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ABSTRACT

Determining the source of uncertainties in the predictions of Al systems are im-
portant. It allows the users to act in an informative manner to improve the safety
of such systems, applied to the real-world sensitive applications. Predictive uncer-
tainties can originate from the uncertainty in model parameters, data uncertainty
or due to distributional mismatch between training and test examples. While re-
cently, significant progress has been made to improve the predictive uncertainty
estimation of deep learning models, most of these approaches either conflate the
distributional uncertainty with model uncertainty or data uncertainty. In contrast,
the Dirichlet Prior Network (DPN) can model distributional uncertainty distinctly
by parameterizing a prior Dirichlet over the predictive categorical distributions.
However, their complex loss function by explicitly incorporating KL divergence
between Dirichlet distributions often makes the error surface ill-suited to opti-
mize for challenging datasets with multiple classes. In this paper, we present an
improved DPN framework by proposing a novel loss function using the standard
cross-entropy loss along with a regularization term to control the sharpness of
the output Dirichlet distributions from the network. Our proposed loss function
aims to improve the training efficiency of the DPN framework for challenging
classification tasks with large number of classes. In our experiments using syn-
thetic and real datasets, we demonstrate that our DPN models can distinguish the
distributional uncertainty from other uncertainty types. Our proposed approach
significantly improves DPN frameworks and outperform the existing OOD de-
tectors on CIFAR-10 and CIFAR-100 dataset while also being able to recognize
distributional uncertainty distinctly.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impeccable success to address various real world tasks
(Simonyan & Zisserman), 2014a; Hinton et al., 2012; Litjens et al.,|2017). However, despite impres-
sive, and ever-improving performance in various supervised learning tasks, DNNs tend to make
over-confident predictions for every input. Predictive uncertainties of DNNs can be confronted from
three different factors such as model uncertainty, data uncertainty and distributional uncertainty
(Malinin & Gales| [2018). Model or epistemic uncertainty captures the uncertainty in estimating
the model parameters, conditioning on training data (Gal, 2016). This uncertainty can be explained
away given enough training data. Data or aleatoric uncertainty is originated from the inherent com-
plexities of the training data, such as class overlap, label noise, homoscedastic and heteroscedastic
noise (Gal, [2016). Distributional uncertainty or dataset shift arises due to the distributional mis-
match between the training and test examples (Quionero-Candela et al., |2009; Malinin & Gales),
2018)). In this case, the network is unfamiliar with the test data and hence should not confidently
make predictions. The ability to separately model these three types of predictive uncertainty is im-
portant, as it enables the users to take appropriate actions depending on the source of uncertainty.
For example, in the active learning scenario, distributional uncertainty indicates that the classifier
requires additional data for training. On the other hand, for various real-world applications where
the cost of an error is high, such as in autonomous vehicle control, medical, financial and legal fields,
the source of uncertainty informs whether an input requires manual intervention.

Recently notable progress has been made to detect OOD images. Bayesian neural network based
approaches conflate the distributional uncertainty through model uncertainty (Hernandez-Lobato &
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Adams|, 2015} |Gal, |2016). However, since obtaining the true posterior distribution for the model
parameters are intractable, the success of these approaches depends on the chosen prior distribution
over parameters and the nature of approximations. Here, the predictive uncertainties can be mea-
sured by using an an ensemble of multiple stochastic forward passes using dropouts from a single
DNN (Monti-Carlo Dropout or MCDP) (Gal & Ghahramani, [2016)) or by ensembling results from
multiple DNNs (Lakshminarayanan et al. [2017) and computing their mean and spread. On the
other hand, most of the non-Bayesian approaches model their distributional uncertainty with data
uncertainty. These approaches can explicitly train the network in a multi-task fashion incorporat-
ing both in-domain and OOD examples to produce sharp and flat predictive posteriors respectively
(Lee et al 2018a; Hendrycks et al., 2019). However, none of these approaches can robustly de-
termine the source of uncertainty. Malinin & Gales| (2018)) introduced Dirichlet Prior Network
(DPN) to distinctly model the distributional uncertainty from the other uncertainty types. A DPN
classifier aims to produce sharp distributions to indicate low-order uncertainty for the in-domain
examples and flat distributions for the OOD examples. However, their complex loss function, using
the Kullback-Leibler (KL) divergence between Dirichlet distributions, results in the error surface to
become poorly suited for optimization and makes it difficult efficiently train the DNN classifiers for
challenging datasets with a large number of classes (Malinin & Gales,,|2019).

In this work, we aim to improve the training efficiency of the DPN framework by proposing a novel
loss function that also allows the distributional uncertainty to be modeled distinctly from both data
uncertainty and model uncertainty. Instead of explicitly using Dirichlet distributions in the loss func-
tion, we propose to apply the standard cross-entropy loss on the softmax outputs along with a novel
regularization term for the logit (pre-softmax activation) outputs. The proposed loss function can
be also viewed from the perspective of the non-Bayesian frameworks (Lee et al.,|2018a; [Hendrycks
et al.| 2019) where the proposed regularizer presents an additional term to control the sharpness of
the output Dirichlet distributions. In our experiments, we demonstrate that our proposed regulariza-
tion term can effectively control the sharpness of the output Dirichlet distributions from the DPN
to detect distributional uncertainties along with making the network scalable for more challenging
datasets. We also demonstrate that the performance of our OOD detection model improves by train-
ing with noisy with OOD data. Our experimental results on CIFAR-10 and CIFAR-100 suggest
that our proposed approach significantly improves the performance of the DPN framework for OOD
detection and out-performs the recently proposed OOD detection techniques.

2 RELATED WORKS

In Bayesian frameworks, the predictive uncertainty of a classification model, trained on a finite
dataset, D;, = {xi,yi }.; ~ Pin(x,9), is expressed in terms of data (aleatoric) and model (epis-
temic) uncertainty (Gal, 2016). For an input o*, the predictive uncertainty is expressed as:

p(wela”, Din) = / p(wela.0) p(6Din) d6 ()

Here, x and y represents the images and the corresponding class labels, sampled from an underlying
probability distribution p;, (x,y). Here, the data uncertainty, p(w.|x*, ) is described by the pos-
terior distribution over class labels given model parameters, § and model uncertainty, p(0|D;,,), is
given by the posterior distribution over parameters given the data, D;,,.

