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ABSTRACT

This paper proposes a novel method to detect anomalies in large datasets under
a fully unsupervised setting. The key idea behind our algorithm is to learn the
representation underlying normal data. To this end, we leverage the latest clustering
technique suitable for handling high dimensional data. This hypothesis provides
a reliable starting point for normal data selection. We train an autoencoder from
the normal data subset, and iterate between hypothesizing normal candidate subset
based on clustering and representation learning. The reconstruction error from the
learned autoencoder serves as a scoring function to assess the normality of the data.
Experimental results on several public benchmark datasets show that the proposed
method outperforms state-of-the-art unsupervised techniques and is comparable to
semi-supervised techniques in most cases.

1 INTRODUCTION

Anomaly detection refers to the identification of patterns that do not conform to expected normal
behavior (Chandola et al. (2009)). It is a critical task in diverse application domains such as fraud
detection (Phua et al. (2010)), intrusion detection (Lazarevic et al. (2003)) and surveillance video
profiling (Xiang & Gong (2008); Saligrama et al. (2010)). While the concept of an anomaly is intu-
itively easy for humans to understand, it is hard to define mathematically. Fundamentally, an anomaly
is something with insufficient similarity to the rest of the data. This similarity can be computed on
the basis of some feature difference. However, what makes an ideal feature representation for the
data depends on what constitutes an anomaly. This forces anomaly detection into a chicken-or-egg
problem in which there are a pair of problems, neither of which can be solved before the other.

To date, a number of works have attempted this problem by training an autoencoder to create low-
dimensional representations for anomaly detection (Chalapathy et al. (2018); Zhai et al. (2016); Zong
et al. (2018)). The anomalies are rejected and the autoencoder retrained (Mishne & Cohen (2017);
Wang et al. (2017)). While this gives reasonable results, it is fundamentally dependent on how well
the first iteration solves the problem.

We propose a solution in which anomalies can be defined using approximately correct features. This
is achieved through an observation. Given a feature, anomalies approximately correspond to instances
of high variance distributions. Such instances can be identified using a distribution-clustering (Lin
et al. (2018)) framework. This hypothesis provides a reliable starting point for normal data selection.
We train an autoencoder from the normal data subset, and iterate between hypothesizing normal
candidate subset and representation learning. The reconstruction error serves as a scoring function
to assess the normality of the data. The proposed framework does not rely on any training labels.
Instead, it iteratively distills out anomalous data and improves the learned representation of normal
data by incorporating clustering techniques into the process.

We extensively assess the broad applicability of the proposed model on network intrusion, image and
video data. Empirical results show that the proposed method outperforms the existing state-of-art
approaches in terms of both accuracy and robustness to the percentage of anomalous data.

2 RELATED WORKS

Existing anomaly detection methods can be grouped into three categories.
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Reconstruction-based method These methods assume that anomalies are incompressible and
thus cannot be effectively reconstructed from low-dimensional projections. Classical methods like
Principle Component Analysis(PCA) (I.T.Jolliffe (1986)) and Robust-PCA (Candès et al. (2011)) are
motivated by this assumption. In recent works, different forms of deep autoencoder are proposed to
analyze the reconstruction error. Xia et al. (Xia et al. (2015)) show that by introducing a regularizing
term to a convolutional autoencoder, the anomalies tend to produce a bigger reconstruction error.
Variational Autoencoder (VAE) (An & Cho (2015)) and Generative Adversarial Networks (GANs)
(Schlegl et al. (2019)) have also been introduced to perform reconstruction-based anomaly detection.
These methods demonstrate promising results when the anomaly ratio is fairly low. Although the
reconstruction of anomalous samples, based on a reconstruction scheme optimized for normal data,
tends to generate a higher error, a significant amount of anomalous samples could mislead the
autoencoders to learn the correlations in the anomalous data instead.

Density estimation and clustering Motivated by the assumption that anomalies occur less fre-
quently, these algorithms treat anomalies as low-density regions in some feature space. Clustering
analysis, such as Robust-KDE (JooSeuk Kim & Scott (2008)), is often used for density estimation
and anomaly detection. Unfortunately, due to the curse of dimensionality, these methods are less
applicable to analysing high-dimensional data, where density estimation is a challenge in itself.

