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ABSTRACT

Designing the architecture of deep neural networks (DNNs) requires human exper-
tise and is a cumbersome task. One approach to automatize this task has been con-
sidering DNN architecture parameters such as the number of layers, the number
of neurons per layer, or the activation function of each layer as hyper-parameters,
and using an external method for optimizing it. Here we propose a novel neural
network model, called Farfalle Neural Network, in which important architecture
features such as the number of neurons in each layer and the wiring among the
neurons are automatically learned during the training process. We show that the
proposed model can replace a stack of dense layers, which is used as a part of
many DNN architectures. It can achieve higher accuracy using significantly fewer
parameters.

1 INTRODUCTION

During the last few years, deep neural networks have been playing an important and increasingly ef-
fective role in solving problems in different areas, most impressively computer vision (Simonyan &
Zisserman (2014); He et al. (2016)). However, designing effective neural networks usually requires
numerous experiments, and often is very time-consuming since many possible configurations are
assessed before the right one is found. Additionally, performance of different architectures might
vary based on the task at hand.

There are several studies (Zagoruyko & Komodakis (2016); Szegedy et al. (2016)) providing insight
on how to tune models with state of the art performance for different tasks. Moreover, many studies
(Zoph & Le (2016); Cai et al. (2018); Rohekar et al. (2018); Zhong et al. (2018)) have been accom-
plished recently to avoid architecture engineering. These methods are based on network architecture
search over the space of possible architectures (Elsken et al. (2019)). However, these approaches
control the structure externally, hence adding a computational overhead when training the model.
On the other hand, some studies (Li et al. (2016); Han et al. (2015)) show that it is possible to re-
duce the number of network parameters and still achieve comparable performance. These smaller
networks have the benefit of requiring less storage space and less computational power during infer-
ence. These findings also show that there is still much room for improvement in designing efficient
neural network architectures.

In this paper, we propose a new neural network model, called Farfalle Neural Network (FNN) in
which the trainable parameters are not the weights on the connections between neurons. Instead,
the network learns embedding vectors for neurons and uses these vectors to determine the weights
of neural connections. More importantly, in the proposed method, instead of hand-crafting the
network architecture, it is learned during the training process. The connections between neurons are
indirectly specified according to neuron embeddings. Therefore, the proposed network configures its
structure itself during the training process given solely the number of nodes and an upper bound on
the network depth. We also establish the effectiveness of our models through various experiments.
In particular, we show that our model is able to replace fully connected networks achieving higher
performance with a 90% reduction in the number of parameters.
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Figure 1: The intuition behind floating neurons. The connections between floating neurons are
defined based on their relative similarities. Thus, neurons needing an information and providers of
it tend to approach each other.

2 RELATED WORK

Recent proposed methods for automatic design of neural networks are commonly focused on treat-
ing the architecture decisions as hyper-parameters. These methods use either a supervised or an
unsupervised approach to optimize these hyper-parameters. There are several approaches (Zoph &
Le (2016); Baker et al. (2016); Zhong et al. (2018)) that utilize reinforcement learning for effec-
tively searching the design space. These approaches usually have a lot of computational overhead
because of their need to compute the model’s accuracy during the search in the space of architectures
Elsken et al. (2019). To circumvent this issue, Smithson et al. (2016) uses another neural network
to estimate the trained model’s accuracy. However, training the estimator network is itself a compu-
tationally expensive task. Rohekar et al. (2018) propose a lightweight unsupervised approach using
Bayesian network structure learning. Using this approach, they replace fully connected layers at the
end of known networks such as VGGNet with smaller models while still showing a comparable per-
formance in accuracy. Note that while the reported results show the effectiveness of this method, it
still optimizes the structure externally. Hence, it requires an additional environment setup and have
an external overhead in the learning process, though the latter is reported to be reasonably small.

One of the key ideas in our proposed method is to assign embedding vectors to neurons of the net-
work and use the attention mechanism to relate them. Similar ideas appear in the Transformer net-
work (Vaswani et al. (2017)) and CapsNet (Sabour et al. (2017)). In Transformer networks (Vaswani
et al. (2017)) input words and their positional information are embedded in a low-dimensional space.
However, they utilized a specific case of attention called self-attention to relate different parts of the
sequence. In addition, the embeddings used in that architecture are not trained for the purpose of
structure learning. CapsNet (Sabour et al. (2017)) considers an output vector for each capsule and
routes the outputs from one capsule to the next layer’s capsules according to its ability to predict the
output vector of those capsules. However, CapsNets still use weight matrices between neurons and
also are not able to self configure their structure.