The expected distribution for predictive uncertainty, p(w.|x*, D;,,) is obtained by marginalizing out
6. However, true posterior for p(0|D;,,) is intractable. Approaches such as Monte-Carlo dropout
(MCDP) (Gal & Ghahramani, 2016), Langevin Dynamics (Welling & Tehl [2011)), explicit ensem-
bling (Lakshminarayanan et al., 2017) approximate the integral in eq. [I] as:
1 M

plwelz”, Din) & < ;p(wcm*, ™) 8" ~q(0) ©)
where, (™) is sampled from an explicit or implicit variational approximation, q(0) of the true pos-
terior p(0|D;,). Each p(w.|x*,0™)) represents a categorical distribution, g = [uy,--- , ux] =
[p(y = wi1), -+ ,p(y = wk)] over the class labels and the ensemble can be visualized as a collec-
tion of points on the simplex. While for a confident prediction, the ensemble is expected to sharply
appear in one corner of the simplex, the flatly spread ensembles cannot determine whether the un-
certainty is due to data or distributional uncertainty. Furthermore, for standard DNNs, with millions
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(a) Confident prediction (b) Data uncertainty (c) Distributional uncertainty

Figure 1: Desired behavior of a DPN to indicate the three different uncertainties.

of parameters, it becomes even harder to find an appropriate prior distribution and inference scheme
to estimate the posterior distribution of the model. Dirichlet Prior Network (DPN) is introduced
to explicitely model the distributional uncertainty by parameterizing a Dirichlet distribution over a
simplex (Malinin & Gales| [2018). More discussions about DPN is presented in section 3.1}

Alternatively, non-Bayesian frameworks derive their measure of uncertainties using the predictive
posteriors obtained from DNNs. |Lee et al.| (2018a) and Hendrycks et al.[ (2019) introduce new
components in their loss functions to explicitly incorporate OOD data for training. DeVries & Taylor
(2018) append an auxiliary branch onto a pre-trained classifier to derive the OOD score. [Shalev et al.
(2018)) use multiple semantic dense representations as the target label to train the OOD detection
network. Several recent works such as (Lee et al., 2018bj |Liang et al., 2018) have demonstrated
that by tweaking the input images during inference using adversarial perturbations can enhance the
performance of a DNN for OOD detection (Goodfellow et al., 2014b). However, their discriminative
scores are achieved by tailoring the parameters for each OOD distributions during test time, which is
not possible for real-world OOD examples. [Hein et al.|(2019)) propose an adversarial training (Madry
et al., [2018)) like approach to produce lower confident predictions for OOD examples. However,
while these models can identify the total predictive uncertainties, they can not robustly determine
whether the source of uncertainty is due to an in-domain input in a region of class overlap or an
OOD example far away from the training distribution.

3  PROPOSED METHODOLOGY

This section first describes the DPN framework and the difficulties of the existing modeling tech-
niques to scale DPNs for challenging datasets. We then present our improved version DPN by
proposing a novel loss function to address these difficulties while allowing to model the distribu-
tional uncertainty distinctly from the model and data uncertainty.

3.1 DIRICHLET PRIOR NETWORK

A DPN for classification directly parametrizes a prior Dirichlet distribution over the categorical
output distributions on a simplex (Malinin & Gales| 2018). For in-domain examples, a DPN at-
tempts to produce sharp Dirichlet in one corner of the simplex, when it is confident in its predictions
(Figure [Ta). It should produce a sharp distribution in the middle of the simplex to indicate the
data (low-order) uncertainty for the in-domain example with a high degree of noise or belongs to a
class overlapping region (Figure [Ib). In contrast, for OOD examples, a DPN should produce a flat
Dirichlet over the simplex to indicate the distributional (high-order) uncertainty for the input (Figure
[Ic). Here, the data uncertainty is expressed by the point-estimate categorical distribution g while
the distributional uncertainty is described using the distribution over the predictive categorical i.e
p(p|x™*, 0). The overall predictive uncertainty is expressed as:

pecke”D) = [ [ pteclu) plula®.6) p(6ID) du ds 3

This expression forms a three layered hierarchy of uncertainties: a large model uncertainty, p(6|D)
would induce a large variation in distributional uncertainty in p(p|x*, 0) and a large degree of un-
certainty for p leads to higher data uncertainty. DPN framework is consistent with the existing
approaches, where an additional layer of uncertainty is included to capture the distributional un-
certainty. For example, marginalization of p in Eqn. [3 will reproduce Eqn. [I] while loose the
control over the sharpness of the output Dirichlet distributions. The marginalization of 6 produces
the expected estimation of data and distributional uncertainty given model uncertainty as:

plecke” D) = [ plecl)| [ plule”.6) peID)d6]ds = [ ploclu) piule” D)an @
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However, Similar to eq. [T] marginalizing 0 is eq. []is also intractable. Since the model uncertainty
is reducible given large training data, for simplicity, here we assume a diract delta estimation for 6:

p(8|D) = 6(0 — 0) = p(plz”, D) ~ p(u|z”, 0) (5)
Constructing a DPN. A DPN constructs a Dirichlet distribution as a prior over the categorical
distributions, which is parameterized by the concentration parameters, o = oy, - - , Qx.
F(O{ ) K K
Dir(pla) = ———2 Tl uet, @>0, av=> a (6)
H£<:1 I'(ae) g ;

where, ay is called the precision of the Dirichlet. A larger value of o produces sharper distribu-
tions to indicate low order uncertainties (fig [laf and . A DPN, f; produces the concentration

parameters, « and the posterior over class labels, p(w.|z*; 8), is given by the mean of the Dirichlet.

* *_ N . *. N *. N Q¢
a=fyla’)  plula’i0) = Dir(ula)  plecle’s8) = [ plodm) p(ulai6) du =2 (D)
A standard DNN with the softmax activation function can be represented as a DPN where the con-
centration parameters are a, = e*(®); z,(x*) is the pre-softmax (logit) output corresponding to
the class, c for an input &*. The expected posterior probability of class label w, is given as:

*
Qe ee (™)

= K
@o Zc:l 6zc<m*)

However, the mean of the Dirichlet is now insensitive to any arbitrary scaling of a.. Hence, the
precision of the Dirichlet, o, degrades under the standard cross-entropy loss. Malinin & Gales
(2018) instead introduced a new loss function that explicitly minimizes the KL divergence between
the output Dirichlet and a target Dirichlet to produce a predefined target precision value for the
output Dirichlet distributions. For in-domain examples, the target distribution is chosen to be a
sharp Dirichlet, Dir(p|é,,), focusing on their ground truth classes while for OOD examples, a flat
Dirichlet, Dir(pu|&) is selected.