A two-step approach is normally adopted to counter this issue, where dimensionality reduction is
conducted first, followed by clustering analysis as a separate step. One drawback of this approach
is that dimensionality reduction is trained without the guidance from the subsequent clustering
analysis; hence the key information for clustering analysis could be lost during dimensionality
reduction. Recent works jointly learn dimensionality reduction and clustering components based
on deep autoencoder (Zhai et al. (2016); Zong et al. (2018)). Notably, DAGMM (Zong et al.
(2018)) utilizes an autoencoder to generate a low-dimensional representation and its reconstruction
error, which is further fed into an estimation network based on Gaussian Mixture Model(GMM).
However, as its autoencoder was trained on the whole dataset, it is vulnerable to a high percentage of
anomalous samples and may learn wrong correlations. In contrast, our proposed method addresses
this issue by first finding a normal candidate subset to train an autoencoder and then iterating between
representation learning and refinement of the normal candidate.

One-class classification One-class SVM (Erfani et al.; Chalapathy et al. (2018)) is also widely
used. Under this framework, a discriminative boundary surrounding the normal instances is learned by
algorithms. However, when dimensionality goes higher, such techniques often suffer from suboptimal
performance due to the curse of dimensionality. OCNN (Chalapathy et al. (2018)) attempted to
circumvent this problem by using an autoencoder for dimensionality reduction. However, OCNN
requires training data with relatively low anomaly ratio, in order to obtain an optimized NN model to
differentiate anomalies from single-class normal data.

3 PROBLEM FORMULATION

Let X = {xi}, i = 1, . . . , N , x ∈ Rk be the set of input data points that contains a certain percentage
of anomaly. The goal of anomaly detection is to learn a scoring function h(x), h : Rk 7→ R, to
classify samples xi based on some threshold λ:

yi =

{
0 if h(xi) < λ

1 if h(xi) ≥ λ
(1)

where yi are the labels. yi = 0 indicates xi is normal and yi = 1 indicates anomalous.

An overview of the proposed end-to-end anomaly detection system is presented in Fig. 1. The major
component of this system is an autoencoder that learns a low-dimensional representation of the input
data that are often of high dimensions, to enable simplified modeling of the underlying distribution of
the data. Under a fully unsupervised setting, the only information we are given is the set of input data
X, without any label information. As an initialization, we leverage the latest clustering technique for
high-dimensional data (Lin et al. (2018)) to provide soft supervisory signals.

Since our input data is unlabelled, we derive a “training” set Strain, where Strain ⊂ X based on the
following:

Strain = C(X, p0) (2)
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Figure 1: Flow-chart of the proposed end-to-end anomaly detection system.

where C represents a selection process based on clustering output, and p0 represents the percentage of
anomaly, it controls which are the clusters to be accepted into the “training” set, . In our experiments,
we compute the threshold as the (100− p0)th percentile of cluster variance, and accept clusters with
variance smaller than this threshold. The assumption here is that clusters with large variance are
likely to contain anomalous members.

3.1 SCORING FUNCTION LEARNING

The autoencoder network provides two sources of features: (1) a low-dimensional representation
of the original input data; and (2) the reconstruction error by comparing the input with its decoded
counter-part. Using the training set Strain = {s1, s2, · · · , sM}, the autoencoder learns the encoding
function fen:

zc = fen(s; Θen), ∀s ∈ Strain, zc ∈ Rkbn (3)

where Θen are the learned parameters for the encoder. zc are known as the bottle-neck features of
dimension kbn.

Similarly, for the decoding part, we have:

x′ = fde(zc; Θde), (4)

where Θde are the learned parameters for decoding. x′ are the reconstructed features.

Upon training, we have a learned autoencoder with optimized parameters {Θen,Θde}. We run
the entire input set X forward through the encoder network and produce a set of new features
Z = {z1, z2, · · · , zN}, by concatenating the bottle-neck feature with the reconstruction error:

z = [zc; zr] , z ∈ Rkbn+1, (5)

where the reconstruction error zr is measured in terms of cosine similarity between x and its decoded
counter-part:

zr = d(x,x′) = cos−1(
xTx′

‖ x ‖‖ x′ ‖
) (6)

Note that Z is now of a much lower dimension than the input data X. Hence, traditional clustering
techniques such as Gaussian Mixture Model would suffice for subsequent training set selection. To
ensure the initial training set can capture most of the normal samples, we adopt a more conservative
cluster variance threshold.

