algorithms. Our framework addressed these concerns by
explicitly parameterizing the distribution of the upper alignment objective (reward
design) by the lower optimal variable (optimal policy for the designed reward).
Interestingly, from an optimization perspective, our formulation leads to a new class
of stochastic bilevel problems where the stochasticity at the upper objective depends
upon the lower-level variable. True to our best knowledge, this work presents the
first formulation of the RLHF as a bilevel optimization problem which generalizes
the existing RLHF formulations and addresses the existing distribution shift issues
in RLHF formulations. To demonstrate the efficacy of our formulation in resolving
alignment issues in RL, we devised an algorithm named A-PARL to solve PARL
problem, establishing sample complexity bounds of order O(1/T ). Our empirical
results substantiate that the proposed PARL can address the alignment concerns in
RL by showing significant improvements (up to 63% in terms of required samples)
for policy alignment in large-scale environments of the Deepmind control suite and
Meta world tasks.

1 Introduction

The increasing complexity and widespread use of artificial agents highlight the critical need to ensure
that their behavior aligns well (AI alignment) with the broader utilities such as human preferences,
social welfare, and economic impacts (Frye & Feige, 2019; Butlin, 2021; Liu et al., 2022). In this
work, we study the alignment problem in the context of reinforcement learning (RL), because a policy
trained on misspecified reward functions could lead to catastrophic failures (Ngo et al., 2022; Casper
et al., 2023). For instance, an RL agent trained for autonomous driving could focus on reaching its
destination as quickly as possible, neglecting safety constraints (misalignment). This could lead to
catastrophic failures, such as causing high-speed accidents. The question of alignment in RL may
be decomposed into two parts: (i) How can we efficiently align the behavior (policy) of RL agents
with the broader utilities or preferences? (ii) How to reliably evaluate if the current RL policy is well
aligned or not? Addressing the first question is crucial because it serves as a preventive measure,
ensuring that the RL agent operates within desired boundaries from the outset. The second question
is equally vital as it acts as a diagnostic tool, enabling real-time or retrospective assessment of the RL
agent’s behavior which could help identify early signs of misalignment to avoid severe consequences.
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Figure 1: (a) This figure shows the proposed PARL framework for policy alignment in reinforcement
learning. The standard RL is at the lower level (LL), and the alignment objective is at the upper level
(UL). (b) This figure shows the performance gap of the SOTA approach due to policy misalignment.
The blue curve should be as close as possible to the red dotted line of oracle.

In this work, we propose a novel unified bilevel framework called PARL, capturing the challenge
of policy alignment in reinforcement learning using utility or human preference-based feedback.
Our PARL framework shown in Figure 1(a) consists of upper level (UL) and lower level (LL). The
lower level performs the policy alignment step for a given parametrized reward function (addressing
question (i)), and the upper level evaluates the optimal lower-level policy to check possible alignment
(addressing the question (ii)). A bilevel approach is crucial because of the dependence of the alignment
objective on the data generated by the optimal policy of the RL agent.

There are existing approaches such as PEBBLE (Lee et al., 2021) and SURF (Park et al., 2022),
which have proposed a heuristic iterative procedure for possible policy alignment in RL but do
not focus on the entanglement between the alignment objective and the trajectory collecting policy.
This gap (our formulation resolved this) in existing state-of-the-art (SOTA) approaches results in a
misaligned objective for alignment evaluation and sub-optimal performance in terms of alignment.
We highlight the performance gap of the SOTA approach in Figure 1(b). This gap exists because,
without considering the correct evaluation objective at the upper level, existing alignment methods
set the initial trajectory for the agent, but they do not offer ongoing assurance of the agent’s behavior.
Policies can drift or become misaligned due to various factors such as data distribution shifts, model
updates, or environmental changes (which we observe in 1(b)). Our proposed formulation provides a
rigorous mathematical formulation to address questions (i) and (ii) and improves the performance to
achieve policy alignment in practice. We summarize our contributions as follows.

• Bilevel formulation for policy alignment in RL: we formulate the RL agent policy alignment
as a bilevel optimization problem where the upper-level centers on reward design through policy
evaluation over the horizon, and the lower level pertains to policy alignment with the designed reward
via policy optimization.

• Correct evaluation objective for policy alignment in RL: We highlight the dependence of data
distribution of the alignment objective on the RL agent policy, which is missing from the prior
research. This provides a reliable objective to evaluate the performance of the current policy of the
RL agent at the upper level.

• Analysis of new class of stochastic bilevel problems: Interestingly, our bilevel problem does not
fall under the class of standard stochastic bilevel optimization problems in the literature (Chen et al.,
2022; Kwon et al., 2023; Li et al., 2022b; Ji et al., 2021; Cao et al., 2023; Akhtar et al., 2022;
Ghadimi & Wang, 2018b) with the only exception being (Lu, 2023), which also studies coupled
decision dependent bilevel optimization problem but not in the context of RL. The unique feature
of our problem is to explicitly consider the dependence of data collection at the upper level on the
optimal policy parameter at the lower level. We also propose a novel A-PARL algorithm to solve the
bilevel problem and derive precise sample complexity bounds of O(1/T ), where T is the number of
episodes.

• Empricial evidence of improved policy alignment. We evaluate the proposed approach on various
large-scale continuous control robotics environments in DeepMind control suite (Tassa et al., 2018)
and MetaWorld (Yu et al., 2021). We show that our approach archives better policy alignment due
to the use of the corrected upper-level objective we propose in this work. We achieve up to 63%
improvement in samples required to solve the task.
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2 Related Works

Preference Based RL. Revealed preferences is a concept in economics that states that humans in
many cases do not know what they prefer until they are exposed to examples via comparisons (Caplin
& Dean, 2015). This idea gained traction as it provided a substantive basis for querying humans and
elucidating feedback on decision-making problems with metrics whose quantification is not obvious,
such as trustworthiness or fairness. Efforts to incorporate pairwise comparison into RL, especially as a
mechanism to incorporate preference information, have been extensively studied in recent years – see
Wirth et al. (2017) for a survey. A non-exhaustive list of works along these lines is (Roth et al., 2016;
Hill et al., 2021; Wirth et al., 2017; Zhu et al., 2023; Xu et al., 2020; Saha et al., 2023; Chakraborty
et al., 2023c; 2024).

Inverse RL and Reward Design. Reward design has also been studied through an alternative lens
in which an agent is provided with demonstrations or trajectories and seeks to fit a reward function.
Inverse reinforcement learning (Ziebart et al., 2008a; Brown et al., 2019; Arora & Doshi, 2020)
learns a reward to learn behaviors deemed appropriate by an expert. On the other hand, imitation
learning directly seeks to mimic the behavior of demonstrations (Ho & Ermon, 2016; Kang et al.,
2018; Ghasemipour et al., 2019; Xiao et al., 2019). However, acquiring high-quality demonstrations
can be expensive or infeasible (Bai et al., 2022; Chen et al., 2023; Wolf et al., 2023). It also sidesteps
some questions about whether a reward can be well-posed for a given collection of trajectories. A
further detailed context of related works has been discussed in the Appendix B

3 Problem Formulation

Consider the Markov Decision Process (MDP) tupleM := {S,A, γ, P, r} with state space S , action
space A, transition dynamics P , discount factor γ ∈ (0, 1), and reward r : S × A → R. Starting
from state s ∈ S, an agent takes action a, and transitions to s′ ∼ P (· | s, a). The agent follows a
stochastic policy that maps states to distributions over actions πθ : S → △|A|, which is parameterized
by θ ∈ Rd. The standard finite horizon policy optimization problem is

max
θ
Vs(θ) := E

[
H−1∑
h=0

γhr(sh, ah) | ah ∼ πθ(ah|sh), s0 = s

]
, (1)

where the expectation is with respect to the stochasticity in the policy πθ and the transition dynamics P .
We note that the formulation in (1) learns a policy for a specific reward function r (fixed a priori). As
detailed in the introduction, if the reward function r does not capture the intended behavior required by
humans, it would lead to learning a misaligned policy. Therefore, policy learning with a fixed reward
does not allow one to tether the training process to an external objective such as human preferences
(Christiano et al., 2017), social welfare (Balcan et al., 2014), or market stability (Buehler et al., 2019).
To address this issue, we propose a bilevel framework for policy alignment next.

3.1 Policy Alignment in Reinforcement Learning: A Bilevel Formulation

To achieve policy alignment in RL, we consider the following bilevel optimization problem:
(upper) max

ν
G(ν, θ∗(ν)) (2)

(lower) s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrν(sh, ah) | ah ∼ πθ(ah|sh).s0 = s

]
,

where θ is the policy parameter as in (1) and ν ∈ Rn is the reward parameter. We discuss the
formulation in (2) in detail as follows.

Lower Level (LL): This is the policy learning stage for a given reward parameterization ν. For a
fixed ν, LL problem is the same as in (1) but note the explicit dependence of LL objective in (2) on
the reward parameter ν which is different from (1). In this work, we restrict focus to the case that
the optimizer θ∗(ν) at the lower level is unique, which mandates that one parameterize the policy
in a tabular (Agarwal et al., 2020; Bhandari & Russo, 2021) or softmax fashion (Mei et al., 2020a);
otherwise, at most one can hope for with a policy gradient iteration is to obtain approximate local
extrema (Zhang et al., 2020). We defer a more technical discussion of this aspect to Section 5.
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Upper Level (UL)): This level (we also call it the designer level) evaluates the optimal policy learned
at the lower level and tests for alignment. In (2), we aim to maximize an objective functionG(ν, θ∗(ν)),
which depends on the reward parameters ν and optimal policy parameter θ∗(ν), which is an implicit
function of ν. To be specific, we consider a utility (which is the alignment objective) at the upper
level of the form

G(ν, θ∗(ν)) = Υ(πθ∗(ν)) + Z(ν), (3)

which is comprised of two terms: a quantifier Υ(πθ∗(ν)) of the merit of design parameters ν ∈ Rn,
andZ(ν) representing a regularizer or prior directly defined over the parameters of the reward function.
More specifically, the explicit mathematical form of Υ(πθ∗(ν)) decides the quality of policy πθ∗(ν) by
collecting trajectories (denoted by τ ) and associating a designer’s evaluation reward Uν(τ) given by

Υ(πθ∗(ν)) = Eρ(τ ;θ∗(ν))[Uν(τ)] =
∑
τ

Uν(τ) · ρ(τ ; θ∗(ν)), (4)

where ρ(τ ; θ∗(ν)) denotes the probability distribution over the trajectories τ and can be explicitly
expressed as ρ(τ ; θ∗(ν)) = ρ(s0)

∏Hu

h=0 P (sh+1 | sh, ah)πθ∗(ν)(ah|sh), where Hu denotes the
length of upper-level trajectory, ρ(s0) represent the initial state distribution. We discuss the explicit
form of such an objective Uν in detail in Section 3.2 and also in Appendix C.
Remark 1 (Contrast with Standard Stochastic Bilevel Optimization). We highlight an important
difference between our formulation in (2) and the standard stochastic bilevel optimization (SBO) in
literature (Ghadimi & Wang, 2018a; Akhtar et al., 2022). We note that in (2), the distribution of
stochastic upper-level alignment objective depends on the lower-level optimal variable (policy in our
case). This differs from the existing works SBO where the expectation is over data whose distribution
does not depend upon the lower level optimization variable. Hence, developing solutions for (2)
exhibits unique technical challenges not found in the prior research.