L(0) = Ep,, KL[Dir(p|éy)|lp(plz, 0)] + Ep,,, K L[Dir(p|&)||p(plz, 0)] C)]

plwelx;0) = 8)

where, P;, and P,,; are the underlying distribution of in-domain and OOD training examples re-
spectively. However, learning the model using sparse 1-hot continuous distributions for class labels,
which are effectively a delta function, is challenging due to their complex loss function (eq. [9).
Here, the error surface becomes poorly suited for optimization using the back-propagation algo-
rithm (Malinin & Gales| 2019). Malinin & Gales|(2018)) tackle this problem by using label smooth-
ing (Szegedy et al., 2016)) or teacher-student training (Hinton et al.| [2015a) to redistribute a small
amount of probability density to each corner of the Dirichlet. This technique is found to work well
for datasets with a fewer number of class labels. However, for more challenging datasets with a large
number of classes, even these techniques cannot efficiently redistribute the probability densities at
each corner and results in the target distribution to tend to a delta function. Hence, it becomes dif-
ficult to train the DPN to achieve competitive performances. [Malinin & Gales|(2019) have recently
proposed to reverse the terms within the KL divergence in eq. [9|to improve the training efficiency of
DPN models. This approach still requires to explicitly constrain the precision of the output Dirichlet
distributions using an appropriately chosen hyper-parameter for training.

3.2 IMPROVED DIRICHLET PRIOR NETWORK

We now propose an improved technique to model DPN by proposing a novel loss function using the
standard cross-entropy loss along with a regularization term to control the precision of the output
Dirichlet distribution from the network. As we have seen in equation 8} the precision of a Dirichlet
distribution produced by the standard DNN is given as Zle exp z.(x*). Hence, we can control the
sharpness of the distribution by designing a regularization term that increases the sum of logit (pre-
softmax) outputs for the in-domain examples to produce sharp distributions to indicate their lower
uncertainties. For the OOD examples, the regularization term aims to decrease the sum of logit (pre-
softmax) outputs to produce flat distributions to indicate distributional (higher-order) uncertainties.
Hence, instead of explicitly constraining the precision the output Dirichlet with a specific hyper-
parameter, we allow the network to appropriately produce the precision values for different input.
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In this paper, we propose the regularization term as + Zﬁil sigmoid(z.(x)) for controlling the
sharpness of the output Dirichlet distribution. For in-domain examples, the loss function is given as:

K
)\in . .
Lin(0) =Ep,, [— log p(y|x, 0) — % ; 31gm01d(zc(:c))}7 Ain >0 (10)
The constrain \;, > 0 enforces the network to produce larger precision, o and hence generate a
sharper Dirichlet in one corner of the simplex. For OOD examples, the loss function is given as:

K
AO’U, . .
Lout(6) = B, [HeUsplwl,0)) = 222 3" sigmoid(zc(@) |, Aowr <A (1)
c=1
The constrain A\,,: < A;;, enforces the network to produce Dirichlet distributions with lower preci-
sions for OOD examples compared to the in-domain examples. I/ denotes the uniform distribution
over the class labels for OOD examples and . is the cross-entropy. We train the network in a

multi-task fashion, where the overall loss function is given as:
meinL'(O) = Lin(0) + ALou:(0), A>0 (12)

where, A\;y, , Aoy and A in Eq. Eq. and Eq. [I2]represent user-defined hyper-parameters. The
proposed loss function in Eq. [12]is also very closely related to non-Bayesian approaches, where by
choosing \A;,, Aoyt to zero we re-obtain similar loss functions as proposed by [Lee et al.| (2018a);
Hendrycks et al.[(2019). However, by setting A;,,, Aot to zero, we lose control over the precision of
the Dirichlet distribution that distinguishes distributional uncertainty from data uncertainty.

Our multi-task loss function in eq. requires training samples from the in-domain distribution,
P;, as well as from OOD P,,;. However, since P,,; is unknown, [Lee et al.| (2018a) propose to
synthetically generate the OOD training samples from the boundary of in-domain region, P;,, using
generative models such as GAN (Goodfellow et al., 2014a). Alternatively, a different, easily avail-
able, real datasets can be used as OOD training examples. In practice, the latter approach is to found
to be more effective for training the OOD detectors and has been applied for our experiments on
vision datasets (Hendrycks et al., [2019).

4 EXPERIMENTAL STUDY

In this section, we experimentally demonstrate the importance of the DPN framework and its ef-
fectiveness using the proposed loss function using two sets of experiments. Our first experiment
demonstrates the effectiveness of a DPN model using the proposed loss function using a synthetic
dataset. Our second experiment on CIFAR10 and CIFAR100 presents a comparative study of our
proposed method with the existing approaches and demonstrates the advantages compared to the
original DPN framework(Malinin & Gales} 2018).

4.1 SYNTHETIC DATASET

To demonstrate the effectiveness of our DPN framework using the proposed loss function, we design
a simple dataset with three classes sampled from three different isotropic Gaussian distributions as
shown in Figure a). We select an isotropic co-variances, 21 with o = 4 to ensure that the classes
are overlapping. We train a small DPN with 2 hidden layers of 50 nodes each for the synthetic
dataset. The hyper-parameters of our loss function, A;;,, Ay and A are set to 1.0, 0.33 and 1.0.

Figure [2(b) and [2[c) represent the total uncertainty measures for each data point. These measures
are derived from the expected predictive categorical distribution, p(w.|x*, D;,) i.e by obtaining a
complete marginalization of ¢ and 0 in eq. |3| Here, the predictive categoricals are obtained as the
point estimation from the network similar to a non-Bayesian framework (eq. ). An uncertainty
measure can be computed as the probability of the predicted class or max probability (Figure 2[b)):

maz’P = max p(we|x”, Din) (13)

Entropy of the predicted distribution, H[p(w.|x*, D;y,)] can be also applied as a total uncertainty
measure that produces low scores when the model is confident in its prediction (Figure c)):

K
Hip(welx™, Din)] = — Zp(wckl:*, Din) Inp(welz™, Din) (14)

c=1
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Figure 2: Visualizing the uncertainties under different measures.

Max probability and entropy are the most frequently used uncertainty measures by the existing
OOD detection model. However, since the predicted distribution is obtained by marginalizing p
(eq. [3), these measures cannot capture the sharpness of the output Dirichlet for a DPN. As we
can see in Figure [2(b) and [2|c), the overlapped in-domain data points and OOD points remain
indistinguishable under max probability and entropy measures. This observation also indicates the
limitation of the existing approaches and the uncertainty measures to differentiate between data
and distributional uncertainties (Malinin & Gales, 2018). A DPN framework can overcome this
limitation by using the differential entropy as an uncertainty measure that produces high scores for
flat Dirichlet distributions (eq. [I5).