With the new encoding scheme, the entire input set X is now represented as Z. We can “re-label” the
training set X by using Z as a proxy. Similar to the initial training set selection, we select members
that belong to low-variance clusters in Z. The process of Training set selection → Autoencoder
training→ New feature computation is performed iteratively. The training set is updated as follows:

Zt+1
train = C(Zt, p), (7)

St+1
train = {xj : ∀zj ∈ Zt+1

train}, (8)
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where the superscript t here refers to the tth iteration.

Finally, the training process terminates when there is no change in the set of selected normal samples
between two successive iterations. After the last iteration, t = tF , we obtain the autoencoder
parameters {ΘtF

en,Θ
tF
de}, and use it to construct the scoring function:

h(x) = d(x,x′) = d(x, fde(fen(x; ΘtF
en); ΘtF

de )), (9)

where x′ is the result of going through the encoding-decoding process according to the trained
autoencoder.

3.2 ALGORITHM

The proposed framework is summarized in Algorithm 1. We obtain an initial split of the data into
normal and abnormal subsets through clustering (i.e. GMM for KDDCUP data and Distribution
Clustering (Lin et al. (2018)) for image and video data). Selected outputs for CIFAR-10 and MNIST
datasets using Distribution Clustering are presented in Fig. 4 in the appendix. We observe that as
cluster variance increases, the samples’ appearance become more anomalous.

Algorithm 1 Deep end-to-end Unsupervised Anomaly Detection

Input: X = {xi}, i = 1, 2..., N : set of normal and anomalous input examples.
r: number of epochs required for re-evaluation of the membership of the entire input set X.
p0 and p: thresholds for initial and subsequent training set selection, respectively

Output: Reconstruction-based anomaly score function h(x) and trained autoencoder {ΘtF
en,Θ

tF
de},

1: procedure GET DECISION SCORE(X, r, p, fen, fde)
2: Strain ← C(X, p0) . Run clustering, select instances from low-variance clusters
3: L = {k : ∀xk ∈ Strain} . L is the set of indices of selected normal training samples
4: Lold := ∅
5: while setdiff(Lold,L) 6= ∅ do
6: for each epoch do
7: if ((CurrentEpoch+ 1) mod r) == 0 then . Re-evaluate normality every r epochs
8: Zc ← fen(X,Θen) . Bottle-neck features
9: X′ ← fde(Zc,Θde)

10: Zr ← d(X,X′) . Reconstruction error
11: Z← [Zc;Zr]
12: Strain ← C(Z, p) . Get new training set according to threshold p
13: Lold := L
14: L← Strain . Update set of indices for training samples
15: else
16: Train fen, fde on Strain to obtain {Θen,Θde}
17: end for
18: end while
19: ΘtF

en = Θen, ΘtF
de = Θde

20: Output h(x) according to finalized autoencoder {ΘtF
en,Θ

tF
de} base on Eq. (9)

21: end procedure

Convergence Assuming a p% anomaly ratio, our algorithm starts with a tight cut-off, accepting
clusters with variances below (100− p0)th percentile as an initial training set, where p0 > p. This
ensures the initial training set is as pure as possible. Our assumption is that given partial normal data,
the autoencoder would be able to learn a representation and generalize well on the “unseen” normal
data that was discarded, and progressively recover them as iterations go on. Empirically, we plotted
the AUROC, AUPRC and F-score for 20 iterations for the KDDCUP experiment, presented in Fig. 5
of the appendix. It demonstrates the convergence as iteration progresses. The same behavior was
observed throughout our experiments on other datasets.
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4 EXPERIMENTS

4.1 BASELINE METHODS

On the topic of anomaly detection, there exist different terminologies concerning the nature of
supervision: (a) Algorithm uses label information of the normal class for training (label information
could be used in part, or all of the stages of an algorithm); (b) No training labels are given, algorithm
treats the entire dataset with both normal and anomalous classes as input. For the purpose of this
paper, we term type (a) semi-supervised and type (b) unsupervised. We evaluate our proposed
algorithm against the following state-of-the-art methods:

OC-NN (semi-supervised) One-class neural networks (OC-NN) (Chalapathy et al. (2018)) contains
2 major components: a deep autoencoder and a feed-forward convolutional network. The deep
encoder is trained on normal data for representation learning. The trained encoder, with its parameters
frozen, is subsequently used as the input layers of a feed-forward network with 1 extra hidden layer.
Variants of OC-NN employ different activation functions (i.e. linear, sigmoid, relu) in the hidden
layer. We report the best score attained among all possible activation functions in our experiments.

