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Figure 4: Overview of MCL applied in the supervised scenario. All the input images are augmented via the
same pipeline with different seeds. The input images are downsampled and assembled at different levels. The
ground truths are assembled in the same order as the montage images. The multi-level cross-entropy loss is
applied to optimize the model.
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A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

Multi-Level Contrastive Loss. As described in Sec. 3.1, the images are downsampled according to
the level index and assembled in a montage manner. The numbers of montage image in level i is B

4i ,
where i starts from 0 to S − 1 and B is the batch size. Therefore, the montage assembly increases
the computational cost marginally and the upper bounder is twice the baseline batch size. Since the
highest resolution images typically yield the best semantic representation and the empirical result
in Sec. 4.3, the first level contrastive loss (on the highest resolution images) is important to the
representation learning. As a consequence, we assign different loss weight to each level, 1

2(i+1) for
the i-th level. The detection head is a shared 4 CONV head without fc layer across levels, which are
not loaded in the RetinaNet detector. We attach a global average pooling layer on the detection head
to aggregate the features because averaging implicitly encourages a high response region. Both the
projection head and prediction head are 2-layer MLPs whose hidden layer dimension is 2048. The
final linear layer has a 256-dimension output and a final BN layer is attached to the projection head
to accelerate the convergence.

Multi-Level Supervised Learning. We extend MCL to the supervised learning scenario to demon-
strate the importance of the alignment between the pretext task and downstream tasks. As illustrated
in Fig. 4, we generate S augmented views for the model, which are downsampled to 1

2s original
size. We set s as the level index, which starts from 0 to S − 1. Different from self-supervised
learning, we simply adopt the same optimizer as the normal setting, SGD optimizer for ResNet and
AdamW optimizer for Swin-Transformer. The other hyperparameters are the same as the baseline
counterparts.

B ADDITIONAL RESULTS

Long Finetuning Schedule. The experiments in Sec. 4 mainly follow the 1x and 2x schedule,
which are not long enough for detectors to be fully converged. We extend the training schedule to
6x schedule, i.e. 540k iterations. Tab. 11 shows that MCL pre-trained with 400 epochs achieves 41.2
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Table 11: Results of the long training schedule for RetinaNet finetuned on COCO with 90k, 180k, and 540k.
MCL not only accelerates the convergence but also improves the final performance.

Methods Epoch 1x schedule 2x schedule 6x schedule
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Supervised 90 37.4 56.6 39.7 38.8 58.7 41.2 39.2 58.6 42.1
MoCo v2 800 37.9(+0.5) 57.1(+0.5) 40.4(+0.7) 39.8(+1.0) 59.3(+0.6) 42.8(+1.6) 40.2(+1.0) 59.9(+1.3) 43.1(+1.0)

MCL 400 39.9(+2.5) 59.8(+3.2) 42.7(+3.0) 41.2(+2.4) 61.1(+2.4) 44.0(+2.8) 41.4(+2.2) 61.1(+2.5) 44.5(+2.4)

Table 12: Comparison with SOTA methods on COCO by using Mask R-CNN with R50-C4. All the detectors
are evaluated on COCO val 2017 set. “-” means that the results are missing in the source paper. MCL achieves
SOTA results while significantly reducing the training epochs.

Methods Epoch 1× Schedule 2× Schedule
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init - 26.4 44.0 27.8 29.3 46.9 30.8 35.6 54.6 38.2 31.4 51.5 33.5
Supervised 90 38.2 58.2 41.2 33.3 54.7 35.2 40.0 59.9 43.1 34.7 56.5 36.9

MoCo (He et al., 2020) 200 38.5 58.3 41.6 33.6 54.8 35.6 40.7 60.5 44.1 35.4 57.3 37.6
SimCLR (Chen et al., 2020a) 200 - - - - - - 39.6 59.1 42.9 34.6 55.9 37.1
MoCo v2 (Chen et al., 2020b) 800 39.3 58.9 42.5 34.3 55.7 36.5 41.2 60.9 44.6 35.8 57.7 38.2
InfoMin (Tian et al., 2020) 200 39.0 58.5 42.0 34.1 55.2 36.3 41.3 61.2 45.0 36.0 57.9 38.3
BYOL (Grill et al., 2020) 300 - - - - - - 40.3 60.5 43.9 35.1 56.8 37.3
SwAV (Caron et al., 2020) 400 - - - - - - 39.6 60.1 42.9 34.7 56.6 36.6
SimSiam (Chen & He, 2021) 200 39.2 59.3 42.1 34.4 56.0 36.7 - - - - - -
PixPro (Xie et al., 2021) 400 40.5 59.8 44.0 - - - - - - - - -
SoCo (Wei et al., 2021) 100 40.4 60.4 43.7 34.9 56.8 37.0 41.1 61.0 44.4 35.6 57.5 38.0
MCL 100 40.0 60.3 43.2 34.7 56.7 36.7 41.7 61.7 45.4 36.1 58.1 38.5

APbb as 2x schedule is applied. MCL with 6x schedule still surpasses the supervised counterpart and
MoCo v2 pre-trained with 800 epochs. These results prove that pre-training not only accelerates the
convergence but also improves the final performance.