3.2 Reinforcement Learning from Human Feedback (RLHF) - A special case

In this section, we demonstrate how our formulation proposed in (3) generalizes the RLHF paradigm
(Christiano et al., 2017; Lee et al., 2021; Park et al., 2022). In RLHF, as proposed in Christiano et al.
(2017), operates mainly in three iterative steps: we start by (step 1) learning a policy (say πθ∗(ν)) for a
given reward rν by solving argmaxθ E

[∑Hℓ−1
h=0 γhrν(sh, ah)

]
, (step 2) collect human feedback after

collecting trajectories (denoted by dataset D) from πθ∗(ν), (step 3) learn a new aligned reward model
ν by solving minν Ey,τ0,τ1∼D[ℓ(ν; y, τ0, τ1)] where ℓ denotes the alignment objective, and then go
back to (step 1). This iterative process is repeated over multiple iterations as detailed in Christiano
et al. (2017); Lee et al. (2021); Park et al. (2022). Irrespective of its effectiveness in practice, a
rigorous mathematical formulation for RLHF is missing from the literature. Furthermore, the existing
RLHF pipeline, in step 3, completely ignores the fact that the data D is the function of πθ∗(ν), which
results in an incorrect objective to learn a reward parameter. This results in policy misalignment and
a performance gap, as highlighted in Figure 1(b). We reformulate the RLHF problem following our
bilevel formulation as follows

max
ν

Ey,τ0,τ1∼ρh(τ ;θ∗(ν))[y logPν(τ0 > τ1) + (1− y) logPν(τ0 < τ1)] (5)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrν(sh, ah) |, s0 = s

]
,

where Pν(τ0 > τ1) is the probability of preferring τ0 over τ1 (denoted by y = 1). We can model Pν

using the well-known Bradley Terry model (Bradley & Terry, 1952) by

Pν(τ0 > τ1) =
exp

∑Hu−1
h=0 rν(s

0
h, a

0
h)

exp
∑Hu−1

h=0 rν(s0h, a
0
h) + exp

∑Hu−1
h=0 rν(s1h, a

1
h)
, (6)

where (sih, a
i
h) denotes state-action pair at hth time-step in the ith trajectory. At the up-

per level in (5), we highlight the dependence of data distribution ρh(τ ; θ
∗(ν)) on the parame-

ter ν via optimal policy πθ∗(ν). The sampling distribution is given as ρh(y, τ0, τ1; θ∗(ν)) =
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h(y|τ0, τ1)P (τ0; θ∗(ν))P (τ1; θ∗(ν)), where, h(y|τ0, τ1) represents the human distribution of tra-
jectory preference (unknown and realized only through samples). The trajectories τ0, τ1 are sampled
as τ ∼ ρ(τ ; θ∗(ν)) with the policy given by πθ∗(ν)(a|s). Hence, looking at (5), we note that it matches
exactly with our formulation in (2) with upper level objective

G(ν, θ∗(ν)) := Ey,τ0,τ1∼ρh(τ ;θ∗(ν))[y logPν(τ0 > τ1) + (1− y) logPν(τ0 < τ1)]. (7)

4 Proposed Approach: An Algorithm to Solve PARL

As mentioned in Remark 1, the resulting bilevel optimization problem in (2) differs from the standard
bilevel problem studied well in the optimization literature. Hence, we cannot directly apply any
off-the-shelf algorithm to solve 2. In this section, we provide a step-by-step development of an
iterative procedure to solve the policy alignment in (2) based on the bilevel algorithm1 available in
Ghadimi & Wang (2018b). Let us begin by deriving the gradient of the upper objective (cf. (3) and
(4)) with respect to design parameter ν, which is given by

∇νG(ν, θ
∗(ν)) = ∇ν

∑
τ

Uν(τ) · ρ(τ ; θ∗(ν)) +∇νZ(ν) (8)

=
∑
τ

Uν(τ) · ∇ν log(ρ(τ ; θ
∗(ν))) · ρ(τ ; θ∗(ν)) + Eρ(τ ;θ∗(ν))[∇νUν(τ)] +∇νZ(ν)

= Eρ(τ ;θ∗(ν))[Uν(τ) · ∇ν log(P (τ ; θ
∗(ν)))] + Eρ(τ ;θ∗(ν))[∇νUν(τ)] +∇νZ(ν)

= Eρ(τ ;θ∗(ν))

[
Uν(τ) ·

Hu−1∑
h=0

∇ν log πθ∗(ν)(ah|sh)

]
+ Eρ(τ ;θ∗(ν))[∇νUν(τ)] +∇νZ(ν),

where we have used the log-trick and standard rule of expectation to get the final expression in (8)
(Williams, 1992; Sutton et al., 1999).

Novel terms in gradient evaluation: We emphasize two terms (a) the score function term
∇ν log πθ∗(ν)(a|s) in (8), denotes the gradient of logarithm of the optimal policy with respect to the
design parameter ν; and (b) the expectation is with respect to the trajectory distribution ρ(τ ; θ∗(ν))
generated under policy at the lower-level πθ∗(ν). This term captures the change of optimal policy with
respect to the reward parameters. This is crucial because the designer (such as a regulatory body or
central planner) at the upper level can directly control the policy learning by modifying the reward
parameters. We remark that both these terms are missing from the existing RLHF formulation in
literature (such as in the objective in step 1 detailed in Section 3.2).

Challenges: However, the estimation of ∇ν log πθ∗(ν)(ah|sh) is nontrivial as it depends on the
solution of the lower-level problem in (2), and therefore requires the evaluation of hypergradient
∇νθ

∗(ν). To see that, let us employ the shorthand notation fh(θ∗(ν)) := log πθ∗(ν)(ah|sh), we can
rewrite the gradient2 as

∇νfh(θ
∗(ν)) = ∇νθ

∗(ν)∇θfh(θ
∗(ν)). (9)

Now, from the first order optimality condition for the lower level in (2), it holds that

∇θVs(ν, θ
∗(ν)) = 0, (10)

which is the gradient of lower-level objective with respect to parameter θ evaluated at the optimal
θ∗(ν). Now, differentiating again with respect to ν on both sides of (34), we obtain

∇2
ν,θVs(ν, θ

∗(ν)) +∇νθ
∗(ν)∇2

θVs(ν, θ
∗(ν)) = 0. (11)

The above expression would imply that we can write the final expression for the gradient in (9) as

∇νfh(θ
∗(ν)) = −∇2

v,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
∗(ν))−1∇θfh(θ

∗(ν)). (12)
1We remark that it is possible to follow more advanced bilevel optimization algorithms in the literature to

solve the bilevel problem in (2), we resort to the basic algorithm to highlight the novel aspects of our problem
formulation for RLHF.

2Throughout the analysis, we follow the convention as follows : let’s say ν ∈ Rd1 , θ ∈ Rd2 . Hence,
gradient terms ∇νfh(θ

∗(ν)) ∈ Rd1 , ∇θfh(θ) ∈ Rd2 and hessian term ∇2
θfh(θ) ∈ Rd2×d2 and Jacobian

∇νθ
∗(ν) ∈ Rd1×d2 and subsequently ∇νθ

∗(ν) ∈ Rd1×d2 .
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Algorithm 1 Algorithm for Policy Alignment in Reinforcement Learning (A-PARL)

1: Input: Reward parametrization ν0 policy initialization θ0, upper and lower-level step sizes
αu > 0, αℓ > 0 respectively f

2: for all t = 0, 1, 2, ..., T − 1 do
3: for all k = 0, 2, ...,K − 1 do
4: Sample N trajectories τ ∼ ρ(τ ; θK(νt)) and estimate policy gradient ∇θVs(νt, θ

K(νt))
from equation (15)

5: Update the policy gradient parameter as :

πθk+1(νt) ← πθk(νt) + αℓ∇θVs(νt, θ
k(νt)) · · · policy update

6: Update the reward parameterization in the upper-level from equation (14) as :

rνt+1 ← rνt − αu∇̃νG(νt, θ
K(νt)) · · ·reward update

7: Output: νT , θK(νT )

We substitute (12) into (8) to write the final expression for the gradient of the upper objective in (2) as

∇νG[ν, θ
∗(ν)] =Eρ(τ ;θ∗(ν))

[
Uν(τ) ·

Hu−1∑
h=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))]

]
+ Eρ(τ ;θ∗(ν))[∇νUν(τ)] +∇νZ(ν). (13)

Even for the gradient expression in (13), there are three intertwined technical challenges such as the
requirement to estimate πθ∗(ν), evaluating Jacobians and Hessians of the lower-level problem, and
sampling trajectories in an unbiased manner from ρ(τ ; θ∗(ν)) which depends upon πθ∗(ν). We write
the explicit values of the terms as follows. This establishes a precise connection to the generalized
alignment objective.

Upper-level gradient estimation: To estimate the gradient of the upper-level objective in (8), we
require information about πθ∗(ν) which is not available in general unless the lower-level objective
has a closed-form solution. Hence, we approximate πθ∗(νt) with πθK(νt) i.e., running K-step policy
gradient steps at the lower level to obtain the approximate gradient of the upper level at νt as

∇̃νG(νt, θ
K(νt)) = Eρ(τ ;θK(νt))

[
Uν(τ) ·

Hu−1∑
t=0

[M̃K(νt)∇θfh(θ
K(νt))] +∇νUν(τ)

]
+∇νZ(νt),

(14)

where M̃K(νt) = −∇2
v,θVs(νt, θ

K(νt))∇2
θVs(νt, θ

K(νt))
−1.

Lower-level objective gradient, Jacobian, and Hessian estimation: Here, we derive the gradients for
the lower-level objective and, subsequently the Hessian and mixed Hessian terms for our algorithmic
description. First, we write down the gradient of lower-level objectives using the policy gradient
theorem (Williams, 1992; Sutton et al., 1999) as

∇θVs(νt, θ
K(νt)) = Eρ(τ ;θK(νt))

[
Hℓ−1∑
h=0

γhrνt
(sh, ah)

 h∑
j=0

∇θ log πθK(νt)(aj |sj)

], (15)

where Hℓ is the horizon or the episode length. Similarly, the Hessian of the lower objective is:

∇2
θVs(νt, θ

K(νt)) = Eρ(τ ;θK(νt))

[
Hℓ−1∑
h=0

γhrνt
(sh, ah)

 h∑
j=0

∇2
θ log πθK(νt)(aj |sj)

], (16)

Finally, we can write the mixed second-order Jacobian matrix as

∇2
ν,θVs(νt, θ

K(νt))=Eρ(τ ;θK(νt))

[
Hℓ−1∑
h=0

γh∇νrνt
(sh, ah)

( h∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)]
. (17)
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Now, utilizing the expressions in (14)-(17), we summarize the proposed steps in Algorithm 1. We
explain the execution of Algorithm 1 with the help of Figure 4 in the Appendix B. We denote the
number of lower-level iterates by K for better exposition which is a function of upper iterations t ∈ T
in the convergence analysis. Before shifting to analyzing the convergence behavior of Algorithm 1,
we close with a remark.
Remark 2. We have only presented the analytical forms of the first and second-order information
required to obtain a numerical solver for problem in (2). However, in practice, these update directions
are unavailable due to their dependence on distributions ρ(τ ; θ∗(ν)) and MDP transition model P .
Therefore, only sampled estimates of the expressions in (14)-(17) are available. For this work, we
sidestep this challenge by assuming access to the oracles to (14)-(17). This helps us to focus more
on the policy and reward entanglement in our bilevel formulation. We can extend the analysis to
stochastic settings utilizing the standard techniques in stochastic optimization literature (Chen et al.,
2022; Kwon et al., 2023; Li et al., 2022b; Ji et al., 2021; Ghadimi & Wang, 2018b).
Remark 3 (Gradient derivations for RLHF problem in Section 3.2). For the special case of RLHF
discussed in, we provide a detailed derivations for the gradients at the lower and upper level objectives
in Appendix D.

5 Convergence Analysis

In this section, we analyze the convergence behavior of Algorithm 1. Since the upper levelG(ν, θ∗(ν))
is non-convex with respect to ν, we consider ∇νG(ν, θ

∗(ν)) as our convergence criteria and show its
convergence to a first-order stationary point, as well as the convergence of θK(ν) to θ∗(ν). Taken
together, these constitute a local KKT point (Boyd & Vandenberghe, 2004)[Ch. 5] Without loss of
generality, our convergence analysis is for the minimization (upper and lower level objectives). We
proceed then by introducing some technical conditions required for our main results.
Assumption 1 (Lipschitz gradient of upper objective). For any ν ∈ Rn, the gradient of the upper
objective is Lipschitz continuous w.r.t to second argument with parameter Lg , i.e., we may write

∥∇νG(ν, θ)−∇νG(ν, θ
′)∥ ≤ Lg∥θ − θ′∥. (18)

Assumption 2. For all s ∈ S and a ∈ A, reward function is bounded as rν(s, a) ≤ R and Lipschitz
w.r.t to ν, i.e., |rν1

(s, a)− rν2
(s, a)| ≤ Lr∥ν1 − ν2∥.

Assumption 3. The policy πθ is Lipschitz with respect to parameter θ, which implies ∥πθ1(·|s) −
πθ2(·|s)∥ ≤ Lπ∥θ1 − θ2∥ for all θ1, θ2. The score function ∇θ log πθ(a|s) is bounded
∥∇θ log πθ(a|s)∥ ≤ B and Lipschitz, which implies

∥∇θ log πθ1(·|s)−∇θ log πθ2(·|s)∥ ≤ L1∥θ1 − θ2∥. . (19)

Further, the policy parameterization induces a score function whose Hessian is Lipschitz as

∥∇2
θ log πθ1(·|s)−∇2

θ log πθ2(·|s)∥ ≤ L2∥θ1 − θ2∥ for all θ1, θ2 . (20)

Assumption 4. The value function Vs(ν, θ) satisfies the Polyak-Lojasiewicz (PL) condition (with
unique minima) with respect to θ with parameter µ. We denote {λ(∇2

θVs(ν, θ))j}dj=1 as the eigenval-
ues of Hessian matrix∇2

θVs(ν, θ). Although, Vs(ν, θ) is non-convex in θ, but follows the restriction
on the eigenvalues as λ(∇2

θVs(ν, θ)) ∈ [−l̂,−µ̂] ∪ [µ̂, l̂].