OC-SVM (unsupervised) One-class support vector machine (OC-SVM) (Erfani et al.) is a kernel-
based method for anomaly detection. The algorithm searches for best-performing hyper-parameters
γ (kernel coefficient) and ν (upper bound of the fraction of training errors and lower bound of the
fraction of support vectors) to obtain the optimal AUROC (Buitinck et al. (2013)).

DAGMM (unsupervised) Deep autoencoding Gaussian mixture model (DAGMM) (Zong et al.
(2018)), comprised of one compression net and one estimation net, is a method based on representation
learning. The compression network provides low-dimensional representations of input samples and
the reconstruction error features. They are fed into the estimation network, which functions as a
Gaussian Mixture Model, to predict the mixture membership for each sample. We modify the original
DAGMM algorithm by adding a small value to the diagonal elements of the covariance matrix. The
model achieves better results than the reported score from the original work.

Deep anomaly detection using geometric transformations (semi-supervised) This method
(Golan & El-Yaniv (2018)) employs a deep neural model to identify out-of-distribution samples of
image data, given only the examples from the normal class. A series of geometric transformations
are applied to the normal class to create a multi-class dataset. A deep neural net, trained using this
dataset, is then employed to discriminate the transformations applied. Subsequently, given an unseen
instance, the model applies each transformation on it and assigns membership scores. The final
normality score is determined based on the combined log-likelihood of softmax response vectors.

4.2 DATASETS

We employ five benchmark datasets, namely, KDDCUP, MNIST, CIFAR-10, CatVsDog and UCF-
Crime, to evaluate our proposed method, together with other methods described above.

• KDDCUP: The KDDCUP network intrusion dataset (Lichman et al. (2013)) contains samples of
41 dimensions. Similar to (Zong et al. (2018)), categorical features are prepared by applying one-hot
encoding. 20% of the ”normal” samples form the minority group, while the rest 80% are treated as
”attackers”. As ”normal” samples are the minorities, they are treated as anomalies

• MNIST: The MNIST dataset (LeCun & Cortes (2010)) consists of 60,000 gray-scale 28 × 28
images of handwritten digits from 0 to 9. We formulate an anomaly detection task as per described
in (Chalapathy et al. (2018)) and (Zhou & Paffenroth (2017)), where 4,859 images of digit 4 are
randomly sampled as normal instances and 265 images are evenly sampled from all other categories
as anomalies.

• CatVsDog: The CatVsDog dataset consists of dogs and cats images of varying sizes, which are
extracted from the ASIRRA dataset (Elson et al. (2007)) following the settings specified in (Golan &
El-Yaniv (2018)). 12,500 images of dogs and 2,500 images of cats are sampled to form an anomaly
detection task. The cat images are treated as anomalies.
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• UCF-Crime: The UCF-Crime dataset (Sultani et al. (2018)) contains 1,900 long and untrimmed
videos captured from CCTV cameras. It covers 13 real-world anomalies, including incidents like
fighting, burglary, abuse and etc. In both of the training and testing sets, videos are of different
length and anomalies happens at various temporal locations. Some of the videos may have multiple
anomalies. In the experiment, we randomly select reasonably long videos with at least 1000 frames
and anomaly ratio less than 0.35 across 4 categories.

Table 1: Summary statistics of datasets.

Dataset Normal Class Input Dimension # Instances Anomaly Ratio (%)

KDDcup attack 1×120 494,021 20
MNIST digit 4 28×28 5,105 3
CIFAR-10 airplane (category 0) 32×32 5,500 8
CatVsDog dog 128×128 15,000 17
UCF-Crime non-crime scenes varying dep. on video < 35

4.3 EVALUATIONS

We adopt Area Under the curve of the Receiver Operating Characteristic (AUROC) as the main
evaluation metric to measure the discrimination power of different models. AUROC is a standard
method to assess the effectiveness of a classifier (Fawcett (2006)). It can be interpreted as the
probability that an anomalous instance is assigned to a higher anomaly score than a normal instance
(Davis & Goadrich (2006)). In this section, we compare the performance of our method against other
baseline methods.