Mask R-CNN with C4 on COCO. As described in Sec. 3.1, MCL is compatible with the non-
FPN framework. We construct a feature pyramid by directly interpolating the single-level feature
in bilinear mode to the specific sizes. The results in Tab. 12 show that MCL achieves SOTA results
while significantly reducing the training epochs. Our method achieves a superior result with a 1x
schedule and benefits from a long finetune schedule, i.e. 2x COCO schedule. We believe that the
reason that MCL yields an inferior result on Mask R-CNN C4, compared with Mask R-CNN FPN,
is that Mask R-CNN C4 has only a single-level feature for detection, which yields a lower baseline
on the small object detection.

Linear Evaluation on ImageNet-1K. MCL learns global semantic representation besides scale
consistency and regional localization. We present the ImageNet-1K linear evaluation results for
reference. Following the common setting (Caron et al., 2020; Grill et al., 2020; He et al., 2020),
data augmentation contains random crop with resize of 224 × 224 pixels and random flip. Only
the backbone network parameters are loaded and frozen. The classification head is trained for 100
epochs, using an SGD optimizer with a momentum of 0.9 and a batch size of 256. The learning rate
starts with 10 and the weight decay is 0. In the test phase, the data augmentation is a center crop from
a resized 256 × 256 image. Tab. 13 shows that MCL surpasses SoCo on ImageNet linear evaluation,
learning a semantic global representation. Compared with the self-supervised learning methods for
image classification, MCL outperforms them on dense prediction tasks, while underperforms some
of them on the linear evaluation. This phenomenon shows that the improvement on upstream task
does not guarantee a better transfer performance on downstream tasks, due to the task misalignment.

B.1 ANALYSIS

As discussed in Sec. 1, the scale of objects varies in a small range for ImageNet classification model,
whereas the scale deviation of MS-COCO dataset (Lin et al., 2014) is large across object instances
for detectors. As shown in Fig. 5, the standard deviation of the scale of instances in MS-COCO is
188.4, while that of ImageNet is 56.7. Our MCL assembles multi-scale images to augment the scale
range and distribution.

Besidse, MCL encodes the location of each sub-image explicitly to learn representations for the
dense prediction tasks. Fig. 6 shows that MCL performs better than baseline at a high IoU threshold
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Methods 100 ep 400 ep

Supervised 76.5 -

SoCo 59.7 62.6
SimCLR 66.5 69.8
MoCo v2 67.4 71.0
SwAV 66.5 70.7
SimSiam 68.1 70.8
MCL 69.9 71.5

Table 13: Comparison
with state-of-the-art self-
supervised learning methods
on ImageNet-1K linear eval-
uation with the ResNet-50
backbone.
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Figure 5: Instance Size Distribu-
tion. For the COCO dataset, all
the images are resized to (1333,
800) shape. For the ImageNet
dataset, all the images are resized
to 224 × 224 to calculate the
statistics.
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Figure 6: The APbb gain of MCL
over the supervised counterpart.
MCL performs better than the base-
line at a higher IoU threshold, in-
dicating that the MCL features have
better localization capability.

for both RetinaNet and Mask-RCNN detectors, which demonstrates that pre-training is beyond a
strong regularization technique. MCL successfully transfers the strong prior knowledge for precise
localization from the pretext task to the downstream tasks.

Is Montage assembly the same as multi-crop in SwAV? Montage assembly is beyond multi-
crop. CNNs are not scale-invariant (Guo et al., 2022) or not shift-invariant (Zhang, 2019). CNN
delivers absolute position information for an image by zero-padding (Islam et al., 2020). Therefore,
the feature of a montage images is not the same as assembling the features of each component
image, f([x1, x2;x3, x4]) ̸= [f(x1), f(x2); f(x3), f(x4)]. Our pretext task aims to improve scale
consistency and shift invariance, which are crucial for dense prediction tasks. Check Tab.10(c)
for the study of boundary smoothness.

Training cost. The batch size for each level is B, B/4, B/16. That results in a training cost is about
1.3125 times that of standard training for the online network. This cost is considered cost-effective
for the improvement achieved. SoCo constructs 3 views, two 224x224 and one 112x112, resulting
in a training cost of 1.25 times that of standard training for online network.
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