Assumption 1 is standard in the analysis of non-convex optimization, and Assumption 2 is common
in RL which bounds the reward function value (Zhang et al., 2020; Agarwal et al., 2020; Bhandari
& Russo, 2021). In Assumption 3, the score function Lipschitz part is considered in the literature.
But because we are dealing with a bilevel formulation here, which requires dealing with evaluating
the lower level policy at the upper level, and also utilizing second-order information of the value
function (cf. (13)), we need to assume policy and Hessian of policy are Lipschitz as well. Also,
the second-order smoothness condition was studied in establishing conditions under which a local
extremum is attainable in the non-convex setting (Zhang et al., 2020)[Sec. 5]. Additionally, we
need Assumption 4 because we are in a bilevel regime without lower level strong convexity (Huang,
2023; Liu et al., 2023). However, the value function satisfies the Polyak-Lojasiewicz (PL) condition
under common policy parameterizations (Bhandari & Russo, 2021; Mei et al., 2020b). µ̂, l̂ defined in
Appendix 4. we provide a detailed discuss in Appendix I. Next, we introduce key technical lemmas
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Figure 2: In this figure, we compare the performance of our algorithm A-PARL against SOTA
baselines Pebble (Lee et al., 2021), PEBBLE+SURF (Park et al., 2022) and Oracle (true reward) for
Walker (DMSuite (Tassa et al., 2018)), DoorOpen and ButtonPress (MetaWorld Yu et al. (2021)) w.r.t
ground truth return (averaged over 5 seeds). It clearly demonstrates the superiority of our algorithm
over existing baselines in terms of episodic return, where A-PARL achieves near-oracle performance
in a much faster time. This highlights the importance of our bilevel framework which considers the
dependence (missing from existing literature) of distribution on the lower-level policy parameter
during training.

regarding the iterates generated by Algorithm 1. We begin by quantifying the distributional drift
associated with the transition model under approximate policy πθK(νt) as compared with πθ∗(νt) at
the lower level, which results in a transient effect at the upper level.
Lemma 1. Under Assumptions 1 - 4, for trajectory τ = {sh, ah}Hu

h=1, it holds that

Df (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν))) ≤ HuL2

2
∥θ∗(ν)− θK(ν)∥, (21)

where Df is the f-divergence between distributions and L2 is the Lipschitz parameter (cf. Assum. 3).

The proof of Lemma 1 in provided in Appendix G.1. We highlight that the upper bound in Lemma
1 is novel to our analysis of bilevel RL which will not appear in the RLHF setup considered in the
literature. Next, we establish some error bound conditions on key second-order terms that appear in
equations (14)-(17) when we substitute θ∗(νt) by θK(νt).
Lemma 2. Under Assumptions 1-(4), the lower level iterates of Algorithm 1 satisfies ∥θK(νt) −
θ∗(ν)∥2 ≤ ηKL6

µ Z, where, Z := maxν ∥θ0 − θ∗(ν)∥2, η := 1 − α3, α3 = αℓ(1 − αℓL6

2 )µ2 ,
L6 = L5

HL2

2 + L5, L5 = H2
l RL1, µ is the PL constant, and K denotes the number of lower-level

iterations, and policy gradient step-size satisfies αℓ < 2/min(HℓL2, µ), with µ as the PL constant
(Assumption 4).

The proof of Lemma 2 is provided in Appendix H.7. The proof relies on the assumption that the value
function satisfies a Polyak Lojasiewicz (PL) condition under appropriate policy parametrization.
Theorem 1. Under Assumptions 1-4, for the proposed Algorithm 1, it holds that

1

T

T∑
t=1

∥∇νG(νt, θ
∗(νt))∥2 ≤

G0 −G∗

δ1T
+

ηδ2L6Z

Tδ1µ(1− η)
(22)

where G0 := G(ν0, θ
∗(ν0)) and G∗ denotes the global optimum of the upper objective, δ1 =

αu

(
1− 1

2c1
− Lgαu

)
and δ2 = αu

(
c1
2 + Lgαu

)
, c1 is a positive constant defined in eqn. (45), and

the step-size range of satisfies αu < 1/Lg , with Lg as in Assumption 1 and αℓ as stated in Lemma 2.

In Theorem 1, we note that we achieve a final rate ofO(1/T ), which matches with bilevel optimization
for non-convex upper objective without requiring strong convexity at the lower level in (Ghadimi &
Wang, 2018a).

6 Experimental Evaluations

We consider the challenging tasks of robotic locomotion and manipulation in the human preference-
based RL setting as also considered in Lee et al. (2021); Park et al. (2022); Metcalf et al. (2022).
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Human Feedback: Although real-human preferences would have been ideal for the experiments, but
it is hard to get them. Hence, we leverage simulated human teachers as used in prior research (Lee
et al., 2021; Park et al., 2022). The simulated teacher provides preferences on pairwise trajectories
to the agent according to the underlying true reward function, which helps us to evaluate the policy
alignment efficiently. To design more human-like teachers, various human behaviors like stochasticity,
myopic behavior, mistakes, etc. are integrated while generating preferences as in Lee et al. (2021);
Park et al. (2022).

Baselines: We consider two state-of-the-art baselines for preference-based RL, which are PEBBLE
(Lee et al., 2021) and PEBBLE+SURF (Park et al., 2022). We specifically compare with these
two algorithms since PEBBLE+SURF (Park et al., 2022) and PEBBLE (Lee et al., 2021) already
outperforms all the other existing algorithms, including (Metcalf et al., 2022; Christiano et al., 2017) in
similar environment and configurations. It is important to note that PEBBLE+SURF utilizes additional
unsupervised data and augmentations to improve the performance of PEBBLE, and hence depending
on the quality and amount of the unsupervised information, the performance of PEBBLE+SURF
varies rapidly. Hence, it is not extremely fair to compare PEBBLE+SURF with ours due to this
obvious benefit, but still, we observe that our algorithm performs better than PEBBLE+SURF with
controlled augmentations.

Experimental Results Discussions and Evaluation: To evaluate the performance of our algorithm
against baselines, we select true episodic reward return as a valid metric. Since the eventual goal of
any RL agent is to maximize the expected value of the episodic reward return, which is widely used in
the literature. We conduct the experimental evaluations primarily centered on three key ideas - i.) First,
we characterize the gap in the performance of the current SOTA methods due to inexact alignment
strategies as demonstrated in Figure 1 which clearly shows a significant gap in current SOTA methods.
ii.) Second, we compare the performance of our algorithm against baselines in the above benchmarks
w.r.t ground truth return as shown in Figure 2 (averaged over 5 seeds). Environments: We evaluate
the performance of the proposed algorithm for our framework PARL on large-scale continuous
control robotics tasks in DM Control suite (Tassa et al., 2018) and Meta-World (Yu et al., 2021).

Figure 3: A visualization of learned behavior for
the baseline Pebble (top row) and proposed (in the
bottom row) (with policy at Env-Step 0.5× 106).
We note that the proposed A-PARL algorithm has
been able to learn the aligned behavior of open-
ing the door in the generated trajectory (top-right)
whereas PEBBLE gets stuck depicting our algo-
rithm’s efficiency in alignment .

It demonstrates our algorithm’s superiority over
existing baselines in terms of episodic return,
where A-PARL achieves near-oracle perfor-
mance in a much faster time with an improved
sample efficiency of approximately 63%. iii.)
Finally, we test the alignment behavior of our
learned policy by validating the generated tra-
jectories on interacting with the environment
against potential hacking or spurious learning.
We validated if the agent is learning desired be-
haviors or has learned to hack the fitted reward
due to the issue of reward overoptimization in
RLHF (Gao et al., 2022) (specifically at an early
stage of learning where it hits the high reward
point). As observed in Figure 3, our agent learns
the desired behavior and is able to open the door,
whereas the existing algorithm (PEBBLE) fails
to do so, demonstrating the effectiveness of our
algorithm in alignment.

7 Conclusion

Potentially misaligned agents pose a severe risk to society; thus making AI alignment at the forefront
of research of the current times (Liu et al., 2022). We identify a major gap within current algorithmic
designs for AI alignment due to a lack of characterization of the dependence of the alignment
objective on the data generated by policy trajectories. To mitigate the gap, we develop a unified
bilevel optimization-based framework, PARL as a first step to address the policy alignment issue in
reinforcement learning. Our proposed algorithm demonstrates superior performance over existing
SOTA methods in large-scale robotics control tasks with provable convergence guarantees of rate
O(1/T ).
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A Notations

We collectively describe the notations used in this work in Table 1.

Table 1:
Notations Details
S,A State space, action space
(s, a) State-action pair
P (s′|s, a) Transition kernel
rν(s, a) Reward function parameterized by designer’s parameters ν ∈

Rn

πθ(ν)(·|s) Policy parameterized by θ(ν) ∈ Rd for design parameters ν
Vs(ν, θ(ν)) lower objective - Value function for state s at upper parameter

ν and policy parameter θ(ν)
G(ν, θ∗(ν)) upper objective

B Detailed Context of Related Work

Bilevel Optimization. Multi-stage optimization has a long-history in optimization and operations
research, both for deterministic (Bertsimas & Caramanis, 2010) and stochastic objectives (Pflug &
Pichler, 2014). In general, these problems exhibit NP-hardness if the objectives are general non-convex
functions. Therefore, much work in this area restricts focus to classes of problems, such as affine
(Bertsimas & Caramanis, 2010; Bertsimas et al., 2010). From both the mathematical optimization
community (Bracken & McGill, 1973) and algorithmic game theory (Von Stackelberg, 2010), extensive
interest has been given to specifically two-stage problems. A non-exhaustive list contains the following
works (Ghadimi & Wang, 2018b; Yang et al., 2021; Khanduri et al., 2021; Li et al., 2022a; Ji & Liang,
2022; Huang et al., 2022). Predominately, one these works do not consider that either stage is a MDP,
and therefore while some of the algorithmic strategies are potentially generalizable to the RL agent
alignment problem, they are not directly comparable to the problem studied here.

Stackleberg Games. Algorithmic methods for Sackleberg games are a distinct line of inquiry that
develops methods to reach the Stackleberg equilibrium of a game, which have received significant
attention in recent years. Beginning with the static Stackleberg game setting, conditions for gradient
play to achieve local equilibria have been established in (Fiez et al., 2019). Follow on work studied
conditions for gradient play to converge without convexity, but does not allow for MDP/trajectory
dependence of objective functions at either stage (Maheshwari et al., 2023). On the other hand, the
access to information structures have gradually been relaxed to allow bandit feedback (Bai et al.,
2021) and linear MDPs (Zhong et al., 2021). Value iteration schemes have been proposed to achieve
Stackleberg-Nash equilibria as well (Goktas et al., 2022), although it is unclear how to generalize
them to handle general policy parameterization in a scalable manner. Most similar to our work are
those that develop implicit function-theorem based gradient play (Fiez et al., 2020; Vu et al.); however,
there are no performance certificates for these approaches.

Mechanism Design. In this line of research, one studies the interrelationship between the incentives
of an individual economic actor and their macro-level behavior at the level of a social welfare objective.
This literature can be traced back to (Myerson, 1989; Hurwicz, 2003; Maskin, 2008), and typically
poses the problem as one that does not involve sequential interactions. More recently, efforts to
cast the evolution of the upper-stage which quantifies social welfare or ethnical considerations as a
sequential process, i.e., an MDP, have been considered (Tang, 2017; Hu et al., 2018). In these works,
agents’ behavior is treated as fixed and determining of the state transition dynamics, which gives rise
to a distinct subclass of policy optimization problems (Lyu et al., 2022a;b).

Reinforcement Learning with Preferences. Revealed preferences is a concept in economics that
states that humans in many cases do not know what they prefer until they are exposed to examples
(Caplin & Dean, 2015). This idea gained traction as it provided a substantive basis for querying
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Figure 4: This figure describes the implementation flowchart of the iterative process of policy
alignment in reinforcement learning. We start with some initial reward r0, learn an optimal policy
π0 for that particular reward function at instant t = 0, and utility evaluates the policy to generate an
updated reward function r1. Then at the next iterate t = 1, we learn π1 and so on.

humans and elucidating feedback on decision-making problems with metrics whose quantification is
not obvious, such as trustworthiness or fairness. In its early stages, (Wilson et al., 2012) proposed
a Bayesian framework to learn a posterior distribution over the policies directly from preferences.
However, (Fürnkranz et al., 2012) focused on learning a cost or utility function as a supervised
learning objective to maximize the likelihood of the preferences and subsequently maximize the
policy under the estimated utility. An alternative and interesting line of research involves dueling
bandits, which focuses on the comparison of two actions/trajectories and aims to minimize regret
based on pairwise comparisons (Dudík et al., 2015; Bengs et al., 2021; Lekang & Lamperski, 2019;
Pacchiano et al., 2023). (Christiano et al., 2017) was one of the first to scale deep preference-based
learning for large-scale continuous control tasks by learning a reward function aligned with expert
preferences. This was later improved by introducing additional demonstrations (Ibarz et al., 2018) and
non-binary rankings (Cao et al., 2020). Most recent works (Lee et al., 2021; Park et al., 2022) improve
the efficiency of preference-based learning for large-scale environments with off-policy learning and
pre-training. However, a rigorous mathematical formulation analysis of the problem is still missing
from the literature with special emphasis on the alignment objective and evaluations.