3 FARFALLE NEURAL NETWORKS

In traditional neural networks, the number of neurons in each layer and the arrangement of the neu-
rons is fixed. This rigid configuration prevents straightforward optimization of the network structure
during the training process. Therefore, finding a network with proper structure requires testing a lot
of configurations.

In contrast, FNNs utilize a new type of neurons which can float and find the most suitable neurons
to obtain information from them. The connections between these floating neurons are defined based
on their relative similarities. Thus, during the training process, relevant neurons move toward each
other to strengthen their connection. Figure 1 shows how these neurons float to obtain more relevant
information.

3.1 FLOATING NEURONS

A floating neuron gathers information from relevant neurons at its input, transforms it with a train-
able transformation, and emits the result at its output. In order to avoid confusion, we might refer to
a neuron’s input as its head. Similarly, we sometimes refer to its output as the neuron’s tail. Inputs
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Figure 2: A schematic representation of a floating neuron and its connections. Each neuron has an
input embedding, an output embedding, and a transformation function.

and outputs of these neurons are embedded in a d-dimensional space. These embedding vectors reg-
ulate the weights connecting relevant neurons and are updated during the training process. Figure
2 shows a schematic representation of a floating neuron and its connections. Specifically, a floating
neuron v consists of three parts:

e Input embedding: A trainable d-dimensional vector I,, which indicates the coordinates
of the neuron’s head. The similarity between this vector and output embedding of other
neurons determines the connection weights between this neuron and other neurons using
the attention mechanism.

e Transformation function: A trainable nonlinear function F;, that transforms the gathered
information. The transformation used in this study is of the form F,(x) = ReLU(a,,-z+b,)
where a,, and b, are neuron-specific trainable parameters.

e Output embedding: A trainable d-dimensional vector O,, which indicates the coordinates
of the neuron’s tail.

In addition to normal floating neurons, there are two custom types of floating neurons: Input neurons,
which receive the input of the whole network and output neurons, which provide the processed data
to the outside. Consequently, input neurons do not have input embedding and output neurons do not
have output embedding.

3.2 CONSTRUCTION OF MULTI-LAYER FLOATING NEURAL NETWORKS

Before introducing FNNs, we discuss how to employ floating neurons in a layered structure. In
order to form such a network, floating neurons are grouped in layers. The neurons at each layer
obtain their values from neurons at the previous layer. The connections between neurons of two
consecutive layers are defined based on the attention mechanism.

Formally, suppose v is a neuron in the layer ¢ + 1 and wy, ug, ..., ups are neurons of the previous
layer, i.e. layer ¢. The weights connecting v to related neurons is defined by
T T T
w1, w2, ..,y =N (L Oy, Iy Oy oo I Ouyy) (1

where I, is the input embedding of neuron v, O, is the output embedding of neuron u;, and N
is a normalization function. For normalization, one can choose softmax function to force each
neuron’s input to be a convex combination of the outputs of the neurons in the previous layer. We
found [2 normalization to work best in our experiments and thus the following function is used for

normalization
X T2 x

T1,X2,...,Lpn) = . L 2

-/\/ZQ( 1,42, ) n) ZZCL‘ZQ’ZZJ;?, ’EZ-'L'? ( )

Utilizing these weights, given 41,2, ...,y as the values of neurons uy, us, ..., uss, the output

value of neuron v will be Fv(zm w;y;) where F), is the transformation function of neuron v. To

efficiently connect neurons vy, va, ..., vy of thlayer ¢ + 1 to neurons wy, us, ..., ups of the layer

i,let I = [I,,|Iy,] - - - |1, ] be the concatenation of input embedding vectors of the layer ¢ + 1 and

O =[Oy, |Oy,| - . .|Oy,,] be the concatenation of output embedding vectors of the layer i. Then,
the weights connecting neurons of these two layers are determined by

W =N (IT0) 3)

where N is a function normalizing each row of its input matrix according to the normalization
function . Finally, the output of layer ¢ + 1 will be

Z =F(WY) 4)
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Figure 3: The architecture of Farfalle Neural Networks.

where Y is the vector containing output values of layer ¢z and fz =F,,.