Hip(ule" D) = = [ plule” Do) np(ule”. Do) (15)
Figure 2Jd) demonstrates that differential entropy can distinguish between in-domain and OOD
examples. It also ensures that the network learned using our proposed loss function works perfectly
as a DPN to produce sharp distributions for all in-domain examples and flat distributions for OOD
examples. Additional details and results are provided in Appendix [B]

4.2 EXPERIMENTS ON CIFAR-10 AND CIFAR-100

We demonstrate the performance of DPN using our proposed loss function for OOD detection on
CIFAR-10 and CIFAR-100 (Krizhevskyl [2009). These two datasets contain 32 x 32 natural colored
images of 50,000 training and 10, 000 testing examples For CIFAR-10, the images belong to 10
different classes while CIFAR-100 is a more challenging dataset, containing 100 image classes.

Evaluation of OOD detection methods. To evaluate the ability to detect OOD examples of our
proposed models, we treat the OOD examples as the positive class and in-domain examples as
a negative class and measure the OOD detection performance using two metrics: area under the
receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPR)
(Hendrycks & Gimpel,|2016). The AUROC can be interpreted as the probability of an OOD example
to produce a higher detection score than an in-domain example (Davis & Goadrichl 2006). Hence,
a higher AUROC is desirable, and an uninformative detector produces an AUROC = 50%. The
AUPR is more informative when the positive class and negative class have greatly differing base
rates, as it can take these base rates into account (Manning & Schiitze}, |1999).

Comparative Results and Analysis. In Table[I] we present a smaller set of comparative results to
analyze our proposed approach using an in-domain and an OOD datasets. Gaussian is an artificially
generated in-domain dataset where the test images of CIFAR-10 and CIFAR-100 are modified using
Gaussian noises sampled from isotropic Gaussian distributions, A'(0, 0%1I) with o = 0.25. TinyIm-
ageNet (TIM) is a real world image dataset (Li et al., 2017). In Appendix[A] we present an expanded
version of this comparative table for a wide range of OOD examples. In Appendix [C| we provide
the details of the OOD datasets and the comparative models.

Since we have explicitly constrained on the logit outputs to produce smaller values for OOD exam-

ples, it is meaningful to define the sum of the exponential of logits, Zf(:1 e*(*") as a new measure
of predictive uncertainty for our proposed framework. Experimentally, we find that it often produces

a better estimation for predictive uncertainties compared to the existing measures for our models.

Training Details. We train multiple DPN models using the proposed loss function, denoted as
DPN,, ¢ for our analysis. For CIFAR-10, we train a VGG-16 model using CIFAR-10 training
images as in-domain and CIFAR-100 training images as OOD examples (Simonyan & Zisserman),
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2014b). For CIFAR-100, we use CIFAR-100 training images as in-domain and CIFAR-10 training
images as OOD examples and train a DenseNet model with depth = 55, growth rate = 12 (Huang
et al.,|2017). We apply the standard data augmentation techniques such as rotation and translation
for training. See Appendix [C] for additional details of our training.

Choosing the Hyper-parameters. Unlike [Liang et al.| (2018); |[Lee et al.| (2018a) and similar to
Malinin & Gales| (2018); Hendrycks et al.| (2019), we do not tune the hyper-parameters at testing
phase for different D¢5¢. Hence, the OOD examples remain unknown, as in a real-world scenario.

For our experiments, we always set A = 0.5 (eq. similar toHendrycks et al.[(2019).

The hyper-parameters \;,, and \,,; controls the sharpness of the output Dirichlet from a DPN (see
eq. [[0]and|[TT). Since we want sharper distributions for in-domain data points and flatter distribution
for OOD data points, we select A\;;, > 0 and \;, > A,y:. However, choosing A,,: < 0 would
enforce the network to produce fractional values for a.’s (i.e . € (0,1)) for OOD examples. This
cause in the densities of the Dirichlet to be distributed in the edges of the simplex and produces a
sharp distribution across the edges as shown in Figure[3[b). Hence, even though it indicates a higher-
order distributional uncertainty, the differential entropy (eq. [I3)) can not capture this uncertainty and

produce a low score, similar to an in-domain example.

(a) @ =(50,50,50) (b)ax=(1.5,1.5,1.5) (c) o =(0.99,0.99,0.99)

Figure 3: Dirichlet distributions become flatter as the precision is reduced (from (a) to (b)) and the
densities move to the edges as the concentration parameters become fractional i.e . € (0, 1).

For our experiments, we choose both positive and negative values for \,,,; in our experiments. Here,
Ain and A,y are chosen as \;, = (1 — ) and Ay = (m — f3). We train two different sets of
DPN models using 8 = 0.5 (i.e negative \,,¢) and 0.0 (i.e positive A,q¢).

As we can see in Table [I] for TinylmageNet, differential entropy (D. Ent) scores are found to be
uninformative for our DPN,, (5 = 0.5). While the total uncertainty measures are consistently
producing high AUROC and AUPR scores, differential entropy has produced low scores which
are often less than 50% for AUROC. These scores support the assertion that for OOD examples,
DPN,,f:(8 = 0.5) is producing sharp distribution along the edge of the simplex to indicate high
distributional uncertainty. However, differential entropy measure failed to capture this uncertainty as
it cannot distinguish between the sharp Dirichlet distributions in the middle and along the edges of
the simplex. On the other hand, for 8 = 0.0, the differential entropy produces similar AUROC and
AUPR scores as total uncertainty measures and successfully captures the distributional uncertainty.

In contrast, for Gaussian dataset, our DPN,, 7+ (8 = 0.0) models achieve high AUROC and AUPR
scores under the total uncertainty measures while producing lower score under differential entropy.
These scores indicate that the predictive uncertainty in the Gaussian dataset is due to the data
uncertainty rather than distributional uncertainty. This is also expected because, here, we have
generated the dataset by applying noises in the in-domain test examples. Notably, existing non-DPN
models cannot detect the cause of this uncertainty.

Fine-tuning with noisy OOD images. After training the networks using clean images, we fine-
tune our DPN models using noisy OOD images for a few epochs in the end. Here, the idea is to add
small noise without distorting the original OOD training images to further expose the network into
the out of distribution space.

Table (1| also demonstrate the performance after fine-tuning our DPN,, s, models with noisy OOD
training images where the noises are samples from isotropic Gaussian distributions A"(0, o%1) with
three different isotropic variances: o = 0.0 (i.e no noise), 0 = 0.01 and o = 0.05. As we can see
that the performance of DPNy, (0 = 0.01) is improved from DPN, (o = 0.0); however it often
declined for DPN,, 7+ (o = 0.05).