Inverse Reinforcement Learning & Behavioral Cloning. Implicitly contained in the RL with
preferences framework is the assumption that humans should design a reward function to drive an
agent toward the correct behavior through its policy optimization process. This question of reward
design has also been studied through an alternative lens in which one provides demonstrations or
trajectories, and seeks to fit a reward function to represent this information succinctly. Inverse RL
(IRL) is concerned with inferring the underlying reward function from a set of demonstrations by
human experts. Pioneering work in IRL, notably by Ng and Russell Ng & Russell (2000), centers on
the max-margin inverse reinforcement learning framework for reward function estimation. Another
prominent direction by Ziebart et al. (2008b; 2010) introduced the Max Entropy IRL framework
which excelled in handling noisy trajectories with imperfect behavior via adopting a probabilistic
perspective for reward learning. However, a major drawback in all these prior methods was the inability
to incorporate unsuccessful demonstration which was efficiently solved in Shiarlis et al. (2016) with a
constraint optimization formulation, by also maximizing the between the empirical feature expectation
of unsuccessful examples and the feature expectation learned from the data. Interestingly Ho et al.
(2016) posed it in the min-max formulation where the objective is to maximize the optimal policy
and minimize the divergence to the occupancy indicated by the current policy and expert trajectories.
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Later, with Deep RL methods, Finn et al. (2016); Wulfmeier et al. (2016) extended the maximum
entropy deep IRL to continuous action and state spaces. Although IRL methods are effective, they
still are extremely dependent on high-quality demonstrations which are expensive and might be hard
to obtain for real-world sequential decision-making problems. Hence, there has been recent research
on reward shaping and information-directed approaches Chakraborty et al. (2023b); Weerakoon et al.
(2022); Bedi et al. (2022); Chakraborty et al. (2023a; 2022) which provides principled methods to
learn under sparsity. However, such methods fail to scale in large state space robotics environments.

C Additional Motivating Examples

Example 1: Energy efficient and sustainable design for robotic manipulation. Consider a robotic
manipulation task where the objective of the agent is to learn an optimal policy to transport components
from a fixed position to a target position ν := (x, y). On the other hand, the designer’s objective is to
select the work-bench position ν to minimize the energy consumption of the robotic arm during the
transportation task. Hence, it naturally boils down to the following bilevel problem as

max
ν:=(x,y)

Eρ(τ ;θ∗(ν))

[
Hu∑
h=1

−ahwh | ah ∼ πθ∗(ν)(·|sh)

]
(23)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrν(sh, ah) | ah ∼ πθ(ah|sh), s0 = s

]
,

where Eρ(τ ;θ∗(ν)) denotes the expectation with respect to the trajectories collected by the lower-
level optimal policy πθ∗(ν). In (23), action ah denotes the angular acceleration of the robotic arm,
the state is represented by sh = (αh, wh), αt is the discretized angle, and wh angular velocity of
the robotic arm. we define the transitions as (αt+1, wt+1) = (αh + wh, wh + ah). The reward
of the lower objective rν(sh, ah) = −λ1∥sh − ν∥2 − λ2∥wh∥2, i.e., reward increases as the arm
moves closer to the workbench with a controlled angular velocity. The upper objective focuses on
minimizing the energy emission during transport and is thus entangled with the trajectories generated
under the optimal policy obtained via the lower-level. Therefore, to see that the problem in (23)
is a special case of (2), we note that the upper objective (cf. (3)) takes the special form as follows
G(ν, θ∗(ν)) = U(πθ∗(ν)) = Eρ(τ ;θ∗(ν))

[∑Hu

h=1−ahwh | ah ∼ πθ∗(ν)(·|sh)
]
, where Z(ν) = 0 for

this example.

Example 2: Social welfare aligned tax design for households. Consider the problem of tax design
for individual households while remaining attuned to social welfare, motivated by (Hill et al., 2021).
From the household’s perspective, each household seeks to maximize its own utility uh based on the
number of working hours, consumption of goods, and net worth. Let us denote the accumulated asset as
state sh. At each time step h, the household agent selects an action ah = (nh, ci,h), ah ∼ πθ(ah|sh),
where nh is the number of hours worked, and ci,h is the consumption of good i at a pre-tax price of
pi, and θ denotes the policy parameter. We denote f(sh) as the reward for the accumulative asset
sh, updated at each time step by sh+1 = sh + (1 − x)wnh −

∑M
i=1 ci,h and ν = (x, yi) is the

income tax rate and consumption tax rate for good i. Here we note that x is a uniform tax across
all households, whereas yi is a household-specific tax rate. Then the household agent’s utility at
time step h is given by the equation uh = f(sh) − γn2h +

∏M
i=1

(
ci,h

pi(1+yi)

)νi

, where the product
term corresponds to Cobb-Douglas function (Roth et al., 2016). In contrast, the objective of the
regulatory body or government (upper-level) is to maximize the social welfare vt by adjusting the tax
rates ν based on the optimal policy of the household agent (lower level). Hence, the upper objective
representing the social welfare is defined as vh = g(sh)+

∑M
i=1

ci,h
1+yi

+ψ ln
( ∏M

i=1 ci,tyi∏M
i=1(1+yi)

+ wxnh
)

,
where g(·) is the reward for the accumulative asset, ψ is a positive constant, and w is the wage rate.
The household agent follows a policy that maximizes its discounted cumulative reward, while the
social planner aims to maximize the discounted total social welfare by tuning the tax rates x and yi.
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Thus, the bilevel formulation is given by

max
ν

Eρ(τ ;θ∗(ν))

[
Hu−1∑
h=0

vν(sh, ah)

]
(24)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhuν(sh, ah)| ah ∼ πθ(ah|sh), s0 = s

]
,

where γ is the discount rate, and θ∗(ν) represents the optimal lower policy of the household agent,
which maximizes its expected cumulative return over a time horizon Hℓ.

Example 3: Cost-effective robot navigation with Human feedback. Consider an N ×N maze-
world environment where the robot needs to navigate from a start state s to a goal state g. The maze is
represented by a grid with discrete positions (i, j), and the robot can take four actions {↑, ↓,←,→}.
The agent receives a reward Rg(τ) on reaching the goal and the objective of the agent is to learn the
optimal policy πθ∗ for goal reaching. The designer on the other hand, bears an additional cost of
moving the goal position from the terminal state (N − 1, N − 1) and hence need to optimize for a
general utility metric considering both the objectives and can be formulated as the bilevel optimization
as

max
g
−λ1∥g − (N − 1, N − 1)∥2 + λ2Eπθ∗(ν)

[Rg(τ)] (25)

s.t. θ∗(g) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrg(sh, ah) | ah ∼ πθ(ah|sh), s0 = s

]
,

where the reward function is characterized by the goal state g. The upper objective deals with finding
a suitable position of the goal state that can optimize the sustainability metric and the lower objective
deals with optimal policy and reward achieved under the same.

D Gradient Evaluations for RLHF

In this section, we demonstrate how our A-PARL algorithm is applicable to the Reinforcement
Learning from Human preferences paradigm. We begin by writing the gradient of the upper-level
preference objective in equation (7) as

∇νG(ν, θ
∗(ν)) = ∇νE[y logPν(τ0 > τ1) + (1− y) logPν(τ0 < τ1)] (26)

= ∇νE[fν(τ0, τ1, y)]

= ∇ν

∑
τ̃

fν(τ0, τ1, y) · ρ(y, τ0, τ1; θ∗(ν))

where, let’s denote fν(τ0, τ1, y) = y logPν(τ0 > τ1) + (1 − y) logPν(τ0 < τ1) for simplicity of
notation and as stated before τ̃ = (τ0, τ1, y). Now expanding upon the gradient in equation (30), we
have

∇νG(ν, θ
∗(ν)) = E[∇ν [fν(τ0, τ1, y)]] +

∑
τ ′

fν(τ0, τ1, y) · ∇νρ(y, τ0, τ1, θ
∗(ν)) (27)

where, we use the chain-rule and replace summation with expectation to get the equation (27) .

∇νG(ν, θ
∗(ν)) = E[∇ν [f(τ0, τ1, y, ν)]] +

∑
τ̃

f(τ0, τ1, y, ν) · ∇νρ(y, τ0, τ1; θ
∗(ν)) (28)

= E[∇ν [f(τ0, τ1, y, ν)]]︸ ︷︷ ︸
Term 1

+E[f(τ0, τ1, y, ν) · ∇ν log ρ(y, τ0, τ1; θ
∗(ν))]︸ ︷︷ ︸

Term 2

where, we divide and multiply the second term by the ρ(y, τ0, τ1; θ∗(ν)) to get the log gradient term
inside expectation. Now, to compute the expression, we first compute the gradient of f(τ0, τ1, y, ν).
From the definition in equation (6), we know that

Pν(τ0 > τ1) =
expRν(τ0)

expRν(τ0) + expRν(τ1)
(29)

logPν(τ0 > τ1) = Rν(τ0)− log(expRν(τ0) + expRν(τ1))

logPν(τ1 > τ0) = Rν(τ1)− log(expRν(τ0) + expRν(τ1))
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Now, with the above equation, the expression of Term 1 in equation (28) can be expanded as

E[∇νf(τ0, τ1, y, ν)] = E[y∇ν logPν(τ0 > τ1) + (1− y)∇ν logPν(τ0 < τ1)] (30)

= E[y∇νRν(τ0) + (1− y)Rν(τ1)−
∇νRν(τ0) expRν(τ0) +∇νRν(τ1) expRν(τ1)

expRν(τ0) + expRν(τ1)
]

= E[y∇νRν(τ0) + (1− y)Rν(τ1)−∇νRν(τ0)Pν(τ0 > τ1)−∇νRν(τ1)Pν(τ1 > τ0)]

Note that this term can be easily estimated under any differentiable parametrization of the reward
function Rν Next, we move to term 2, where the trajectories τ0, τ1 are drawn from the distribution
ρ(τ ; θ∗(ν) parametrized by the policy π(θ∗(ν)). The Term 2 from equation (28) can be written as :

E[fν(τ0, τ1, y) · ∇ν log ρ(y, τ0, τ1; θ
∗(ν))] (31)

= E[fν(τ0, τ1, y) · ∇ν log
(
h(y|τ0, τ1)ρ(τ0; θ∗(ν))ρ(τ1; θ∗(ν))

)
]

= E[fν(τ0, τ1, y) ·
(
∇ν log ρ(τ0; θ

∗(ν)) +∇ν log ρ(τ1; θ
∗(ν))

)
]

Now, the term ∇ν log ρ(τ1, θ
∗(ν)) can be expressed as exactly done in equation (8)

∇ν log ρ(τ1; θ
∗(ν)) =

∑
t

∇ν log πθ∗(ν)(at|st) (32)

Now, exactly following the similar steps as done from equation (33) to equation (36) we can rewrite
the gradient in the context of Bilevel RLHF as

∇νfh(θ
∗(ν)) = ∇νθ

∗(ν)T∇θfh(θ
∗(ν)). (33)

From the first order optimality condition for the lower level objective, it holds that

∇θVs(ν, θ
∗(ν)) = 0, (34)

which is the gradient of lower-level objective with respect to parameter θ evaluated at the optimal
θ∗(ν). Now, differentiating again with respect to ν on both sides of (34), we obtain

∇2
ν,θVs(ν, θ

∗(ν)) +∇νθ
∗(ν)∇2

θVs(ν, θ
∗(ν)) = 0. (35)

The above expression would imply that we can write the final expression for the gradient in (33) as

∇νfh(θ
∗(ν)) = −∇2

v,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
∗(ν))−1∇θfh(θ

∗(ν)). (36)

Now, replacing this in Term 2 we will get the final expression. It is important to note that it requires
the same gradient computations as shown in Section 4 for our generalized policy alignment algorithm.

E Additional Lemmas

Lemma 3 (Value function related upper bounds). Under Assumptions 1 - 4, it holds that

(i) The second order Jacobian term ∇2
ν,θVs(νt, θ

K(νt)) is bounded as ∥∇2
ν,θVs(νt, θ

K(νt))∥ ≤
H2

ℓLrB, where Hℓ is the horizon length for the lower level [cf. (2)], Lr is the reward Lipschitz
parameter [cf. Assumption 2], and B is the score function bound [cf. Assumption 3].

(ii) The Hessian of the value function is Lipschitz with parameter as

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥ ≤ L′∥θ∗(ν)− θK(ν)∥, (37)

where, L′ = Lf1χ1
Hℓ

2 L2 + Lf1 and Lf1 = L2H
2
ℓR. Here, Hℓ is the horizon length at the lower

level, χ1 is a constant defined in (77), R is the maximum reward (cf. Assumption 2), and L2 is the
Lipschitz parameter of the Hessian of the policy defined in Assumption 3.

(iii) The second order mixed jacobian term ∇2
ν,θVs(ν, θ

K(ν)) is Lipschitz continuous w.r.t θ i.e

∥∇2
ν,θVs(ν, θ

∗(νt))−∇2
ν,θVs(νt, θ

K(ν))∥ ≤ L′′∥θ∗(ν)− θK(ν)∥ (38)

where, L′′ = Lf3χ2
Hℓ

2 L2 + Lf3 and Lf3 = LrL1H
2
ℓ . Here, χ2 is a constant defined in equation

(85), and other constants are as defined in statement (ii).
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The proof of Lemma 3 is in Appendix G.2. To prove this result, we start by considering the value
function expression, and evaluating it’s gradient, Hessian, and Jacobians. After expanding each of
them, we separate the reward and policy-related terms and then utilize the aforementioned assumptions
to upper bound them, respectively.
Lemma 4. Let us define the update direction associated with the gradient in (13) as

ϕ1(τ) :=U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))], (39)

and ϕ2(τ) :=U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν))]. (40)

Under Assumptions 1 - 4, it holds that
∥Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ ≤ H2

uũγ1∥θ∗(ν)− θK(ν)∥, (41)

where γ1 := κL1 +
Lν,θL

′

l2π
+ L′′

lπ
. Here, ũ is the upper bound of utility U(τ) defined in (4), lπ, L1

are policy-related Lipschitz parameters (cf. Assumption 3), L′ and L′′ as defined in Lemma 3, and κ
mixed condition number defined in equation (109) and Lν,θ upper-bound of the norm of second order
mixed jacobian term, defined in equation (107)

The proof of Lemma 4 is in Appendix H.6.