Using this model, the number of parameters required to connect a layer of size M to a layer of
size N is of the order O(d(M + N)). In contrast, in dense models the number of parameters for
connecting two such layers would be of the order O(M N). Hence, by using this model one of
the limitations in designing neural networks, that is the huge number of parameters in the weight
matrices, is resolved.

3.3 CONSTRUCTION OF FARFALLE NEURAL NETWORKS

An FNN is a recurrent network of floating neurons. Hence neurons in this architecture are used in
iterations. In each iteration, floating neurons receive the output of the previous iteration along with
the input. This recurrent structure allows neurons to process high-level information along with low-
level features. Also, the floating nature of these neurons allows the network to balance the number of
neurons employed in different levels of abstraction. This flexibility allows the architecture to evolve
during the training. Figure 3 represents the architecture of FNNs.

Before describing the data flow of FNNs, let’s define an auxiliary function. For two groups of
neurons V' and U, equation (3) defines the weights connecting neurons in V' to neurons in U. In this
equation O and [ are the concatenation of output embeddings of neurons in U and the concatenation
of input embeddings of neurons in V' respectively. Given Y as the values of neurons in U, equation
(4) describes the output values of neurons in V. Combining these equations results in

Step(V,U,Y) = F(N (IT0)Y) (5)

where A is a function normalizing each row of its input matrix and F transforms values of each
floating neuron using its own transformation function. The function Step can be seen as the combi-
nation of attention and neuronal transformation.

Constructing an FNN for the input size of R and output size of S needs R input floating neu-
rons for feeding data to the network, N floating neurons for processing data in k iterations, and R
output floating neurons for the final deduction from hidden neurons. Here, N and k are the hyper-
parameters of the network. Let’s call the input neurons Z = 41,14s,...,%R, the hidden neurons
VY = v1,v2,...,VnN, and the output neurons O = 01, 09, . .., 0g. The following procedure describes
the flow of the network:

1. Each input neuron assigns an embedding vector to its input variable after applying its trans-

formation function, i.e. given input x = (1, 2, ...,Tg), input neurons will provide val-
ues Yo = F; (x1), Fi,(x2), ..., F;, (xg) atlocations O;,, O, ..., O;p.

2. In the first step of the iterative part, hidden neurons process the data provided by input
neurons. Thus, the resulting values of this step is Y7 = Step(V,Z, Yy).

3. Initeration 1 < j < k, each hidden neuron process Y along with the outputs of all hidden
neurons in the previous iteration (Y;_1) and produce Y. Indeed, given Y; and Y;_; hidden
floating neurons will provide Y; = Step(V, [Z|V], [Yo, Y;-1]).

4. Finally, utilizing output neurons the final output will be Step(O, V, Y%).

The following theorem shows how an FNN with its recurrent structure can model a multi-layer
floating neural network.
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Theorem 1. Every multi-layer floating neural network with [ layers, total of N floating neurons,
and embedding dimension d can be modeled by an FNN containing N + 1 floating neurons with
embedding dimension of | - d which iterates for [ iterations.

Proof. Suppose a multi-layer floating neural network N1 with layer sizes of nq, no, ..., n; is given.
Let iy1,42,...,ir be the input floating neurons, v],v3, ... 7v%j be the floating neurons in layer j,
and 01, 09, . . ., 0g be the output floating neurons of the network.

To construct an FNN N2 with the same functionality, define a network with input neurons

. . . . 12
it ,1h, ..., i, output neurons o}, 0, ..., 0%, and hidden neurons vj, vi!,v4', ..., vﬁfl such that v}/

correspond to hidden neuron v] of N1. Let all floating neurons in N2 have the same transfor-

mation function as their corresponding neuron in N1 and v, be a neuron with Fy = 0-zand
Ly = Oy = (e,...,€) where € is a negligible values. Before defining neural embeddings of N2,
for 0 < j < j define
(j-1)-d (1=3)-d
—N— —

E'J‘(ml,l‘g,...,ibd> = (0,...,0,.’1}1,.1727...,l‘d,o,...,O).
This implies that
aly i=j

Ei(x)TE;(y) = . 6
@rEm={5" 1 ©
Now, define all remaining embedding vectors of N2 by

OZ/T :El (Ozr) Iog :El (Ios)

Ov;j :E(] mode /)+1 (va) Iv;j :Ej (IUZ) :