KDDCUP: Network Intrusion Data In this experiment, we divide the KDDCUP dataset following
the setting in (Zong et al. (2018)). 50% of the data is reserved for testing by random sampling. From
the remaining 50% of the data reserved for training, we take all samples from the normal class and
mix them with different percentages of samples from the anomaly class to form the training set.
Parameters for this experiment (see Algorithm 1) are set to: p0 = 35%, p = 30%, r = 10.

Table 2 reports the AUROC of OC-SVM, DAGMM and our model on the KDDCUP dataset after 200
epochs, with anomaly ratio in training set being 5%, 10% and 20%, respectively. It can be observed
that the increase in ratio of anomalous data undermines the detection performance of OC-SVM and
DAGMM more severely, while our method remains robust to such changes.

Figure 2 shows the Receiver Operating Characteristic (ROC) curves of different models when the
anomaly ratio of the training data is 20%. In our unsupervised setting where no prior knowledge of
normal class is known, our method is clearly more robust to contaminated training data.

Table 2: AUROC of different models with
different anomaly ratio based on KDDCUP
dataset (in %). Our proposed method is much
more immune to increase in anomaly ratio.

Anomaly
Ratio (%) OC-SVM DAGMM Ours

5 96.7 89.1 97.8
10 86.9 96.5 98.4
20 61.6 79.5 93.5 Figure 2: ROC comparison of our proposed model,

DAGMM, and OC-SVM. Results are obtained
based on the KDDCUP dataset, with 20% anomaly
ratio.

Image Data In table 3, we compare the AUROC scores obtained from OC-NN, OC-SVM,
DAGMM, Geometric Transformation and our model, based on multiple image datasets. It should
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be noted that Geometric Transformation approach trains on data from the normal class only (hence
classified as unsupervised). Our method, on the other hand, does not require label information.

Results in Table 3 demonstrate an outstanding performance of our method over other unsupervised
approaches. In addition, on CIFAR-10, the performance of our proposed algorithm is comparable to
that of Geometric Transformation, a semi-supervised method. In the last column of Table 3, we report
results obtained using distribution clustering alone. The combination of distribution clustering and
autoencoder significantly improves the discrimination against anomalies. Details of the parameters
used in the experiments are reported in the appendix.
We make several key observations based on the attained results in Table 3. Unlike all other methods

Table 3: AUROC in %. Highest score among all methods and highest score among all unsupervised
methods are highlighted. On complex datasets such as CIFAR-10 and CatVsDog, our proposed
method has higher performance gain among all unsupervised methods.

Dataset
OC-NN

(semi-supervised)
OC-SVM

(unsupervised)
DAGMM

(unsupervised)
Geom. Transform.
(semi-supervised)

Ours
(unsupervised)

Distrib.
Clust. only

MNIST 70.0 90.2 50.3 98.2 70.5± 2.1 63.3
CIFAR-10 63.8 69.7 49.0 73.3 73.6± 0.6 48.7
CatVsDog 50.8 56.2 43.4 88.3 74.0± 2.5 56.1

that tend to perform better on simpler datasets (e.g. MNIST), the advantage of our method becomes
more evident on datasets with higher complexity. Notably, our method outperforms other unsupervised
approaches on CIFAR-10 and CatVsDog. The shortfall of our method on MNIST dataset could be
due to the adoption of NetVLad feature extractor (4096-d feature vectors), which may not be an ideal
choice of feature representation since the images are pre-aligned and hence of low dimensionality.

We also observe that while our method is able to produce results comparable to semi-supervised
approaches, the gap is wider on CatVsDog dataset as compared to CIFAR-10. We attribute this to the
high noise level in the CatVsDog dataset. For example, some images consist of both dog and cats.
Moreover, training on normal data (with augementation through geometric transformation) gives
Geometric Transform a natural advantage. According to (Elson et al. (2007)), ASIRRA dataset, from
which the CatVsDog is extracted, is deemed extremely challenging for computers. Sample images of
the dataset are presented in the appendix.

Video Data We apply the proposed approach on UCF-Crime dataset (Sultani et al. (2018)), with
features extracted using C3D (Tran et al. (2015)) descriptor. In default C3D settings, every 16 frames
are aggregated to generate 1 feature vector. As our method is unsupervised, it needs a sufficient
amount of feature vectors for training. We select videos with at least 65 vectors (1040 frames).