F Proof of Theorem 1

Without loss of generality, for the analysis, we consider the algorithm updates as if we are minimizing
at the upper and lower level both.

Proof. We begin by the smoothness assumption in the upper-level objective (cf. Assumption 18),
which implies that

G[νt+1, θ
∗(νt+1)] ≤ G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)), νt+1 − νt⟩+
Lg

2
∥νt+1 − νt∥2. (42)

From the update of upper parameter νt+1 (cf. (14)), we holds that

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)),−αu∇̃νG(νt, θ
K(νt))⟩ (43)

+
Lgα

2
u

2
∥∇̃νG(νt, θ

K(νt))∥2.

We add subtract the original gradient ∇νG(νt, θ
∗(νt)) [cf. (13)] in (43) as follows

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)),−αu∇νG(νt, θ
∗(νt))⟩ (44)

+ αu⟨∇νG(νt, θ
∗(νt)),∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))⟩

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2

=G(νt, θ
∗(νt))− αu∥∇νG(νt, θ

∗(νt))∥2 (45)

+ αu⟨∇νG(νt, θ
∗(νt)),∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))⟩

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2.

Using Peter-Paul inequality for the third term on the right hand side of (45), we get

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt))− αu∥∇νG(νt, θ

∗(νt))∥2 +
αu

2c1
∥∇νG(νt, θ

∗(νt))∥2 (46)

+
αuc1
2
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2.
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where c1 ≥ 0. Next, after grouping the terms, we get

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt))− αu

(
1− 1

2c1

)
∥∇νG(νt, θ

∗(νt))∥2

+
αuc1
2
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2

+ Lgα
2
u∥∇νG(νt, θ

∗(νt))∥2 + Lgα
2
u∥∇̃νG(νt, θ

K(νt))−∇νG(νt, θ
∗(νt))∥2

=G(νt, θ
∗(νt))− αu

(
1− 1

2c1
− Lgαu

)
∥∇νG(νt, θ

∗(νt))∥2

+ αu

(c1
2

+ Lgαu

)
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2, (47)

where we use the inequality ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, followed by algebraic operations to get the
final expression of equation (47). Next, we analyze the term ∥∇νG(νt, θ

∗(νt))−∇̃νG(νt, θ
K(νt))∥2

from equation (47). It is important to note that the dependency of the lower optimal variable on the
sampling distribution of the upper objective is novel compared to the standard class of stochastic
bilevel problems and requires a novel analysis which we emphasize in the subsequent sections. Let
us start by considering the explicit expressions of∇νG(ν, θ

∗(ν)) and ∇̃νG(νt, θ
K(νt)) in equations

(13) and (14) as

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) = Eτ∼ρ(τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ2(τ)], (48)

where we define

ϕ1(τ) =Uν(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))] +∇νUν(τ), (49)

and ϕ2(τ) =Uν(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν))] +∇νUν(τ).

(50)

Now, we expand the terms in (48) by adding subtracting the term Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)] in the right
hand side as follows

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) =Eτ∼ρ(τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)] (51)
+ Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ2(τ)]

=Eτ∼ρ(τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)]

+ Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]. (52)

This is an extremely critical point of departure from existing bilevel algorithms where we characterize
the complexity in the sampling distribution (mentioned above) by breaking into 2 parts and introducing
a notion of probabilistic divergence in the analysis. We note that the first term on the right-hand side
of (52) can be written as :

Eτ∼ρ(τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)] ≤ sup
ϕ∈F

Eτ∼ρ(τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)]

(53)

This boils down to the standard definition of Integral Probability Metric(IPM) which, under suitable
assumption on the function class F can generalize various popular distance measures in probability
theory for ex : Total variation, Wasserstein, Dudley metric etc. For a more detailed discussion on
the connection to f-divergence and IPM, refer to (Sriperumbudur et al., 2009). Specifically, for
our analysis, we will be dealing primarily with a subclass of f-divergences that satisfy the triangle
inequality as Df (p, q) ≤ Df (p, r) +Df (r, q) which includes divergences such as Total variation or
Hellinger distances. Specifically, we show that under certain boundedness conditions on the function
class ϕ ∈ F : ∥ϕ∥ ≤ ζ, we can upper-bound the divergence which is a critical and interesting point
of our analysis. Interestingly for the Reinforcement learning problem under study, ϕ satisfies such a
boundedness condition which we prove in sections. Thus we were able to utilize the special structure
in RL to solve this special type of Bilevel problems.

24



Published as a conference paper at ICLR 2024

On the other-hand, the second term on the right-hand side of (52) is an expected difference between
the two functions. Hence, we can write (52) as

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) =Df (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν)))

+ Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)], (54)

where Df denotes the f-divergence between two distributions. Taking the norm on both sides and
from the statements of Lemma 1 and Lemma 4, we can write

∥∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν))∥2 ≤
(
H2

uL
2
2

2
+ 2H4

uũ
2γ21

)
∥θ∗(ν)− θK(ν)∥2. (55)

Utilizing this bound in (47), we get

G(νt+1,θ
∗(νt+1))−G(νt, θ∗(νt))

≤ −αu

(
1− 1

2c1
− Lgαu

)
∥∇νG(νt, θ

∗(νt))∥2

+ αu

(c1
2

+ Lgαu

)(H2
uL

2
2

2
+ 2H4

uũ
2γ21

)
∥θ∗(ν)− θK(ν)∥2, (56)

where we write the final expression for the convergence analysis from equation (47)
and for simplicity of notations, let’s assume δ1 = αu

(
1− 1

2c1
− Lgαu

)
and δ2 =

αu

(
c1
2 + Lgαu

) (H2
uL

2
2

2 + 2H4
uũ

2γ21

)
, which leads to the simplified version of the equation (56)

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2∥θ∗(νt)− θK(νt)∥2. (57)

From the statement of Lemma 2, we can upper bound the above expression as

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2
ηKL6

µ
Z, (58)

where we know η ∈ (0, 1). Next, we select K = t+ 1 to obtain

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2
ηt+1L6

µ
Z. (59)

Taking the summation over t = 0 to T − 1 on both sides, we get

G(νT , θ
∗(νT )−G(ν0, θ∗(ν0)) ≤ −δ1

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 +

δ2L6Z

µ

T−1∑
t=0

ηt+1 (60)

After rearranging the terms, we get

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 ≤

G(ν0, θ
∗(ν0))−G(νT , θ∗(νT )

δ1
+
ηδ2L6Z

δ1µ

T−1∑
t=0

ηt

≤ G(ν0, θ
∗(ν0))−G(νT , θ∗(νT )

δ1
+

ηδ2L6Z

δ1µ(1− η)
. (61)

Let us denote G0 := G(ν0, θ
∗(ν0)) and upper bound −G(νT , θ∗(νT ) ≤ −G∗ where G∗ denotes the

global optimal value of the upper objective. After dividing both sides in (61) by T , we get

1

T

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 ≤

G0 −G∗

δ1T
+

ηδ2L6Z

Tδ1µ(1− η)
. (62)
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G Proof of Lemmas

G.1 Proof of Lemma 1

Proof. The probability distribution of the trajectory τ = {sh, ah}Hh=1 is given by (as defined after
the equation (3) in main body)

ρ(τ ; θ∗(ν)) = ρ(s0)

H∏
h=1

πθ∗(ν)(ah|sh)P (sh+1|sh, ah). (63)

Similarly, we can derive an equivalent expression for the probability of trajectory induced by the
policy πθK(ν) by replacing θ∗(ν) with θK(ν). Here, P (sh+1|sh, ah) is the transition probability
which remains the same for both and ρ(s0) is the initial state distribution. Next, the f-divergence
between the two distributions Df (ρ(τ ; θ

∗(ν)), ρ(τ ; θK(ν))) can be written as

Df (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν))) ≤ Df (ρ(τ ; θ

∗(ν)), ρ(τ ;β))︸ ︷︷ ︸
I

+Df (ρ(τ ;β), ρ(τ ; θ
K(ν)))︸ ︷︷ ︸

II

, (64)

which holds by triangle inequality of the class of f-divergences we considered as discussed above.
ρ(τ ;β) represents the trajectory probability induced by another hybrid policy πβ(·|s) which executes
the action based on the policy πθK(ν)(·|s) for the first time-step and then follows the policy πθ∗(ν)(·|s)
for subsequent timesteps. Now, we focus on term I in (64), we get

Df (ρ(τ ;θ
∗(ν)), ρ(τ ;β))

=
∑
τ

ρ(τ ;β)f

(
ρ(τ ; θ∗(ν))

ρ(τ ;β)

)
(65)

=
∑
τ

ρ(τ ;β))f

(
ρ(s0)πθ∗(ν)(a0|s0)P (s1|s0, a0)

∏H
h=1 πθ∗(ν)(ah|sh)P (sh+1|sh, ah)

ρ(s0)πθK(ν)(a0|s0)P (s1|s0, a0)
∏H

h=1 πθ∗(ν)(ah|sh)P (sh+1|sh, ah)

)

=
∑
τ

ρ(τ ;β))f

(
πθ∗(ν)(a0|s0)
πθK(ν)(a0|s0)

)
,

where first we expand upon the definition of the trajectory distribution induced by both policies and
get the final expression of the equation (65). By expanding the term ρ(τ ;β) in (65), we obtain

Df (ρ(τ ; θ
∗(ν)), ρ(τ ;β)) =

∑
s0

ρ(s0)
∑
a0

πθK(ν)(a0|s0)f
( πθ∗(ν)(a0|s0)
πθK(ν)(a0|s0)

)∑
s1

P (s1|s0, a0) · · ·

=
∑
s

ρ(s)
∑
a

πθK(ν)(a|s)f
( πθ∗(ν)(a|s)
πθK(ν)(a|s)

)
= Eρ(s)

∑
a

πθK(ν)(a|s)f
( πθ∗(ν)(a|s)
πθK(ν)(a|s)

)
= Eρ(s)[Df (πθ∗(ν)(a|s), πθK(ν)(a|s))], (66)

where, in the first equation we expand upon the sum over all trajectories with the occupancy distribution
over states and actions, and replacing with f-divergence, we get the final expression.
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Next, we expand similarly for the term II in (64) and expand as

Df (ρ(τ ;β), ρ(τ ; θ
K(ν)))

=
∑
τ

ρ(τ ; θK(ν)))f

(
ρ(τ ;β)

ρ(τ ; θK(ν))

)

=
∑
τ

ρ(τ ; θK(ν)))f

(
ρ(s0)πθK(ν)(a0|s0)P (s1|s0, a0)

∏H
h=1 πθ∗(ν)(ah|sh)P (sh+1|sh, ah)

ρ0(s0)πθK(ν)(a0|s0)P (s1|s0, a0)
∏H

h=1 πθK(ν)(ah|sh)P (sh+1|sh, ah)

)

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a0|s0)
∑
s1

P (s1|s0, a0) · · · f

(∏H
h=1 πθ∗(ν)(ah|sh)P (sh+1|sh, ah)∏H
h=1 πθK(ν)(ah|sh)P (sh+1|sh, ah)

)

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)
∑
τ1

ρ(τ1; θ
K(ν),

ρ(τ1; θ
∗(ν)

ρ(τ1; θK(ν))

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)Df (ρ(τ1; θ
∗(ν), ρ(τ1; θ

K(ν)), (67)

where we expand the trajectory distribution induced by the policies and subsequently express as the
ratio of the probability of trajectories wrt τ1, we get the final expression. Now, we expand upon the
f-divergence of the trajectory τ1 distribution as

Df (ρ(τ ;β), ρ(τ ; θ
K(ν))) =

∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)Df (ρ(τ1; θ
∗(ν), ρ(τ1; θ

K(ν)) (68)

≤
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)
(
Df (ρ(τ1; θ

∗(ν)), ρ(τ1;β))

+Df (ρ(τ1;β), ρ(τ1; θ
K(ν)))

)
,

where using the triangle inequality and get back the similar form with which we had started in equation
(64) similar to term I and term II. Here, similarly continuing this expansion, we finally get

Df (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν))) ≤

H−1∑
h=0

Es∼ρP
θK (ν)

(s)Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ HEs∼ρθK (ν)(s)
Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ H
∑
s

ρθK(ν)(s)Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ HDf (πθ∗(ν)(a
′|s′), πθK(ν)(a

′|s′)), (69)

where, we upper bound the first equation by the total number of timesteps or horizon length H of
the trajectory and subsequently upper-bound the divergence by the state (s, a) pair for which the
Df (πθ∗(ν)(a|s), πθK(ν)(a|s)) is maximum and is given as (s′, a′). Next, in (69), by considering the
total variation as the f-divergence (it falls into the class of f-divergence under consideration) and
expanding using definition with countable measures to obtain