These definitions along Eq. (6) result that in the first iteration, the only neurons which have a
non-zero connection with input neurons are vi*,v4',... v/ . In addition, the weights of these
connections are the same as the connections in the first layer of N1. Similarly, by mathemat-
ical induction over j we can state that floating neurons v{, vy, ... ,vﬁ{j can only connect to

19—1 15—1 15—1

vi ,v3 ,...,v] 7, the connection weights are the same as those in layer j of N1, and iter-

. .. . 17 1z . .. . .
ation j is the first time v}, vy, . .. ,v;{j can get nonzero values. This implies that the connections of

hidden floating neurons of /N2 in [ iterations, form a chain similar to the architecture of N'1. Finally,

I, is just connected to v, v4, ... v/l with the same weights as in N'1. This completes the proof.

rn

It is worth mentioning that neuron v, is defined to eliminate the division by zero occurred in Eq. (2)
when a neuron does not have a non-zero dot product to any input neuron. O

There is a repeated observation that replacing weights of a neural network with their low-rank ap-
proximations gives a comparable (or even improved) performance (Sainath et al. (2013); Denil et al.
(2013); Denton et al. (2014)). Such approximation allows us to replace traditional neural networks
with multi-layer floating neural networks introduced in this paper. Additionally, Theorem 1 implies
that the farfalle neural networks are more general than multi-layer floating neural networks. Thus, it
is reasonable to replace traditional multi-layer neural networks with the recurrent structure of FNNs.

Utilizing this model, more flexibility in specifying the layer sizes is provided accordingly. Further-
more, since we do not need to have weight parameters explicitly, we can consider the whole network
as a fully connected structure in which each (hidden) neuron can be potentially connected to all other
neurons and even itself.

3.4 SCALABILITY & PRODUCTION

During training, the weight matrix 1 needs to be computed to apply the normalization function.
Since the number of elements in this matrix is quadratic in the number of neurons, it is possible
that this matrix becomes quite big. However, after the training, it is possible to workaround the
normalization step by updating the matrix /. Specifically, using the same notation as the last section,
it is enough to replace I, with W This simplification significantly reduces the required
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Figure 4: Test accuracy during the training of a dense network and FNNs on CIFAR10

memory space during inference since the dimension of the embedding space is usually much smaller
than the number of neurons.

Furthermore, although the need to compute the weight matrix during the training imposes a practical
limit on the maximum number of neurons in FNN, the upper bound is still very large. Additionally, it
is possible to stack FNNs similar to normal layers to employ more floating neurons. Such structure
does not allow the use of information from all deeper layers but is still much more flexible than
commonly used dense layers.

4 RESULTS & DISCUSSION

In the following subsections, we present comparison results of our model with other DNN archi-
tectures using two widely-used image classification datasets: MNIST (LeCun et al. (1998a)), and
CIFAR (Krizhevsky et al. (2009)). First, we compare FNNs with a dense model and show that our
model can outperform them. Then we discuss some characteristics of FNNs, such as their ability
to learn locality. In the final section, we discuss how our model can be integrated with existing
convolutional neural networks.

4.1 COMPARISON WITH DENSE MODELS

Although dense models are not among the state of the art models for neither datasets, the goal of
this section is to establish the effectiveness of our model in comparison with dense models. We do
not claim that our model, in any way, can directly outperform highly specialized models such as
convolutional neural networks. Instead, we demonstrate how our model may be used in conjunction
with CNNs in subsequent sections.

We used a simple five-layer neural network as our baseline. The network consisted of four dense
hidden layers with 2000, 1500, 1000, and 500 neurons, in order. Rectified Linear Unit (ReLU)
(Glorot et al. (2011)) is chosen as the activation function for all of the hidden layers. A dropout
(Srivastava et al. (2014)) rate of 0.1 was applied to the input.

FNN was consisting of 5000 hidden neurons, so both models had the same number of neurons. The
number of iterations was set to 4. We also included a smaller FNN consisting of only 1024 neurons
for comparison. Similar to the baseline model, we used ReLU activation function and 0.1 dropout
rate of the input for both FNN models. By using Adam algorithm Kingma & Ba (2015), we trained
all three models for 100 epochs on MNIST, and for 200 epochs on CIFAR10 datasets.