In (Sultani et al. (2018)), although the AUROC score of each video category is not reported, the
AUROC averaged across the entire testing set of UCF-Crime dataset is 75.4%. It is achieved by
adopting a semi-supervised method of multiple instance learning (MIL). The AUROC scores on 4
randomly selected video categories, using our method and DAGMM, are reported in Table 6. The
parameters used in training, as well as individual video-level scores are detailed in the appendix.

A good correspondence between the ground truth and our anomaly scores can be observed in Figure 3,
where frames with anomalous events under the orange lines are assigned to higher anomaly scores. It
can be observed that our method significantly out-performs DAGMM. Moreover, our method is able
to produce AUROC higher than 75.4% for some action categories. Despite under a fully unsupervised
setting, our method is as effective in detecting anomalies from video data as its semi-supervised
competitor, demonstrating its strength in handling complex and high-dimensional data.
Run Time Excluding feature extraction and clustering process, on a single NVIDIA Tesla P100
GPU, our method takes 4 minutes 20 seconds on average to complete the CIFAR-10 experiment
described above (consisting of 5,500 instances). This timing is averaged over 5 runs.

4.4 ABLATION STUDY

Initialization To examine the effect of adopting distribution clustering as the initialization method
for high-dimensional data, a variety of other mainstream clustering methods, including K-means,
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(a) Burglary018 anomaly
score with our method

(b) Fighting033 anomaly
score with our method

(c) Burglary018 anomaly
score with DAGMM

(d) Fighting033 anomaly
score with DAGMM

Figure 3: Anomaly scores (normalized) plotted against ground truth (flagged by orange lines).
Compared to DAGMM, our method shows much better correspondence to the ground truth.

HDBSCAN (McInnes et al. (2017)) and Gaussian Mixture Model (GMM) are used to replace the
distribution clustering component in the initial normal subset selection. We compare results on the
CIFAR-10 task.

For K-means and GMM, prior information on the number of clusters/components is set to 20, which
is consistent with the setting of the GMM employed in the proposed model. For HDBSCAN, the
minimum size of a cluster is set to 5, that follows the setting as distribution clustering. Table 5
reports the AUROC scores obtained from CIFAR-10 anomaly detection task with different clustering
techniques. The results demonstrate that using distribution clustering initialisation provides better
supervisory signals and leads to favourable performance.

Table 4: AUROC in % of detecting crime scene
as anomalies in surveillance videos.

Crime scene # Video selected Ours DAGMM

Arrest 2 70.6 52.2
Arson 3 67.8 60.1

Burglary 4 79.2 67.4
Fighting 3 77.1 57.0

Table 5: Comparison on initialisation method
on CIFAR-10.

Clustering method AUROC

K-means 60.3

HDBSCAN 61.2

GMM 50.0

Distribution Clustering 73.6

To further understand the effectiveness of distribution clustering, we tabulated in the AUROC achieved
using distribution clustering alone, for the experiments on image data (refer to right-most column of
Table 3). Surprisingly, this result is even better than those of DAGMM and OC-NN on the challenging
CatVsDog dataset.

5 DISCUSSION AND CONCLUSION

This paper presents an end-to-end method for anomaly detection under a fully unsupervised setting.
The key insight of our algorithm is to model normal data. We leverage distribution clustering
technique to make an educated guess on the normal data subset. By incorporating clustering
to provide supervisory signals, we iterate between hypothesizing normal candidate subset and
representation learning. This framework iteratively distills out anomalous data and improves the
learned representation of normal data. Extensive experiments on benchmark datasets demonstrate our
proposed method outperforms existing unsupervised approaches and is comparable to semi-supervised
solutions in most cases.

Limitations and future work: Using only an autoencoder, our current method may be insufficient to
handle highly complex patterns and hence falls short on difficult dataset such as CatVsDog. For future
work, we seek to explore more sophisticated generative frameworks for representation learning.
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A INITIALIZATION

Selected outputs for CIFAR-10 and MNIST datasets using Distribution Clustering are shown in Fig. 4.
We observe that as cluster variance increases, the samples’ appearance become more anomalous.

(a) Clustering result of CIFAR-10 (“air-
planes” class forms the normal group) :
cluster 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, with increasing cluster variance.

(b) Clustering result of MNIST (digit
’4’ forms the normal group): cluster 5,
10, 15, 20, 25, 30, 35, 40, 45, 50 with
increasing cluster variance.

Figure 4: Results from Distribution Clustering.