Df (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν))) ≤ HDTV (πθ∗(ν)(a

′|s′), πθK(ν)(a
′|s′))

≤ H

2
∥πθ∗(ν)(a

′|s′)− πθK(ν)(a
′|s′)∥1

≤ HL2

2
∥θ∗(ν)− θK(ν)∥, (70)

where, we use the gradient-boundedness condition on the score function (cf. Assumption 3) on the
policy parameter to get the final expression of equation (70). We note that the result holds for any
general horizon length H .
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G.2 Proof of Lemma 3

G.2.1 Proof of Lemma 3 Statement (i)

Proof. We start with the definition from (17)

∇2
ν,θVs(νt, θ

K(νt)) =
∑
τ

ρ(τ ; θK(νt))

[
Hℓ∑
h=0

γh · ∇νrνt
(sh, ah) ·

 h∑
j=0

∇θ log πθK(νt)(aj |sj)

T ]

≤

[
Hℓ∑
h=0

γh · ∇νrνt(s
′
h, a

′
h) ·

 h∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ]∑
τ

ρ(τ ; θK(νt))

=

[
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h) ·

 h∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ]
, (71)

where τ ′ = [(s′0, a
′
0) · (s′h, a′h) · · · ] represents the trajectory for which the lower product term is

maximum and thereby upper-bounding with that leads to expression in equation (71). Next we
upper-bound the norm of the ∥∇2

ν,θVs(νt, θ
K(νt))∥ as

∥∇2
ν,θVs(νt, θ

K(νt))∥ ≤

∥∥∥∥∥
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h) ·

 h∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ∥∥∥∥∥
≤

∥∥∥∥∥
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h)

∥∥∥∥∥ ·
∥∥∥∥∥

h∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

∥∥∥∥∥
≤ H2

ℓLrB, (72)

where we apply the Cauchy-Schwarz inequality to get the inequality in the second line. Subsequently,
we apply triangle inequality with reward boundedness assumption from Assumption 2 and bounded
score function of the policy from Assumption 3 to get the final bound for the mixed hessian term.

G.2.2 Proof of Lemma 3 Statement (ii)

Proof. We start by considering the term

∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν)) = Eρ(τ ;θ∗(ν))f1(τ)− Eρ(τ ;θK(ν))f2(τ), (73)

where we define

f1(τ) =

Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 h∑
j=0

∇2
θ log πθ∗(ν)(aj |sj)

 (74)

f2(τ) =

Hℓ∑
h=0

γh−1 · rνt
(sk, ak) ·

 h∑
j=0

∇2
θ log πθK(ν)(aj |sj)

 . (75)

Subsequently, we write the norm of the equation (73) into 2 parts as

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥
= ∥Eρ(τ ;θ∗(ν))f1(τ)− Eρ(τ ;θK(ν))f1(τ) + Eρ(τ ;θK(ν))f1(τ)− Eρ(τ ;θK(ν))f2(τ)∥
≤ ∥T1∥+ ∥T2∥, (76)

First we use triangle inequality and then add and subtract Eρ(τ ;θK(ν))f1(τ) to get the expression
where, T1 = Eρ(τ ;θ∗(ν))f1(τ) − Eρ(τ ;θK(ν))f1(τ) and T2 = Eρ(τ ;θK(ν))f1(τ) − Eρ(τ ;θK(ν))f2(τ).
This is an interesting point of departure from existing Bilevel analysis where the stochasticity is
mainly iid noise. Hence to deal with this, we separate the terms 1. divergence b/w two probability
distributions and 2. expected diff b/w two functions under the same distribution. We next, upper-bound
the individual terms to get the final Lispchitz constant.
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First, we focus on the first term of inequality i.e T1 given as

T1 = Eρ(τ ;θ∗(ν))f1(τ)− Eρ(τ ;θK(ν))f1(τ) (77)
≤ sup

f1

[Eρ(τ ;θ∗(ν))f1(τ)− Eρ(τ ;θK(ν))f1(τ)]

≤ χ1dTV (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν)))

≤ χ1
Hℓ

2
L2∥θ∗(ν)− θK(ν)∥,

where we first upper-bound the expression to a standard Integral Probability Metric form by taking the
supremum and then dividing and multiplying with the norm of the function given by χ1 = ∥f1(·)∥ =
H2

l RL1 from equation (96). With that, we get the expression as the of Total variation distance(by
definition (Sriperumbudur et al., 2009)) in the third inequality. Then, we upper-bounded the total
variation using the results from equation (70) to get the final expression. Note that, in equation (70),
we have shown for any general H , which will be Hl for our case.

Now, we proceed to the second term of the equation T2 and derive an upper bound as

T2 =
∑
τ

ρ(τ ; θK(ν))(f1(τ)− f2(τ)) (78)

≤ f1(τ ′)− f2(τ ′)

=

Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 h∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))


,

where we consider the trajectory τ ′ in the sum with the maximum value and upper bound by that and
expand the definition of f1, f2 to get expression in equation (78).

∥T2∥ ≤ ∥
Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 h∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 ∥ (79)

≤ ∥
Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 h∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 ∥
≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥

 h∑
j=0

(∥∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj)∥)


≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥HℓL2∥θ∗(ν)− θK(ν)∥

= L2RH
2
ℓ ∥θ∗(ν)− θK(ν)∥,

where we use Cauchy-Schwartz and triangle inequality repetitively to get to the third inequality. Next,
we use Assumption 3 on the Hessian Lipschitzness of the score function and the bounded reward
norm max(s,a) ∥rν(s, a)∥ = R to get the next inequality. Finally, we use the upper bound on the
geometric series to obtain the final expression. Adding equations (77) and (79), we get the

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥ ≤ L′∥θ∗(ν)− θK(ν)∥ (80)

where, L′ = L1L2R
H3

l

2 + L2RH
2
ℓ .

G.2.3 Proof of Lemma 3 Statement (iii)

Proof. We start by considering the term

∇2
ν,θVs(ν, θ

∗(ν))−∇2
ν,θVs(ν, θ

K(ν)) ≤ Eρ(τ ;θ∗(ν))f3(τ)− Eρ(τ ;θK(ν))f4(τ) (81)
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where we define

f3(τ) =

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

∇θ log πθ∗(ν)(aj |sj)

T

(82)

f4(τ) =

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

∇θ log πθK(ν)(aj |sj)

T

. (83)

Subsequently, we write the norm of the equation (81) into 2 parts as

∥∇2
ν,θVs(ν, θ

∗(ν))−∇2
ν,θVs(ν, θ

K(ν))∥ ≤ ∥Eρ(τ ;θ∗(ν))f3(τ)− Eρ(τ ;θK(ν))f3(τ) (84)
+ Eρ(τ ;θK(ν))f3(τ)− Eρ(τ ;θK(ν))f4(τ)∥
≤ ∥T3∥+ ∥T4∥,

where, T3 = Eρ(τ ;θ∗(ν))f3(τ) − Eρ(τ ;θK(ν))f3(τ) and T4 = Eρ(τ ;θK(ν))f3(τ) − Eρ(τ ;θK(ν))f4(τ).
We next, upper-bound the individual terms to get the final Lispchitz constant.

First, we focus on the first term of inequality i.e T3 given as

T3 = Eρ(τ ;θ∗(ν))f3(τ)− Eρ(τ ;θK(ν))f3(τ) (85)
≤ sup

f3

[Eρ(τ ;θ∗(ν))f3(τ)− Eρ(τ ;θK(ν))f1(τ)]

≤ χ3dTV (ρ(τ ; θ
∗(ν)), ρ(τ ; θK(ν)))

≤ χ3
Hℓ

2
L2∥θ∗(ν)− θK(ν)∥,

where we convert the inequality first to a standard Integral Probability Metric form by taking the
supremum. Then we divide and multiply with the norm of the function f3 given by ∥f3(·)∥ = χ3 =
H2

l BLr from equation (95), and then we get the final expression in terms of Total variation distance
(from definition (53)). Then, we upper-bounded the total variation using the results from equation
(70) to get the final expression. Now, we proceed to the second term of the equation T4 and derive an
upper bound as

T4 =
∑
τ

ρ(τ ; θK(ν))(f3(τ)− f4(τ)) (86)

≤ f3(τ ′)− f4(τ ′)

=

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))

T

where we consider the trajectory τ ′ in the sum with the maximum value and upper bound by that to
get equation (86). Next, we upper-bound the norm ∥T4∥ as

∥T4∥ ≤

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 h∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))

T ∥∥∥∥∥
≤

Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥

 h∑
j=0

∥∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))∥


≤

Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥HℓL1∥θ∗(ν)− θK(ν)∥

≤ L1LrH
2
ℓ ∥θ∗(ν)− θK(ν)∥, (87)

where we use Cauchy-Schwartz and triangle inequality repetitively to get to the third inequality. Next,
we use Assumption 3 on the Lipschitzness of the gradient of the score function and the bounded
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reward R (cf. Assumption 2). Finally, we upper-bound sum of this geometric series to obtain the final
expression. Adding equations (85) and (87), we get the

∥∇2
ν,θVs(ν, θ

∗(νt))−∇2
ν,θVs(νt, θ

K(ν))∥ ≤ L′′∥θ∗(ν)− θK(ν)∥ (88)

where, L′′ = L2LrB
H3

l

2 + L1LrH
2
ℓ .

H Additional Supporting Lemmas

H.1 Proof of Lispchitzness and Boundedness condition for f1(·) defined in (74)

Here, we prove that the function denoted as f1(θ
∗(ν)) =

∑Hℓ

h=0 γ
h−1 · rνt

(sh, ah) ·(∑h
j=0∇2

θ log πθ∗(ν)(aj |sj)
)

is Lispchitz continuous w.r.t θ with Lipschitz constant Lf1 i.e

∥f1(θ∗(ν))− f1(θK(ν))∥ ≤ Lf1∥θ∗(ν)− θK(ν)∥. (89)

First, we begin with the different term as :

f1(θ
∗(ν))− f1(θK(ν)) =

Hℓ∑
h=0

γh−1rνt
(sh, ah)

 h∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 .

(90)

Subsequently, taking the norm we get

∥f1(θ∗(ν))− f1(θK(ν))∥

=

∥∥∥∥∥
Hℓ∑
h=0

γh−1rνt
(sh, ah)

 h∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

∥∥∥∥∥
≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥ ·

 h∑
j=0

∥∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj)∥


≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥L2Hℓ∥θ∗(ν)− θK(ν)∥

≤ L2H
2
ℓR∥θ∗(ν)− θK(ν)∥, (91)

where we use Cauchy-Schwartz and triangle inequality to get the subsequent expressions. In the
third inequality, we use the Hessian Lipschitzness assumption of score function of policy parameters
from Assumption 3 and finally using the boundedness of the reward values and upper-bounding the
Geometric series, we get the final expression. Thus we show that f1(·) is Lispchitz continuous w.r.t θ
with Lipschitz constant Lf1 = L2H

2
ℓR.

Similarly, we can derive the boundedness condition on the norm of the function ∥f1(·)∥,∀θ as

∥f1∥ =

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · rνt(sh, ah) ·

 h∑
j=0

∇2
θ log πθ(aj |sj)

∥∥∥∥∥ (92)

≤

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · rνt(sh, ah)

∥∥∥∥∥ ·
∥∥∥∥∥
 h∑

j=0

∇2
θ log πθ(aj |sj)

∥∥∥∥∥
≤ H2

l RL1(= χ1)

where first we use Cauchy-Schwartz and triangle inequality and subsequently use the bounded reward
assumption (2) and Hessian Lipschitzness assumption of the score function of the policy parameter
from assumption (3).
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H.2 Proof of Lispchitzness and Boundedness for f3(·) defined in (82)

Here, we prove that the function denoted as

f3(θ
∗(ν)) =

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 h∑
j=0

∇θ log πθ∗(ν)(aj |sj)

T

is Lispchitz continuous w.r.t θ with Lipschitz constant Lf3 i.e

∥f3(θ∗(ν))− f3(θK(ν))∥ ≤ Lf3∥θ∗(ν)− θK(ν)∥. (93)

First, we begin with the difference term as :

f3(θ
∗(ν))− f3(θK(ν)) (94)

=

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 h∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj))

T

.

Subsequently, taking the norm, we get

∥f3(θ∗(ν))− f3(θK(ν))∥

=

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 h∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj))

T ∥∥∥∥∥
≤

Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥ ·

 h∑
j=0

(∥∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj)∥)


≤ LrL1Hℓ∥θ∗(ν)− θK(ν)∥

Hℓ∑
h=0

γh−1

≤ LrL1H
2
ℓ ∥θ∗(ν)− θK(ν)∥, (95)

where we use Cauchy-Schwartz and triangle inequality repeatedly to get the subsequent inequalities. In
the third inequality, we use the smoothness assumption of the score function of the policy parameters
of Assumption 3. Finally, using the Assumption 2 i.e reward Lipschitzness and upper-bounding the
Geometric series, we get the final expression. Thus f3(θ∗(ν)) is Lispchitz continuous w.r.t θ with
Lipschitz constant Lf3 = LrL1H

2
ℓ .