Comparison with existing models. In Table 1| we compare the performance our approach with
standard DNN as baseline (Hendrycks & Gimpel| (2016)), MCDP (Gal & Ghahramani, [2016)),
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Table 1: Comparative results of OOD example detection for CIFAR-10 and CIFAR-100. Expanded
version of this table along with a wide range of OOD datasets are provided in Appendix [E

Din Do Methods AUROC AUPR
Max.P Ent. Y e*®) D.Ent | MaxP Ent. Y e*(®) D, Ent
Baseline 794 796 - . 654 65.7 - -
MCDP 792 795 - - 649 652 - -
S g ODIN 89.9 - - - 82.6 - - -
% Z OE 96.82  97.0 - - 927 931 - -
£ 2 DPN,,;/(7:0.0,0:0.0) | 998 999 994 66.1 | 994 99.6 97.7 53.9
o © DPN,, (8 :0.0,0:0.01) | 99.8  99.9 99.7 66.5 | 99.1 995 98.6 55.1
DPN,of:(:0.0,0:0.05) | 100 100 100 642 | 100 100 99.9 543
DPN,of:(8:0.5,0:0.0) | 99.6  99.6 97.8 4.7 99.1  99.1 93.1 315
DPN,of:(:0.5,0:0.01) | 997  99.8 96.8 35 98.7 994 89.1 314
DPN,of:(3:0.5,0:0.05) | 100 100 99.7 2.6 100 100 98.6 30.74
Baseline 388 894 - . 851 867 . -
MCDP 885 89.2 - - 847  86.1 - -
= ODIN 94.4 - - - 93.8 - - -
v = OE 98.0  98.0 - - 97.9 979 - -
£ E DPNp;, 943 943 946 | 940 94.0 94.2
O DPN,,;(5:0.0,0:00) | 976 977 976 976 | 975 976 975 975
DPN,of:(3:0.0,0:0.01) | 98.5 985 98.4 985 | 984 985 98.3 98.4
DPN,of:(3:0.0,0:0.05) | 97.1 974 97.6 97.7 | 972 975 97.7 97.8
DPN,of(3:0.5,0:0.0) | 987 9838 96.7 6.8 98.6  98.7 92.8 325
DPNgof:(:0.5,0:0.01) | 99.0  99.1 96.3 6.8 985 989 90.7 322
DPN,os:(3:0.5,0:0.05) | 97.9 982 98.2 309 | 979 982 98.1 54.1
Baseline 752 751 B B 66.8 649 B B
- MCDP 775 758 - - 675 634 - -
S g ODIN 58.3 - - - 51.0 - - -
v 7 OE 913 93,0 - - 824 831 - -
£z DPN,,:(3:00,0:0.0) | 788 814 90.6 570 | 673 698 303 483
5 © DPNgof:(:0.0,0:0.01) | 960  96.9 99.2 682 | 945 949 98.7 54.9
DPNgof:(3:0.0,0:0.05) | 99.9  99.9 100 638 | 99.8  99.6 100 52.0
DPN,, (8 :0.5,0:0.0) | 924 924 95.1 439 | 838 825 87.1 424
DPN,, (8 :0.5,0:0.01) | 963 963 99.0 227 | 917 907 97.7 354
DPNos:(3:0.5,0:0.05) | 985 99.4 100 20.1 | 976 985 100 35.1
Baseline 749 763 B . 711 731 . B
- MCDP 789  81.0 - - 754 780 - -
3 ODIN 83.8 - - - 81.4 - - -
v = OE 86.5 88.0 - - 82.8  83.0 - -
= E DPN,,:(5:0.0,0:0.0) | 89.9 903 91.1 90.7 | 861 864 854 33.6
5 DPN,of:(3:0.0,0:0.01) | 965 974  98.8 980 | 97.1 978 98.9 95.2
DPNyof:(3:0.0,0:0.05) | 95.8  96.7 98.0 9.7 | 964 972 98.2 929
DPN,, /(8 :0.5,0:0.0) | 856 877 91.2 81.8 | 826 838 84.7 82.3
DPN, (8 :0.5,0:0.01) | 926 94.1 97.0 495 | 928 939 96.1 63.0
DPNos:(3:0.5,0:0.05) | 957  96.8 98.7 435 | 963 973 98.8 60.7

DPNp;,, (Malinin & Gales| [2018)), ODIN (Liang et al., [2018) and OE (Hendrycks et al., [2019).
We use the same architecture as our DPN,¢; models for all the competitive models. OE models
are trained using the set of in-domain and OOD training images with their proposed loss function
(Hendrycks et al.,|2019). Note that, since non-DPN methods do not explicitly model the logit out-

puts, the differential entropy or Zle e*<(*") measures are not meaningful to define for these models
(Malinin & Gales| 2018)). For DPNp;,., we compare with the results reported by Malinin & Gales
(2018)) for CIFAR-10, while the framework failed to train for CIFAR-100 with 100 classes. Due to
the unavailability of codes and results (under the same settings), we could not compare our model
withMalinin & Gales|(2019). As we can see in Table[T} our DPN, ¢, models significantly improved
the performance of the DPN framework and consistently out-performed the existing OOD detection
models along with able to distinguish distributional uncertainty from other uncertainty types.

5 CONCLUSION

In this paper, we present an improved DPN framework to improve the training efficiency for complex
classification tasks with large number of classes. We propose a novel loss function using standard
cross-entropy loss along with a regularization term for that allows controls the sharpness of the
Dirichlet distributions. In our experiments using synthetic and real datasets, we demonstrate that
our proposed framework works perfectly as a DPN to distinguish the distributional uncertainty from
other uncertainty types. We demonstrate that the OOD detection performance of our DPN models
can be improved by training with noisy OOD examples. Our proposed approach significantly im-
proves DPN frameworks and outperform the existing OOD detectors on CIFAR-10 and CIFAR-100
dataset while also being able to recognize distributional uncertainty distinctly.
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A EXPANDED RESULTS

Table 2: Expanded results of OOD image detection for CIFAR-10.

