Plan2Vec: Unsupervised Representation Learning by Latent Plans

Anonymous authors
Paper under double-blind review

Abstract

Creating a useful representation of the world takes more than just rote memorization of individual data samples. This is because fundamentally, we use our internal representation to plan, to solve problems, and to navigate the world. For a representation to be amenable to planning, it is critical for it to embody some notion of optimality. A representation learning objective that explicitly considers some form of planning should generate representations which are more computationally valuable than those that memorize samples. In this paper, we introduce **Plan2Vec**, an unsupervised representation learning objective inspired by value-based reinforcement learning methods. By abstracting away low-level control with a learned local metric, we show that it is possible to learn plannable representations that inform long-range structures, entirely passively from high-dimensional sequential datasets without supervision. A latent space is learned by playing an “Imagined Planning Game” on the graph formed by the data points, using a local metric function trained contrastively from context. We show that the global metric on this learned embedding can be used to plan with $O(1)$ complexity by linear interpolation. This exponential speed-up is critical for planning with a learned representation on any problem containing non-trivial global topology. We demonstrate the effectiveness of Plan2Vec on simulated toy tasks from both proprioceptive and image states, as well as two real-world image datasets, showing that Plan2Vec can effectively plan using learned representations. Additional results and videos can be found at https://sites.google.com/view/plan2vec.

1 Introduction

Unsupervised representation learning is often motivated by the goal of reducing human involvement in the learning loop, such that an algorithm can learn directly from streams of unlabeled data. Much focus has been placed on an algorithm’s transfer performance across supervised learning tasks. However, for control tasks, where an agent needs to plan with the representation that is learned to go from one state to another, performance is often poor ([Watter et al., 2015](https://arxiv.org/abs/1506.02690)). A quick glance at the representation learned by a variational auto-encoder (VAE) reveals that the learned embedding often contains local patches that are quite reasonable by themselves. However, the global structure of the learned embedding is often “crumpled”, such that Euclidean lines between points that are sufficiently far-apart either cross domain-boundaries, or otherwise detach from the support of the learned manifold (see Fig. 4). This observation implies that although the VAE objective encourages embeddings that behave well locally, memorizing individual image samples by reconstruction is insufficient to attain meaningful global structure.

This raises an interesting and important question: if rote memorization is insufficient, what else do we need, in order to build an intelligent agent that understands the world sufficiently to make good plans?

Various works in *learning plannable representations* attempt to address this issue by learning locally constrained generative models ([Banijamali et al., 2017](https://arxiv.org/abs/1703.05343); [Watter et al., 2015](https://arxiv.org/abs/1506.02690); [Kurutach et al., 2018](https://arxiv.org/abs/1802.08608)). One line of work, motivated by controlling complex dynamic systems directly...
from high-dimensional input, attempts to learn generative models that explicitly impose a reduced local linearity constraint on the learned dynamic manifold (Watter et al., 2015; Banijamali et al., 2017). Such methods contain three major shortcomings. First, some of these formulations rely on learning a forward model, which cannot be applied to datasets where action data is unavailable or ill-defined. Second, these generative models rely heavily on the inductive prior within image generation, which limits the applicability of these methods to domains where visual similarities map well to the conceptual space. Finally, the linear constraint and the optimization objective are both local, yet making plans involves non-local concepts of distances and direction. How to learn from streams of observation data to attain a cognitive map of the problem domain without relying on the image similarity priors provided by generative models, remains an open problem.

In this work, we pose the problem of unsupervised learning a plannable representation as learning a cognitive map of the domain without access to the underlying sampling process and the environment. Such a map has two main properties: First, the map is a global device that can inform conceptual distance between any pairs of observations, beyond the typical limit of a short spatiotemporal window (Perozzi et al., 2014; Caron et al., 2018). Second, this map has to be consistent with the local metric, which is usually abundantly available via self-supervision.

Motivated by this problem, we propose Plan2Vec, a method for unsupervised representation learning that incorporates planning as part of the learning objective. The technical challenges of this work are threefold: First, the standard formulation of reinforcement learning requires substantial human supervision in the form of meticulously shaped dense rewards. Different tasks usually require different reward functions, making it difficult to scale across multiple tasks. The second issue is that reinforcement learning is active, as it requires access to an environment between optimization phases to receive trajectories in order to learn. Third, to plan on a continuous state and action space, one usually needs to learn a closed-form behavior policy that outputs actions, or a forward model of the environment with actions as an input.