Similarly, we can derive the boundedness condition on the norm of the function ∥f3(·)∥,∀θ as

∥f3∥ =

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 h∑
j=0

∇θ log πθ∗(ν)(aj |sj)

T ∥∥∥∥∥ (96)

≤

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah)

∥∥∥∥∥ ·
∥∥∥∥∥
 h∑

j=0

∇θ log πθ∗(ν)(aj |sj)

∥∥∥∥∥
≤ H2

l BLr(= χ3)

where, first we use Cauchy-Schwartz and triangle inequality and subsequently using the Lipschitzness
property in reward function assumption (2) and bounded score function of the policy parameter from
assumption (3), we get the final expression.

H.3 Proof of Smoothness Condition on the Value function

Here, we prove the smoothness of the value function i.e. the gradient of the value function is Lispchitz
continuous w.r.t θ with Lipschitz constant L1. We begin with the definition of the gradient difference
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of the value function from the equation (15) as:

∇θVs(ν, θ
∗(ν))−∇θVs(νt, θ

K(ν)) = Eρ(τ ;θ∗(ν))V1(τ)− Eρ(τ ;θK(ν))V2(τ) (97)
= Eρ(τ ;θ∗(ν))V1(τ)− Eρ(τ ;θK(ν))V1(τ)

+ Eρ(τ ;θK(ν))[V1(τ)− V2(τ)]
= Σ1 +Σ2,

where, first we substitute

V1 =

Hℓ−1∑
h=0

γh−1rνt
(sh, ah)

Hℓ−1∑
j=0

∇θ log πθ∗(νt)(aj |sj)

 , (98)

V2 =

Hℓ−1∑
h=0

γh−1rνt
(sh, ah)

Hℓ−1∑
j=0

∇θ log πθK(νt)(aj |sj)

 . (99)

Subsequently, by adding and subtracting Eρ(τ ;θK(ν))V2(τ), we get the final expression, where Σ1 =
Eρ(τ ;θ∗(ν))V1(τ) − Eρ(τ ;θK(ν))V1(τ) and Σ2 = Eρ(τ ;θK(ν))[V1(τ) − V2(τ)]. Now, first, we derive
the Lipschitz constant for V1 as

∥V1(θ∗(ν)− V1(θK(ν))∥

≤
Hℓ−1∑
h=0

γh−1∥rνt(sh, ah)∥

Hℓ−1∑
j=0

∥∇θ log πθ∗(νt)(aj |sj)−∇θ log πθK(νt)(aj |sj)∥


≤ H2

l RL1∥θ∗(ν)− θK(ν)∥, (100)

where we first use Cauchy-Schwartz and triangle inequality to get the first inequality. Next, we upper-
bound the reward with R from Assumption 2, Lipschitzness of policy gradient from Assumption 3,
and finally upper-bounding the Geometric series, we get the final expression. The Lipschitz constant
L5 = H2

l RL1.

We can subsequently upper-bound Σ1 with the total variation distance as

Σ1 ≤ sup
V

[Eρ(τ ;θ∗(ν))V (τ)− Eρ(τ ;θK(ν))V (τ)] (101)

≤ L5dTV (ρ(τ ; θ
K(ν)), ρ(τ ; θ∗(ν)))

≤ L5
HL2

2
∥θ∗(ν)− θK(ν)∥

where first we divide by the Lipschitz constant of the function and subsequently upper-bound with
the Total Variation distance. Finally, we substitute the total variation distance expression from the
equation (70) to get the final expression. Now, the second term can be written as

Σ2 = Eρ(τ ;θK(ν))[V1(τ)− V2(τ)] ≤ V1(τ ′)− V2(τ ′), (102)

where we take the trajectory with the maximum difference and upper-bound the term. Subsequently,
∥Σ2∥ ≤ ∥V1(τ ′)− V2(τ ′)∥ = H2

l RLθ1∥θ∗(ν)− θK(ν)∥ from equation (100).

Finally, the norm of the gradient difference of the value function from equation (97) as

∥∇θVs(ν, θ
∗(ν))−∇θVs(νt, θ

K(ν))∥ ≤ L6∥θ∗(ν)− θK(ν)∥ (103)

where L6 = L5
HL2

2 + L5 and L5 = H2
l RLθ1
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H.4 Upper-bound on the Norm of the hessian for the Bilevel RL

Here, we prove an upper-bound on the norm of the hessian defined in (16) given as

∇2
θVs(νt, θ

K(νt)) = Eρ(τ ;θK(νt))

[
Hℓ∑
h=0

γh−1rνt
(sh, ah)

 h∑
j=0

∇2
θ log πθK(νt)(aj |sj)

] (104)

≤
Hℓ∑
h=0

γh−1rνt
(sh, ah)

 h∑
j=0

∇2
θ log πθK(νt)(aj |sj)

∑
τ

ρ(τ ; θK(νt))

=

Hℓ∑
h=0

γh−1rνt
(sh, ah)

 Hℓ∑
j=0

∇2
θ log πθK(νt)(aj |sj)

 ,

where, first we upper-bound the expression by considering the the trajectory which has the maximum
lower-value and

∑
τ ρ(τ ; θ

K(νt)) = 1. Next, we, upper-bound the norm as

∥∇2
θVs(νt, θ

K(νt))∥ ≤ ∥
Hℓ∑
h=0

γh−1rνt
(sh, ah)

 h∑
j=0

∇2
θ log πθK(νt)(aj |sj)

 ∥ (105)

≤
Hℓ∑
h=0

γh−1∥rνt
(sh, ah)∥

 h∑
j=0

∥∇2
θ log πθK(νt)(aj |sj)∥


≤ H2

l RL
1
π,

where, we first upper-bound with successive application of Cauchy-Schwartz and Triangle inequality
to get the second inequality. Finally, with the upper bound on ∥rνt

(sh, ah)∥ ≤ R from Assumption
(2) and smoothness condition on the policy gradients from Assumption 3 and upper-bounding the
geometric series, we get the final expression.

H.5 Upper-bound on the Norm of the 2nd Order Mixed-Jaccobian term for the Bilevel RL

Here, we prove an upper-bound on the norm of the mixed second-order Jacobian term defined in (17)
given as

∇2
ν,θVs(νt, θ

K(νt)) = EP (τ ;θK(νt))

[
Hℓ∑
h=0

γh−1∇νrνt(sh, ah)

( h∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)]

≤
Hℓ∑
h=0

γh−1∇νrνt
(sh, ah)

( h∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)
, (106)

where first we upper-bound the expression with the trajectory which has the maximum lower value.
Next, we, upper-bound the norm as

∥∇2
ν,θVs(νt, θ

K(νt))∥ ≤ ∥
Hℓ∑
h=0

γh−1∇νrνt
(sh, ah)

( h∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)
∥ (107)

≤
h∑

h=0

γh−1∥∇νrνt
(sh, ah)∥

( h∑
j=0

∥∇θ log πθK(νt)(aj |sj)∥
)

≤ H2
l LrB,

where we first upper-bound with the successive application of Cauchy-Schwartz and Triangle inequality
to get the second inequality. Finally, with the upper bound on ∥∇νrνt

(sh, ah)∥ ≤ Lr from smoothness
condition on the reward function from Assumption (2), bounded score function of policy parameter
from Assumption 3 and upper-bounding the geometric series, we get the final expression. We denote
Lν,θ = H2

l LrB for simplicity.
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H.6 Proof of Lemma 4

Proof. Let us start by first deriving the upper bounds for the terms ϕ1 and ϕ2 as defined in the equation
(54) as follows. For ϕ1(τ), we have

∥ϕ1(τ)∥ =

∥∥∥∥∥Uν(τ) ·
H−1∑
h=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))] +∇νUν(τ)

∥∥∥∥∥.
(108)

We define the term κ which explains the relative conditioning of the two matrix norms. We define the
mixed condition number as

κ =
∥∇2

v,θVs(ν, θ
∗(ν))∥

∥∇2
θVs(ν, θ

∗(ν))∥
≤ HlLrB

lπ(1− γ)
(109)

Next, to upper-bound the second term relating to the difference in ∥ϕ1 − ϕ2∥ in the equation, we
proceed first by upper-bounding the product difference

∥∆∥ = ∥∆1 −∆2∥, (110)

where we define

∆1 =∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν)), (111)

∆2 =∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν)). (112)

Also, for simplicity of notation, let us take

ψ1 =∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1, (113)

and ψ2 =∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1, (114)

which thus (110) boils down to upper-bounding

∆ = ∥ψ1∇θfh(θ
∗(ν))− ψ2∇θfh(θ

K(ν))∥ (115)
= ∥ψ1∇θfh(θ

∗(ν))− ψ1∇θfh(θ
K(ν)) + ψ1∇θfh(θ

K(ν))− ψ2∇θfh(θ
K(ν))∥

≤ ∥ψ1∥∥∇θfh(θ
∗(ν))−∇θfh(θ

K(ν))∥+ ∥ψ1 − ψ2∥∥∇θfh(θ
K(ν))∥

≤ κL1∥θ∗(ν)− θK(ν)∥+B∥ψ1 − ψ2∥,

where, first we expand add and subtract the term ψ1∇θfh(θ
K(ν)), and subsequently by applying

Cauchy-Schwartz and triangle inequality, we get to the third inequality. For the final inequality,
we apply equation and Lispchitzness assumptions on the score function of the policy parameter
Assumption (3) to get the final expression in equation (115). Next, we focus on upper bounding the
second term of the expression specifically ∥ψ1 − ψ2∥

∥ψ1 − ψ2∥ =∥∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1 −∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 (116)

+∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 −∇2
ν,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∥
=∥∇2

ν,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
∗(ν))−1 −∇2

v,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
K(ν))−1∥

+ ∥∇2
ν,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 −∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∥
=Ψ21 +Ψ22,

where we expand the definition of ∥ψ1 − ψ2∥ and subsequently apply triangle inequality and Cauchy-
Schwartz which then boils to upper-bounding the sum of two terms Ψ21 +Ψ22. For Ψ21, we have

Ψ21 ≤ ∥∇2
ν,θVs(ν, θ

∗(ν))∥∥∇2
θVs(ν, θ

∗(ν))−1 −∇2
v,θVs(θ

K(ν))−1∥ (117)

≤ Lν,θ∥∇2
θVs(ν, θ

∗(ν))−1 −∇2
θVs(ν, θ

K(ν))−1∥
= Lν,θ∥∇2

θVs(ν, θ
∗(ν))−1(∇2

θVs(ν, θ
∗(ν))−∇2

θVs(ν, θ
K(ν)))∇2

θVs(ν, θ
K(ν))−1∥

≤ Lν,θ∥∇2
θVs(ν, θ

∗(ν))∥−1∥(∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν)))∥∥∇2
θVs(ν, θ

K(ν))∥−1

≤ Lν,θL
′

l2π
∥θ∗(ν)− θK(ν)∥,
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where we use Cauchy-Schwartz inequality and triangle inequality iteratively to get the final inequality.
Next, we use the upper bounds and lower bounds of the hessian and mixed hessian matrices defined
in Assumptions to get the final expression. Now, Lν,θ = H2

l LrB from equation (107), L′ =

Lf1χ1
Hℓ

2 L2 + L2RH
2
ℓ and Lf1 = L2H

2
ℓR from equation (80). Finally, the second-term Ψ22 from

equation (116) can be upper-bounded as

Ψ22 ≤ ∥∇2
ν,θVs(ν, θ

∗(ν)−∇2
v,θVs(ν, θ

K(ν))∥∥∇2
θVs(ν, θ

K(ν))∥−1

≤ L′′

lπ
∥θ∗(ν)− θK(ν)∥, (118)

where, similarly we use triangle inequality with Cauchy-Schwartz to get the final upper-bound of
equation (118). Now, L′′ = Lf3χ2

Hℓ

2 L2 + L1LrH
2
ℓ and Lf3 = LrL1H

2
ℓ from equation (88).

Now, combining equations (117) and (118), we get the final upper-bound of the ∥ψ1−ψ2∥ in equation
(116) as

∥ψ1 − ψ2∥ ≤ (
Lν,θL

′

l2π
+
L′′

lπ
)∥θ∗(ν)− θK(ν)∥. (119)

Hence, finally replacing the upper-bound of Ψ2 from equation (119) in equation (115) to obtain the
upper-bound on the function difference term ∆ as

∆ ≤ κL1∥θ∗(ν)− θK(ν)∥+ (
Lν,θL

′

l2π
+
L′′

lπ
)∥θ∗(ν)− θK(ν)∥ (120)

= γ1∥θ∗(ν)− θK(ν)∥,

with γ1 := κL1 +
Lν,θL

′

l2π
+ L′′

lπ
Hence, with the above bounds, we proceed to upper-bound the term

II in equation (51) i.e ∥Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ as

∥Eτ∼ρ(τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ ≤ ∥ϕ1(τ ′)− ϕ1(τ ′)∥ (121)

= ∥U(τ) ·
H−1∑
h=0

(∆1 −∆2)∥

≤ ∥
H−1∑
h′=0

u(sh, ah)∥∥
H−1∑
h=0

(∆1 −∆2)∥

≤ H2ũ∥∆1 −∆2∥
≤ H2ũγ1∥θ∗(ν)− θK(ν)∥,

where first we select the trajectory τ ′ with the maximum sum and subsequently using the Cauchy-
Schwartz inequality we get the second equation. Based on the assumption of bounded utility u(s, a) ≤
ũ,∀(s, a), we get the third equation and finally using the upper bound of ∆1 −∆2 from equation
(120), we get the final expression for equation (121).