B CONVENGENCE

To investigate the convergence behavior, we plotted the AUROC, AUPRC and F-score for 20 iterations
for the KDDCUP experiment in Fig. 5 in the appendix, where the ground truth anomaly ratio is 20%.
It demonstrates the convergence as iteration progresses. The same behavior was observed throughout
our experiments.
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Figure 5: F1, AUROC, AUPRC scores for 20 iterations. Results obtained from experiments on
KDDCUP (Lichman et al. (2013)) dataset with 20% anomaly ratio.

11



Under review as a conference paper at ICLR 2020

C RESULT BREAKDOWN OF UCF CRIME

Video with less than 65 segments or anomaly ratio higher than 0.35 are not taken into consideration.

Results obtained after running 5 rounds of experiments. (take average and standard deviation)

Table 6: Breakdown of Area Under the curve of the Receiver Operating Characteristic (AUROC) in
% of detecting crime scene as anomalies in surveillance videos.

Video Crime scene # Segment Anomaly Ratio AUROC (%) Average AUROC (%)

Arson010 Arson 197 0.11 72.5± 1.4

67.8Arson022 Arson 540 0.06 72.0± 2.2

Arson035 Arson 89 0.21 60.0± 5.6

Arrest001 Arrest 148 0.13 75.0± 1.1
70.6

Arrest007 Arrest 196 0.23 66.1± 2.8

Burglary005 Burglary 483 0.21 83.0± 1.4

79.2
Burglary017 Burglary 132 0.21 70.0± 1.0

Burglary018 Burglary 70 0.3 85.2± 1.4

Burglary079 Burglary 928 0.20 78.7± 1.2

Fighting018 Fighting 86 0.25 81.0± 0.4

77.1Fighting033 Fighting 69 0.25 86.9± 5.2

Fighting042 Fighting 139 0.28 63.4± 2.4

D NETWORK PARAMETERS

Table 7 reports the settings and parameters for each experiments.

Note: for video with small number of segments, the value of p is set to be larger because anomalous
samples take larger proportion given the small number of total segments.

Note: Relu is adopted as the activation function except for static data where tanh is used instead.

E PARAMETER OF DISTRIBUTION CLUSTERING

Please refer to the original work on distribution clusteringLin et al. (2018) for more information on
parameters. Table 8 reports the parameters used for distribution clustering.

F SAMPLE CATVSDOG DATA

Figure 7 and 6 presents some example images of dogs and cats from ASIRRA dataset.
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Table 7: Parameters used for experiments.

Dataset Encoder layers # Epoch Mini-batch size learning rate p (%) r

KDDCup [60, 30, 10] 200 1024 0.001 30 10
Mnist [1028, 512, 128, 60, 10] 500 1024 0.0005 20 5
Cifar-10 [1028, 512, 128, 60, 10] 500 1024 0.001 10 5
CatVsDog [1028, 512, 128, 60, 30] 500 500 0.001 25 5
Arson010 [1028, 512, 128, 60, 10] 200 128 0.0001 30 10
Arson022 [1028, 512, 128, 60, 10] 200 128 0.0001 20 5
Arson035 [1028, 512, 128, 60, 10] 200 64 0.0001 30 10
Arrest001 [1028, 512, 128, 60, 10] 200 128 0.0001 30 10
Arrest007 [1028, 512, 128, 60, 10] 250 128 0.0001 30 10
Burglary005 [1028, 512, 128, 60, 10] 200 200 0.0001 20 5
Burglary017 [1028, 512, 128, 60, 10] 200 64 0.0001 30 10
Burglary018 [1028, 512, 128, 60, 10] 200 32 0.0001 30 10
Burglary079 [1028, 512, 128, 60, 10] 200 128 0.0001 20 5
Fighting018 [1028, 512, 128, 60, 10] 200 64 0.0001 30 10
Fighting033 [1028, 512, 128, 60, 10] 200 32 0.0001 30 10
Fighting042 [1028, 512, 128, 60, 10] 200 64 0.0001 30 10

Table 8: Parameters used for distribution clustering.

Dataset thres min clus max dist

MNIST 0.1 7 1.4
Cifar-10 0.06 5 1.4
CatVsDog 0.06 5 1.4
video experiments 0.05 4 1.5

Figure 6: example cat images from ASIRRA.
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Figure 7: example dog images from ASIRRA.
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