DI Methods AUROC AUPR
Max.P Ent. Y e*(®) D.Ent| Max.P Ent. > e*®) D Ent
Baseline 794 79.6 - - 654 657 - -
MCDP 792 795 - - 649 652 - -
= ODIN 89.9 - - - 82.6 - - -
z2 OE 96.82 97.0 - - 92.7  93.1 - -
2 DPN,.s:(B:0.0,0 :0.0) 99.8  99.9 99.4 66.1 994  99.6 97.7 539
© DPN,os¢(6:0.0,0:0.01) | 99.8  99.9 99.7 66.5 99.1 995 98.6 55.1
DPN,ost(8:0.0,0: 0.05) | 100 100 100 64.2 100 100 99.9 54.3
DPN,os¢(8 : 0.5,0 : 0.0) 99.6  99.6 97.8 4.7 99.1  99.1 93.1 31.5
DPNos(8:0.5,0:0.01) | 99.7  99.8 96.8 35 98.7 994 89.1 31.4
DPN,:(8 : 0.5,0 : 0.05) 100 100 99.7 2.6 100 100 98.6 30.74
Baseline 88.8  89.4 - - 85.1 86.7 - -
MCDP 885 89.2 - - 84.7  86.1 - -
ODIN 94.4 - - - 93.8 - - -
E OE 98.0  98.0 - - 979 979 - -
= DPNp; 943 943 94.6 940 940 94.2
DPN,o (B :0.0,0 : 0.0) 916 977 97.6 97.6 975 976 97.5 97.5
DPNos¢(8:0.0,0:0.01) | 985 985 98.4 98.5 984 985 98.3 98.4
DPNy,:(8:0.0,0:0.05) | 97.1 974 97.6 91.7 9712 975 97.7 97.8
DPN,os¢ (6 : 0.5,0 : 0.0) 98.7 98.8 96.7 6.8 98.6  98.7 92.8 325
DPNose(8:0.5,0:0.01) | 99.0 99.1 96.3 6.8 98.5 989 90.7 322
DPN,os¢(8:0.5,0:0.05) | 979 98.2 98.2 30.9 979 982 98.1 54.1
Baseline 90.2  91.0 - - 86.6  88.6 - -
MCDP 903 911 - - 86.8  88.9 - -
ODIN 96.6 - - - 96.2 - - -
Z  OE 97.9  98.0 - - 97.6 977 - -
) DPNp;, 944 944 94.6 933 934 93.3
DPN,o (8 :0.0,0 : 0.0) 917 978 97.7 91.7 9713 974 97.3 97.3
DPN,os(6:0.0,0:0.01) | 98.7  98.7 98.6 98.6 98.5 985 98.3 98.3
DPNy,:(8:0.0,0:0.05) | 973  97.7 97.9 98.0 972 976 97.7 97.8
DPN,os4 (8 : 0.5,0 :0.0) 98.8  98.8 97.1 6.2 98.6 98.6 93.8 324
DPNy,s:(8:0.5,0:0.01) | 99.2  99.2 96.7 5.5 98.7 989 91.8 31.8
DPN,os¢(6:0.5,0 :0.05) | 97.9  98.2 98.4 33.0 97.7  98.1 98.3 56.0
Baseline 89.4  90.0 - - 95.6  96.2 - -
MCDP 89.3 902 - - 956  96.2 - -
8 ODIN 95.4 - - - 98.5 - - -
% OE 97.9  98.0 - - 994 994 - -
] DPN,. (B :0.0,0 : 0.0) 9717 978 91.7 91.7 993 993 99.3 99.3
A DPN,os¢(8:0.0,0:0.01) | 98.8 988 98.7 98.7 99.6 99.6 99.6 99.6
DPN,os¢ (8 :0.0,0:0.05) | 97.3  97.6 97.8 97.8 992 993 99.4 99.4
DPN,os¢ (8 :0.5,0 : 0.0) 98.7 987 96.7 6.7 99.6 99.6 97.9 60.7
DPN,os(8:0.5,0:0.01) | 99.2  99.3 96.5 5.4 99.6  99.7 97.3 59.5
DPNy,:(8:0.5,0:0.05) | 97.9 982 98.3 29.5 994 995 99.5 717.1
Baseline 88.6  89.0 - - 749 710 - -
MCDP 87.6  88.0 - - 73.7 758 - -
s ODIN 949 - - - | 95 - - -
E OE 99.2  99.7 - - 98.6 98.5 - -
5 DPN,, (B :0.0,0 : 0.0) 99.5 995 99.5 99.5 98.8 99.0 99.0 99.0
B DPNyos:(8:0.0,0:0.01) | 995 995 99.3 99.4 989 989 98.6 98.7
DPNos¢(8:0.0,0:0.05) | 994  99.5 99.5 99.6 99.0  99.1 99.2 99.3
DPN, (8 : 0.5,0 : 0.0) 99.5 995 96.7 4.6 99.1  99.1 85.6 21.3
DPNos¢(8:0.5,0:0.01) | 994  99.5 96.5 5.5 98.0 98.8 84.3 21.4
DPN,o7(8:0.5,0:0.05) | 99.1  99.3 98.7 24.7 98.3  98.7 97.3 38.3

B EXPERIMENTAL DETAILS ON SYNTHETIC DATASETS

B.1 EXPERIMENTAL SETUP

The three classes of our synthetic dataset is constructed by sampling from three different isotropic
Gaussian distributions with means of (—4, 0), (4,0) and (0, 5) and isotropic variances of o = 4. We
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Table 3: Expanded results of OOD image detection for CIFAR-100.

