
A APPENDIX

A.1 DATASET STATISTICS

We detail the dataset statistics for the three benchmark long-tailed recognition datasets in Table 4.

Table 4: Statistics for training data in CIFAR10-LT, CIFAR100-LT and ImageNet-LT.

Dataset Attribute Many Medium Few All

CIFAR10-LT (Imba 200) Classes 7 3 0 10
Samples 11052 151 0 11203

CIFAR10-LT (Imba 100) Classes 8 2 0 10
Samples 12273 133 0 12406

CIFAR10-LT (Imba 10) Classes 10 0 0 10
Samples 20431 0 0 20431

CIFAR100-LT (Imba 200) Classes 31 30 39 100
Samples 7753 1445 304 9502

CIFAR100-LT (Imba 100) Classes 35 35 30 100
Samples 8824 1718 305 10847

CIFAR100-LT (Imba 10) Classes 70 30 0 100
Samples 17743 2130 0 19573

ImageNet-LT Classes 391 473 136 1,000
Samples 89,293 24,910 1,643 115,846

A.2 ESTIMATION OF INTRA-CLASS VARIANCE

Estimating the covariance matrix from sample data is a non-trivial problem. In this work, we choose
the empirical estimator of sample covariance as described in Eq1, which is the maximum likelihood
estimator. However, alternate estimators such as the Ledoit-Wolf Ledoit & Wolf (2004) and Oracle
Approximating Shrinkage Chen et al. (2010) estimators are also commonly used to estimate covari-
ance. We did not find any difference in our results due to the choice of estimator; the intra-class
variance in Eq2 is always negatively correlated to the class frequency.

In Figure7, we plot the intra-class variance for long-tailed CIFAR100-LT with imbalance ratios
� 2 [200, 100, 10]. Since this is a more fine-grained dataset with semantic overlap between classes
of the sort orchids and poppies or bicycle and motorcycle, the representations of various classes
can overlap and affect the estimation of intra-class variance. Therefore, we also consider the 20
superclasses of CIFAR100 to construct CIFAR20-LT, which is coarse-grained and lacks semantic
overlap. In Figure8 we plot the the intra-class variance for long-tailed CIFAR20-LT for the various
imbalance ratios. Combined, Figure7 and Figure8 indicate that the negative correlation of intra-
class variance to class frequency is not dataset specific and is a more general phenomenon. The high
degree of variation in the intra-class variance estimate is attributed to (i) the inverse scaling of the
MSE in variance estimation to the class frequency, and (ii) the semantic overlap between various
classes due to which intra-class variance is not purely class-conditional.

A.3 LEARNING DISTANCE METRIC AND NCM JOINTLY

Beyond learning just class centroids in Learned NCM, we investigated learning the Mahalanobis
distance metric in Eq 3 jointly with the centroids. More precisely, we learn the matrix W which
parameterizes the Mahalanobis distance. We experimented with three strategies: (i) Global distance
metric shared by all classes, and (ii) Local distance metrics, corresponding to a class-conditional
matrix Wy for each class y. Our results for long-tailed CIFAR10-LT and CIFAR100-LT (imba 200
for both) are summarized in Table 5.
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Figure 7: Intra-class variance of representations vs class frequency for long-tailed CIFAR100-LT
dataset. Left, middle and right correspond to imbalance ratios of 200, 100 and 10 respectively.
Variance is negatively correlated to class frequency.

Figure 8: Intra-class variance of representations vs class frequency for long-tailed CIFAR20-LT
dataset, consisting of 20 superclasses from the CIFAR100 dataset. Left, middle and right corre-
spond to imbalance ratios of 200, 100 and 10 respectively. Variance is negatively correlated to class
frequency.

The results indicate that the learned distance metric only improves Many accuracy and in all other
cases underperforms Learned NCM. This suggests that Learned NCM is sensitive to choice of dis-
tance metric, and keeping the Euclidean distance metric leads to the best results for Learned NCM.

Table 5: Comparision of jointly learned distance metrics and NCM on long-tailed CIFAR10-LT and
CIFAR100-LT with imbalance ratio 200.

Dataset CIFAR10-LT CIFAR100-LT

Method All Many Med All Many Med Few

NCM 79.7 82.2 73.8 43.4 64.6 50.4 21.6
Learned NCM 80.8 82.2 77.6 45.7 66.2 52.4 24.6

Global Metric + Learned NCM 76.6 83.1 61.3 43.4 69.7 48.8 18.9
Local Metric + Learned NCM 80.2 82.1 75.9 43.8 69.9 51.0 18.0

A.4 EFFECT OF BATCH NORMALIZATION

Batch normalization uses running estimates of the mean and standard deviations statistics to normal-
ize intermediate activations for deep models. For two-stage models used in long-tailed recognition,
the batch statistics are used only in stage 1 and after that are kept fixed. However, during train-
ing the representations are evolving and so are the batch statistics. Therefore, we experiment with
posthoc running estimates of mean and standard deviations in the second stage. Since the neural
network parameters ✓ are fixed, the estimates are more precise and can moreover alleviate the biased
representations issue discussed in Section 3.

The results are detailed in Table 6. We observe gain in Few accuracy due to BN in both Learned
NCM and Multi NCM, and gain in All accuracy as well. This aligns with our intuition that proper
batch normalization can mitigate representation bias in LTR and points to future research directions.
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Table 6: Results on the long-tailed CIFAR10-LT and CIFAR100-LT dataset. BN indicates we use
posthoc running estimates of mean and standard deviation for the batchnorm layer.

Dataset CIFAR10-LT CIFAR100-LT

Method All Many Medium All Many Medium Few

Learned NCM 80.8 82.2 77.6 45.7 66.2 52.4 24.6
Learned NCM (BN) 79.7 78.2 83.2 45.6 63.4 52.6 26.5

Multi-NCM 80.8 82.2 77.6 45.7 67.3 51.8 24.2
Multi-NCM (BN) 81.4 81.1 82.2 45.8 65.3 52.1 25.8

A.5 DETAILED RESULTS ON CIFAR10-LT

Table 7: Extended results on the long-tailed CIFAR10-LT dataset.

Imba 200 Imba 100 Imba 10

Method All Many Medium All Many Medium All

Softmax 74 83 52.9 80.3 81.7 74.6 90.3
NCM 79.7 82.2 73.8 79.8 79.0 82.8 91.2
Learned NCM 80.8 82.2 77.6 81.6 81.0 83.9 91.4
+LA 81.3 81.8 79.9 81.4 79.6 87.4 91.7

Multi-NCM 80.8 82.2 77.6 81.6 81.2 83.1 91.3
+LA 81.1 82.4 77.8 81.4 80.1 87.0 91.6
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