H.7 Proof of Lemma 2

Proof. Here, we derive an upper bound on the tracking term due to the use of surrogate gradients
∥θ∗(νt)− θK(νt)∥. To begin the proof, we start with the smoothness in the value function shown in
equation (103), as

Vs(νt, θ
k+1(νt)) ≤ Vs(νt, θk(νt)) + ⟨∇θVs(νt, θ

k+1(νt)), θ
k+1(νt)− θk(νt)⟩ (122)

+
L6

2
∥θk+1(νt)− θk(νt)∥2.

where L6 = L5
H2

ℓL2

2 + L5 and L5 = HlRLθ1 . Now, from the update of θ from Algorithm 2, we
know that

θk+1(νt) = θk(νt)− αℓ∇θVs(νt, θ
k(νt)). (123)
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Replacing the update in equation (122), we have

Vs(νt, θ
k+1(νt)) ≤Vs(νt, θk(νt)) + ⟨∇θVs(νt, θ

k+1(νt)),−αℓ∇θVs(νt, θ
k(νt))⟩

+
L6

2
∥ − αℓ∇θVs(νt, θ

k(νt))∥2

=Vs(νt, θ
k(νt))− αℓ

(
1− αℓL6

2

)
∥∇θVs(νt, θ

k(νt))∥2, (124)

where we expand the expression after replacing the update in equation (122). Next, from Assumption
4, we note that for the value function, it holds that

∥∇θVs(ν, θ
k(ν))∥2 ≥ µ

2
(Vs(ν, θ

k(ν))− Vs(ν, θ∗(ν))). (125)

Assumption 4 ensures that the objective satisfies the gradient dominance or the PL condition, which
can be satisfied in practice for various settings. For instance, Assumption 4 can be satisfied in our
setting for softmax policy parametrization Now, replacing the PL condition in equation (124), we have

Vs(νt, θ
k+1(νt))− Vs(νt, θk(νt)) ≤ −αℓ(1−

αℓL6

2
)
µ

2
(Vs(ν, θ

k(ν))− Vs(ν, θ∗(ν)))

= −α3(Vs(νt, θ
k(νt))− Vs(νt, θ∗(νt))), (126)

where, after replacing the PL condition in equation (124), we substitute α3 = αℓ(1 − αℓL6

2 )µ2 for
simplicity of calculations.

Vs(νt, θ
k+1(νt))− Vs(νt, θ∗(νt))) ≤ (1− α3)(Vs(νt, θ

k(νt))− Vs(νt, θ∗(νt)))
Vs(νt, θ

K(νt))− Vs(νt, θ∗(νt))) ≤ (1− α3)
K(Vs(νt, θ

0(νt))− Vs(νt, θ∗(νt))), (127)

where the first equation comes from algebraic manipulation and applying the equation recursively, we
get the second inequality, assuming 0 ≤ α3 ≤ 1. Now, we note that from the smoothness of value
function, we have the upper bound

Vs(νt, θ
0(νt))− Vs(νt, θ∗(νt)) ≤

L6

2
∥θ∗(νt)− θ0(νt)∥2, (128)

where L6 = L5
HL2

2 + L5, L5 = H2
l RL1 and we use the Lipschitz smoothness assumption and

expand along the point νt, θ∗, for which the gradient term vanishes. Also, since PL implies quadratic
growth, it holds that

Vs(νt, θ
K(νt))− Vs(νt, θ∗(νt)) ≥

µ

2
∥θK(νt)− θ∗(νt)∥2. (129)

Now, substituting the equations (128), (129) in (127) to obtain

∥θK(νt)− θ∗(ν)∥2 ≤ (1− α3)
K L6

µ
Z, (130)

where, Z := maxν ∥θ0 − θ∗(ν)∥2, α3 = αℓ(1 − αℓL6

2 )µ2 and L6 = L5
HℓL2

2 + L5 and L5 =

H2
l RL1.

I Discuss of Assumption 3 and Assumption 4

• Assumption 3 ensure certain properties of the policy parametrization such as Lipschitz policy,
bounded score function, Lipschitz score function, and Lipschitz Hessian of the log of the policy.
We remark that these assumptions are not restrictive and satisfied in practice for practical classes of
policies. For example, this assumption is satisfied for softmax policy parametrization.

πθ(a|s) =
exp θTϕ(s, a)∑
a′ exp θTϕ(s, a′)

, (131)
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where, first we write down the expression of the softmax policy gradient parametrization with
function approximation ϕ. Subsequently, taking log and taking the gradient w.r.t to the policy
parameterization using chain-rule , we get

∇θ log πθ(a|s) = ϕ(s, a)− 1∑
a′ exp(θTϕ(s, a′))

∑
a′

exp(θTϕ(s, a′))ϕ(s, a′) (132)

= ϕ(s, a)−
∑
a′

exp(θTϕ(s, a′))∑
a′′ exp(θTϕ(s, a′′))

ϕ(s, a′)

= ϕ(s, a)−
∑
a′

πθ(a
′|s)ϕ(s, a′)

= ϕ(s, a)− ϕ̂s

where we can denote ϕ̂s =
∑

a′ πθ(a
′|s)ϕ(s, a′). Now, taking the norm on the LHS of equation

(132), we get

∥∇θ log πθ(a|s)∥ ≤ ∥ϕ(s, a)∥+ ∥ϕ(s, a′)∥ (133)
= 2ζ1

where we apply triangle inequality to get the final bound, which imposes certain constraints on the
norm of the function approximation specifically ∥ϕ(s, a)∥ ≤ ζ1 which is a common assumption
in various scenarios (Sutton et al., 2009; Maei et al., 2009). Thus this shows how for soft-max
policy with function approximations satisfy Assumptions (3). where, we expand ∇θ log πθ(a|s) =

1
πθ(a|s)∇θπθ(a|s).

• Assumption 4 ensures that the objective function satisfies certain geometric properties such as PL
condition. We remark that the value function satisfies PL condition with softmax policy parametriza-
tion (see Lemma8 (Mei et al., 2020b)). Further, a property that we need for our analysis to hold is
that the Hessian of the objective function has all non-zero eigenvalues. This assumption holds for
softmax parametrizations. Now, in order to show that we first consider the softmax-parametrization
considered in equation (132), we first compute the hessian as

∇2
θ log πθ(a|s) = ∇θ[ϕ(s, a)−

∑
a′

πθ(a
′|s)ϕ(s, a′)] (134)

= −
∑
a′

∇θπθ(a
′|s)ϕ(s, a′)T

= −Eπ[∇θ log πθ(a
′|s)ϕ(s, a′)T ]

= Eπ[ϕ̂(s)ϕ(s, a
′)T − ϕ(s, a′)ϕ(s, a′)T ]

Now, finally, we substitute this to the equation of hessian of the value function in equation (134)

∇2
θVs(νt, θ

K(νt)) = Eρ(τ ;θ)

[
R(τ)

Hℓ−1∑
j=0

∇2
θ log πθK(νt)(aj |sj)

] (135)

= Eρ(τ ;θ)Eπ

[
R(τ)

Hℓ−1∑
j=0

[ϕ̂(s)ϕ(s, a′)T − ϕ(s, a′)ϕ(s, a′)T ]

]
From the above, it is evident to ensure non-singular eigenvalues, we need to ensure non-singularity
for the function approximation matrix ϕϕT which has been a standard assumption in several settings
(Sutton et al., 2009; Maei et al., 2009).

J Additional Experimental Details

Implementation details of our Algorithm For the experiments, we use the same configuration of
hyperparameters for all the baselines (Lee et al., 2021; Park et al., 2022) including learning rate,
optimizer, etc. PEBBLE with SURF improves the performance of PEBBLE significantly as also
shown in (Park et al., 2022). However, it depends on the quality and amount of augmentations used
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Hyperparameter Value Hyperparameter Value
Initial temperature 0.1 Hidden units per each layer 1024 (DMControl), 256 (Meta-world)
Learning rate 0.001 Batch Size 1024 (DMControl), 512 (Meta-world)

0.0005 (walker) Optimizer Adam
Critic target update freq 2 Critic EMA τ 0.005
(β1, β2) (.9, .999) Discount γ .99

Table 2: Hyperparameters of the SAC algorithm. We use similar hyperparameter configurations as in
(Lee et al., 2021; Park et al., 2022)

and the performance of PEBBLE+SURF varies rapidly. We used a limited amount of augmentations
and pseudo-labels for a fair comparison. However, increasing the quality and amount significantly
can improve the performance of PEBBLE+SURF. Hence, naturally leveraging augmentations in
our unified framework with PARL will be an interesting direction of future research. We observed
the effect of augmentation much more significant in DM-Control Suite than in MetaWorld. For the
implementation, we have leveraged standard repositories like Torchopt (or BOML in Tensorflow)
which are widely used to evaluate the meta gradient. We have also leveraged first-order approximate
algorithms for performing and replicating our results, which improves the computation traceability. A
rigorous and thorough evaluation of multiple other environments remains a scope for future study.

K Additional Experimental Descriptions

In this section, we describe the environmental setup and configurations leveraged in the experiment
with more specific details. To demonstrate the performance of our algorithm we primarily leverage 4
environments (two Locomotion and two manipulation) from DM-control Suite ((Tassa et al., 2018)
and Meta World (Yu et al., 2021) in the human preference-based RL setting as also in (Christiano
et al., 2017; Lee et al., 2021; Park et al., 2022). First, we describe the environments for the same

• Walker (Tassa et al., 2018) This is a bipedal walker introduced in (Lillicrap et al., 2015) and later
leveraged with some modifications in (Tassa et al., 2018) where the objective of the agent is to move
forward as quickly as possible without falling down or pitching the torso too far forward or backward
and the reward is a combination of the above.

• Cheetah (Tassa et al., 2018) Cheetah or Half-Cheetah as introduced by (Wawrzyński, 2009) is a 6
degrees of freedom planar robot composed of nine links, eight joints, and two paws where angles of
the fourth and the fifth joint are fixed while others are controllable. The objective is to make the
cheetah run as fast as possible and the reward is directly proportional to its forward velocity but only
up to a speed threshold. Later, this was leveraged in the (Tassa et al., 2018) with minor modifications.

• Door Open and Button Press (Yu et al., 2021): These are taken from the (Yu et al., 2021) suite of
50 diverse simulated manipulation tasks all of which are contained in a shared, table-top environment
with a simulated Sawyer arm. For the Door open environment, the objective of the agent is to control
the robotic arm to open a door with a revolving joint for randomized door positions. Similarly, for
Button press, the objective of the agent is to control the arm to press a button for randomized button
positions. button is random

Design Simulated Human Feedback. Although it would be ideal to evaluate the real-world ef-
fectiveness of our algorithm based on actual human feedback, for simulation and comparisons on
benchmark it is hard to collect a large amount of human feedback. Hence, to emulate human feedback,
we leverage simulated human teachers as used in prior research (Lee et al., 2021; Park et al., 2022),
whose preferences are based on ground-truth reward functions which help us to evaluate the agent
efficiently. Next, we discuss simulating human preferences using the ground-truth reward model as in
(Lee et al., 2021).

Let’s say r∗(s, a) represents the ground-truth reward function for state-action s, a in the environments
as discussed above based on the objectives, which are known to us. Now, the perfectly rational and
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Figure 5: Figure demonstrates the visual representation of the environments considered in the experi-
mental setup

deterministic human behavior would result in trajectory preferences (τ0, τ1) as

y =

{
(1, 0) If

∑H
t=1 r

∗(s0t , a
0
t ) >

∑H
t=1 r

∗(s1t , a
1
t )

(0, 1) otherwise,
(136)

where, superscript 0, 1 represents the state-action in the trajectory τ0, τ1 respectively. However, human
preferences are not always deterministic or rational as discussed in (Lee et al., 2021). Hence, the
stochastic preference model can be written as

P [τ0 > τ1;β, γ] =
exp

(
β
∑H

t=1 γ
H−tr(s0t , a

0
t )
)

exp
(
β
∑H

t=1 γ
H−tr(s0t , a

0
t )
)
+ exp

(
β
∑H

t=1 γ
H−tr(s1t , a

1
t )
) (137)

where the preference model is the well-known Bradley Terry model (Bradley & Terry, 1952) γ ∈ [0, 1)
is the discount factor and β is the rationality constant. For example, β → ∞ indicates a perfectly
rational human, and β = 0 indicates a noisy/sub-optimal human producing random choices. To
design further human-like teachers, various human behaviors like myopic behavior, mistakes, etc. are
integrated while generating preferences as in Lee et al. (2021); Park et al. (2022).

Now, as the preference-generating mechanism becomes clear, it is evident that the oracle reward in
the plots indicates the ground truth r∗ generating the preferences. The upper-level objective deals
with maximizing the likelihood of the human preferences received on the trajectories generated
by the inner optimal policy under the current reward estimate. In all the environments, A-PARL
achieves near-oracle performance in a much faster time. This highlights the importance of our bi-level
framework, which considers the dependence (missing from existing literature) of distribution on the
lower-level policy parameter during training the upper-level objective.
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