Diest Methods AUROC AUPR
Max.P Ent. > e*(®) D Ent | MaxP Ent. Y e*(®) D, Ent
Baseline 752 75.1 - - 66.8 64.9 - -
MCDP 77.5 75.8 - - 67.5 63.4 - -
g ODIN 583 - - - 510 - - -
z OE 91.3 93.0 - - 82.4 83.1 - -
3 DPN,o (B :0.0,0 : 0.0) 78.8 81.4 90.6 57.0 67.3 69.8 80.3 48.3
o DPN,,7¢(5 : 0.0,0 : 0.01) 96.0 96.9 99.2 68.2 94.5 94.9 98.7 54.9
DPN,os¢(8 : 0.0,0 : 0.05) 99.9 99.9 100 63.8 99.8 99.6 100 52.0
DPN,o 74 (6 : 0.5,0 :0.0) 924 924 95.1 439 83.8 825 87.1 42.4
DPNSOft(/B :0.5,0: 0.01) 96.3 96.3 99.0 22.7 91.7 90.7 97.7 354
DPN,o7¢(8 : 0.5,0 : 0.05) 98.5 99.4 100 20.1 97.6 98.5 100 35.1
Baseline 74.9 76.3 - - 71.1 73.1 - -
MCDP 78.9 81.0 - - 754 78.0 - -
ODIN 83.8 - - - 81.4 - - -
= OE 86.5 88.0 - - 82.8  83.0 - -
= DPN,os: (B :0.0,0 : 0.0) 89.9 90.3 91.1 90.7 86.1 86.4 85.4 83.6
DPN,os¢(8 : 0.0,0 : 0.01) 96.5 97.4 98.8 98.0 97.1 97.8 98.9 95.2
DPNSOft(/S :0.0,0 : 0.05) 95.8 96.7 98.0 96.7 96.4 97.2 98.2 92.9
DPN,os4 (0 : 0.5,0 :0.0) 85.6 87.7 91.2 81.8 82.6 83.8 84.7 82.3
DPN,o7¢(5 : 0.5,0 : 0.01) 92.6 94.1 97.0 49.5 92.8 939 96.1 63.0
DPN,o7¢(8 : 0.5,0 : 0.05) 95.7 96.8 98.7 43.5 96.3 97.3 98.8 60.7
Baseline 78.9 80.4 - - 74.2 75.9 - -
MCDP 83.2 85.4 - - 79.0 81.5 - -
ODIN 87.8 - - - 84.6 - - -
% OE 90.6 91.6 - - 86.5 86.1 - -
‘ﬁ DPN,f+(8 : 0.0,0 : 0.0) 91.6 92.6 93.3 92.6 88.3 88.3 87.3 85.4
DPN,os¢(8 : 0.0,0 : 0.01) 98.9 99.2 99.7 98.9 99.0 99.3 99.7 96.1
DPN,o7¢(5 : 0.0,0 : 0.05) 96.0 96.8 98.2 96.8 96.6 97.2 98.4 93.0
DPNSOft(/B :0.5,0 :0.0) 91.8 93.2 94.8 76.4 88.1 88.8 88.8 80.5
DPN,os¢(8 : 0.5,0 : 0.01) 95.6 96.6 98.0 44.7 95.1 95.8 97.1 59.7
DPNSOft(/S :0.5,0 : 0.05) 96.6 97.5 99.1 41.4 97.1 97.9 99.1 59.2
Baseline 76.6  78.1 - - 90.2 91.0 - -
MCDP 80.9 83.1 - - 922 93.3 - -
el ODIN 86.4 - - - 947 - - -
'% OE 88.8 90.1 - - 95.1 95.0 -
2] DPN,, (B :0.0,0 : 0.0) 90.5 91.3 92.6 92.0 96.0 96.0 95.9 94.9
~ DPNSOft(/i :0.0,0 :0.01) 97.8 98.4 99.3 98.5 99.4 99.6 99.8 98.6
DPN,os¢(8 : 0.0,0 : 0.05) 95.9 96.7 98.1 96.7 98.9 99.1 99.5 97.6
DPN,o74(6 : 0.5,0 :0.0) 89.5 91.2 93.7 77.4 95.6 95.9 96.0 92.8
DPN,os¢(8 : 0.5,0 : 0.01) 94.7 95.9 97.8 434 98.3 98.6 99.1 81.7
DPN,,7¢(5 : 0.5,0 : 0.05) 963 972 98.9 39.6 99.0 99.2 99.7 80.7
Baseline 60.0 60.2 - - 434 434 - -
MCDP 64.0 64.3 - - 46.0 45.6 - -
2 ODIN 63.4 - - - 48.9 - - -
g OE 73.6 74.8 - - 58.3 58.4 - -
5 DPN,o (B :0.0,0 : 0.0) 80.5 81.8 85.0 83.7 66.6 66.9 71.3 67.2
= DPN,oz¢(8 : 0.0,0 : 0.01) 84.3 86 92.9 90.9 81.3 83.3 90.9 84.1
DPNSOft(B :0.0,0 : 0.05) 89.2 90.7 94.5 92.8 86.2 88.3 93.1 84.5
DPN,os4 (6 : 0.5,0 :0.0) 69.1 70.8 82.0 61.3 57.0 58.3 68.7 49.7
DPNSOft(/i :0.5,0:0.01) 77.6 79.4 90.1 38.9 72.2 74.2 86.6 36.0
DPN,o7¢(8 : 0.5,0 : 0.05) 85.3 87.5 96.4 31.8 82.1 85.2 95.7 36.1

sample 200 training data points from each distributions for each classes. We also sample 600 OOD
training examples from an uniform distribution of ¢/ ([—15, 15], [—13,17]).

We train a neural network with 2 hidden layers with 50 nodes each and relu activation function.
The network is trained for 2, 500 epochs using stochastic gradient descent (SGD) optimization with
constant learning rate of 0.01. The hyper-parameter values for \;;,, Aoy and A are set to 1.0, 0.33
and 1.0.

To demonstrate that our model produces sharp distributions for in-domain examples and flat distri-
butions for OOD examples, we visualize the output Dirichlet distributions for three data points in

Figure
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(a) Synthetic in-domain training data (dots of different colors to indicate different classes) and test inputs
(shown in black triangles).

(b) Data point: (0, 5) (c) Data point: (0,0) (d) Data point: (10, 10)
Entropy: 0.027; Diff. Ent.: —9.97 Entropy: 0.8; Diff. Ent.: —9.0 Entropy: 1.09; Diff. Ent.: —3.36

Figure 4: Visualizing the data point uncertainties under different measures on a synthetic dataset
with 3 classes. Our DPN model aim to produce sharp Dirichlet distribution for all in-domain data
points and hence differential entropy measure easily distinguishes them from the OOD examples.

As we can see in Figure b), for (0, 5), an in-domain examples near class 3, the network produces
a sharp distribution near one corner of the simplex. The entropy and differential entropy measures
are low for this data point to indicate a confident prediction.

Figure c), demonstrates that as we choose (0, 0), a sample from the overlapping region of 3 classes,
the network produces a sharp distribution in the middle of the simplex. While the entropy is high,
the differential entropy is low for this data points to indicate data uncertainty.

Finally, as we choose an OOD example at (10, 10), the network produces a flat Dirichlet distribution
as shown in Figure ff[d). Both entropy and differential entropy measures are high for this data point
to indicate distributional uncertainty .

C EXPERIMENTAL DETAILS ON CIFAR-10 AND CIFAR-100

C.1 EXPERIMENTAL SETUP

For our experiments on CIFAR-10, we train a VGG-16 model with CIFAR-10 as the in-domain and
CIFAR-100 as the OOD training data (Simonyan & Zisserman|(2014b)). For CIFAR-100, we train
a DenseNet with depth = 55, growth rate = 12 and CIFAR-100 as the in-domain and CIFAR-10
as the OOD training data (Huang et al.| (2017)). We trained multiple DPN,,r; models using our
proposed loss functions with different hyper-parameters.

For CIFAR-10, VGG-16 is trained for 250 epochs using stochastic gradient descent (SGD) opti-
mization. We set the initial learning rate to 0.1 are reduced the learning rate by half after every 20
epochs. For CIFAR-100, Densenet(55, 12) is trained using the same setup as proposed by Huang
et al.[|(2017).

After training the models with clean in-domain and OOD images, we further fine-tune the models
using noisy OOD images for 50 epochs with learning rate of 0.0001. Here the noises are chosen
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form an isotropic Gaussian distribution, A'(0,02I). We have experimented with three different
values of ¢ as {0.0,0.01,0.05} to introduce different level of noises. The test accuracies achieved
by our models on CIFAR-10 and CIFAR-100 datasets, are summarized in Table E}

Table 4: Test accuracies on CIFAR-10 and CIFAR-100 datasets.