Summarized results are shown in Table 1. While all models performed similarly on MNIST dataset,
there was a large margin between FNNs and the baseline model on CIFAR10. More importantly, the
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Model MNIST CIFARI10
Top-1 Accuracy | # of Parameters | Top-1 Accuracy | # of Parameters
Baseline 99.24% 6578010 48.5% 11154010
FNN-1024 99.29% 731188 61.13% 1321492
FNN-5000 99.33% 2774852 61.75% 3365156

Table 1: The performance of FFNs in comparison with baseline method.

Figure 5: The [2-norm of each input neuron’s Figure 6: The input embeddings are projected

embedding is calculated and plotted at its corre- to 2D space using UMAP. Only neurons in the

sponding cell. inner 20 x 20 box are included. Neurons corre-
sponding to adjacent cells are connected with a
line.

FNN-1024 model significantly outperformed the dense network with 90% reduction in the number
of parameters. Additionally, Figure 4 shows the test accuracy of different models on both datasets
during the training process.

4.2 ANALYSIS OF LEARNED EMBEDDINGS

We analyzed the embeddings of an FNN with 1024 neurons and 2 iterations trained on MNIST. The
training setting was the same as the previous section except that we passed the input vector only
in the first iteration instead of both iterations. Passing the input in both iterations can allow the
network to use neurons more efficiently, which improves classification results. But for the sake of
interpretability of the model parameters, we omitted passing the input in the second iteration.

In Figure 5, each cell is colored according to the [2-norm of its corresponding neuron’s output
embeddings. It can be seen that marginal neurons have much lower [2-norms. This means that
the embeddings are much smaller for these neurons, and so they have little effect on the model’s
output. Note that this is expected since the marginal pixels in MNIST images seldom provide useful
information.

Figure 6 depicts the projection of the learned embeddings to 2D space. The projection is performed
using Uniform Manifold Approximation and Projection (UMAP, Mclnnes et al. (2018)). Neurons
corresponding to adjacent cells are connected with a line. Marginal neurons are excluded in order to
obtain a better projection of the embeddings. It is apparent in the figure that the learned embeddings
respect the locality of pixels, so a pair of pixels close to each other have similar embeddings. Hence,
it can be seen that FNN is able to assign meaningful embeddings to the neurons.
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Top-1 Accuracy
Model CIFARTO | CIFARIO00

VGG16 + Dense | 92.98% 73.19%

VGG16 + FNN | 93.51% 73.33%

Table 2: Top-1 accuracies when using normal dense layers or a FNN in VGG16.

4.3 INTEGRATION WITH CNNS

Convolutional neural networks (LeCun et al. (1998b)) are widely used in image classification tasks
and have been able to produce state of the art results. Commonly in such networks, convolutional
layers are employed for feature extraction. The extracted features are then fed into several fully con-
nected layers for classification. We propose that FNNs can be used to replace these fully connected
layers.

To test this, we compared FNN with a baseline model on CIFAR10 and CIFAR100 datasets. We
adapted VGG16 Simonyan & Zisserman (2014) for CIFAR and used it as our baseline. To that end,
we replaced all layers after the last max-pooling layer with a hidden dense layer consisting of 512
neurons. We applied batch normalization and a dropout rate of 0.5 after the hidden layer. We also
applied the same dropout rate before the hidden layer. We used ReLU as the activation function. A
similar model has been used as a baseline in other studies (Rohekar et al. (2018); Li et al. (2016)).

Instead of the dense layer, the alternative architecture consisted of a FNN with 1024 neurons and
four iterations after the last max-pooling layer. We used Stochastic Gradient Descent (SGD) with
0.9 momentum Rumelhart et al. (1988) and employed 0.0005 weight decay regularization.

The maximum test accuracy of both models are presented in Table 2. It is evident that our model
outperforms the dense layers on both datasets.

5 FUTURE WORK

We established that FNNs are able to replace and outperform fully connected layers. We conjecture
that a similar approach might be used to create convolutional FNNs. However, this task is not
trivial, and we leave it as a future work. Though we have used /2-normalization for driving the
connection weights, it is possible to use other normalizations. It is especially interesting to search
for normalizations that do not require the calculation of the whole matrix.

6 CONCLUSION

In this paper, we introduced a method to learn the network structure internally during training. This
was done mainly based on the new approach of assigning parameters to the neurons instead of the
connection between them. Using this approach, we introduced a novel neural network structure
called Farfalle Neural Network. We established through experiments that this new structure can
outperform dense layers in various scenarios while even sometimes using significantly (90%) lower
number of parameters. We also discussed how this approach could significantly reduce the memory
requirements during the inference process.
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