CIFAR-10 CIFAR-100

Baseline (Standard DNN) 94.1 76.3
DPNg, (8 : 0.0,0 : 0.0) 94.0 75.7
DPN,of+(3 : 0.0,0 : 0.01) 93.6 75.6
DPNg,74(8 : 0.0,0 : 0.05) 93.7 75.7

PNy (8 :0.5,0 :0.0) 94.1 76.2
DPN,of+(3 : 0.5,0 : 0.01) 93.8 76.3
DPN, (8 : 0.5,0 : 0.05) 94.1 76.3

In Table [5] we present the performance for detecting the misclassified test examples of our pro-
posed models, DP Ny, r:. As we can see, our models have achieved high AUROC and AUPR scores
under total uncertainty measures such as maximum probability and entropy. On the other hand,
the differential entropy has consistently produced low (uninformative) scores for distinguishing the
misclassified examples for our proposed DPN framework. This indicates that our DPN models are
always producing sharp Dirichlet distributions for the in-distribution examples. For the confident
predictions, these models produce sharp Dirichlets in one corner of the simplex and hence achieves
higher scores for entropy and lower scores for differential entropy. For the misclassified examples,
they tend to produce sharp Dirichlets in the middle of the simplex and hence achieves lower scores
for entropy as well as for differential entropy. [5} we can easily infer that here, the source of the pre-
dictive uncertainty for the in-domain dataset is due to the data uncertainty rather than distributional
uncertainty.

Table 5: Misclassification Detection.

CIFAR-10 Dataset
Methods AUROC AUPR
Max.P Ent. D.Ent | Max.P Ent. D.Ent
Baseline (Standard DNN) 932 933 - 43.0 46.6 -
DPN, s (8 : 0.0,0 : 0.0) 91.7 91.3 55.2 37.0 35.7 6.2

DPNgost(8:0.0,0:0.01) | 91.3 908 547 350 333 6.4
DPN,,s+(8:0.0,0:0.05) | 934 932 534 447 425 6.2
DPN, /(6 : 0.5,0 : 0.0) 920 916 323 36.8 348 4.6
DPN,st(8:0.5,0:0.01) | 91.3 908 39.1 371 353 4.8
DPN,,f+(8:0.5,0:0.05) | 93.0 928 494 39.8 383 54

CIFAR-100 Dataset
Methods AUROC AUPR

Max.P Ent. D.Ent | Max.P Ent. D.Ent
Baseline (Standard DNN) 86.8 87.0 - 63.6 64.7 -
DPN,,5+(8: 0.0,0 : 0.0) 86.5 854  50.2 60.7 57.1 21.8
DPN,of+(8: 0.0,0 : 0.01) 86.9 86.2  50.7 61.5 58.5 22.1

(
DPNyost(8:0.0,0:0.05) | 873 867 47.7 64.6 61.7 210
PNso st (8 :0.5,0 :0.0) 86.8 856 520 62.1 582 221
DPN,os¢(8:0.5,0:0.01) | 867 857 527 61.1 575 223
DPN,, ¢ (8:0.5,0:0.05) | 875 87.0 49.6 64.0 615 210

C.2 OuT OF DISTRIBUTION DATASETS
We use a wide range of OOD dataset to evaluate the performance of our proposed OOD detection

models. The OOD images are resized to 32 x 32 before applying to the network. For our evaluations,
we use the entire set of OOD images as described in the following.
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1. TinyImageNet (TIM) (L1 et al. (2017)). This is a subset of Imagenet dataset. It contains
10, 000 test images from 200 different image classes.

2. LSUN (Yu et al.| (2015)). The Large-scale Scene UNderstanding dataset (LSUN) contains
10, 000 images of 10 different scene categories.

3. Places 365 (Zhou et al.|(2017)) consists of 36500 images of 365 scene categories.

4. Textures (Cimpoi et al.| (2014)) contains 5640 textural images in the wild belonging to 47
categories.

5. Gaussian Noise. This is an artificially generated dataset obtained by modifying the in-
domain test images using Gaussian noises sampled from isotropic Gaussian distribution,
N(0,021) with ¢ = 0.25.

C.3 DETAILS OF COMPETITIVE SYSTEMS

We compare the performance of our models with standard DNN as baseline model (Hendrycks
& Gimpel| (2016))), the Bayesian framework, monti-carlo dropout (MCDP) (Gal & Ghahramani
(2016)), DPN pir using the loss function proposed by Malinin & Gales|(2018])), non-Bayesian frame-
works such as ODIN (Liang et al.| (2018))) and outlier exposure (OE) by Hendrycks et al.[(2019).
We use the same architecture as DPNg, f¢mqq for the competitive models. For DPN pjrichiet, We
could not reproduce the same performance as given in Malinin & Gales| (2018) and hence use their
reported results for CIFAR-10 for our comparison.

For MCDP, we use the standard DNN model with randomly dropping the nodes during test time.
The predictive categorical distributions are obtained by averaging the outputs for 10 iterations.

ODIN applies the standard DNN models trained only using in-domain training examples for OOD
detection. During testing phase, it perturbs the input images using FGSM adversarial attack
(Goodfellow et al.|(2014b)))and softmax activation function by incorporating the temperature hyper-
parameter (Hinton et al.|(2015b)). Maximum Probability score is then applied for their uncertainty
measure. They propose to use different hyper-parameters for different OOD examples. However in
practice, the source of expected OOD examples cannot be known. Hence, for our comparisons, we
always set the perturbation size to 0.002 and temperature to 1000.

OE models are trained using the proposed loss function by Hendrycks et al.| (2019). Here, we
use the same training setup as applied for our DPN,, ;¢ models: CIFAR-10 classifiers are trained
using CIFAR-10 training images as in-domain examples and CIFAR-100 training images as OOD
examples. For CIFAR-100, the OE models are trained using CIFAR-10 training images as OOD
examples.

D DIFFERENTIAL ENTROPY MEASURE FOR DIRICHLET PRIOR NETWORK

Differential Entropy of a Dirichlet distribution can be calculated as follows (Malinin & Gales}[2018):

H[p(u’|w*7Dln)] = - /Skfl p(/”"m*a Dl?’l) lnp(/'l"m*a Din)

K K (16)
Y InT(a,) —InT(ag) = Y (e — 1)(¥(ac) — (ao))
c=1

c=1

Note that, o is a function of z*. I" and ¢ denotes the Gamma and digamma functions respectively.
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