The main contribution of this paper overcomes all three of these problems by formulating the problem of learning the global structure of a data manifold as training a planning agent to master an imagined “reaching game” on a graph. To solve the issue of offering a reward, we train a local metric function from local context without supervision, and use it as a sparse, conceptual reward for reaching the goal with hind-sight relabeling. To address the necessity of active RL and extending RL to a passive setting, we remove the need for either action data, or a model of the world, by planning entirely in the latent configuration space on a graph. Lastly, we formulate the policy as a planning network that uses the global metric being learned as a planning heuristic. We call our method Plan2Vec, for learning a plannable embedding space via planning. To help illustrate our method, we lead the introduction of Plan2Vec with a set of toy tasks on simulated navigation domains, and show visualization of the components and learned manifold. We then evaluate Plan2Vec under two challenging task settings: First, we show that we can learn representations on deformable objects such as a piece of rope, which is otherwise hard to model. Moreover, we show qualitative results on visual plans between pairs of rope configurations that are randomly selected from the dataset. Second, we tackle real-world navigation on StreetLearn (Mirowski et al., 2018), where we learn to embed a map directly from videos of a car driving through the streets, with no access to the ground-truth GPS location data. We show quantitatively that under a constrained planning computation budget, the embedding that Plan2Vec learns using a globally consistent planning objective outperforms baselines that only plan with the local metric.

2 Technical Background

We now overview methods that learn a local metric between pairs of images that are close-by, and proximal dynamic programming under a standard Markov decision process (MDP)
formalism (Sutton & Barto, 1998). A more thorough examination of related work can be found in Appendix A.

Learning a Local Metric. Intuitively, a metric is a bivariate function that gives a measure of similarity between two points. Formally, \(f_{a,b:D} : (a, b) \rightarrow \mathbb{R}^+ \) is a symmetric, real-valued, and positive-definite function over its domain \(D \times D \). When distance labels are available one can learn such a function via supervised learning. In reality, however, we often need to work with sequential datasets without access to a sampling policy that is jointly optimized, in which case one cannot assume long-horizon optimality in the sequences we want to learn from. As a result, the distance information between frames of observations is only good up to a limited temporal window, beyond which noise dominates.

In language modeling and unsupervised representation learning domains, it is often easy to construct positive and negative examples, and pose a binary classification objective as a Noise-Contrastive Density Estimator (NCE) (Gutmann & Hyvärinen, 2010),

\[
\mathcal{L}_{\text{NCE}} = -\log \frac{f(x, c)}{\sum_{x \sim \mathcal{X}} f(x, c)},
\]

where \(f \) is a convex function proportional to the density \(p(x, c) \). Minimizing the NCE loss can be mapped to maximizing a lower-bound on the mutual information between the latent code \(c \) and the data distribution \(\mathcal{X} \) (Hjelm et al., 2018),

\[
I(X, c) = \mathbb{E} \left[\log \frac{P(X|C)}{P(X)} \right] \geq \log(N) - \mathcal{L}_{\text{NCE}}.
\]

Rather than directly learning a representation this way (Sermanet et al., 2017), Plan2Vec extends the standard binary NCE objective to learn a local metric function, and uses it as a reward function.

Universal Value Function Approximator as a Metric. We formulate value iteration under the Markov decision process (MDP) formalism (Bellman, 1957). The MDP is parameterized by the tuple \((S, A, P, r) \). \(S \) and \(A \) are the sets of states and actions, \(P(s'|s, a) \) is the transition model of the environment, and \(r(s, a, s') \) is the reward function. An agent is represented by its policy distribution \(\pi(a|s) \). The state value function \(V_\pi : S \rightarrow \mathbb{R} \) represents the expected discounted future value for being at state \(s \), conditioned on the reward \(r \) and the policy \(\pi \). In sample-based value iteration with neural networks, we can learn the value function by minimizing the empirical Bellman-residual

\[
\delta = \| V(s; \theta) - B^*_\pi V \|,
\]

where the Bellman optimality operator is defined as

\[
B^*_\pi V = \max_a P(s_{t+1}|s_t, a_t) \left[R(s_t, a_t, s_{t+1}) + \gamma \max_a V(s_{t+1}; \theta) \right].
\]

Universal Value Function Approximators (UVFAs) (Schaul et al., 2015) extend this task-specific reward to learn a “universal” value function by generalizing to all goals \(g \in S \). The reward now conditions on the goal \(r(s, a, s', g) \). Assuming that the goals are uniformly sampled from \(S \) and the value function is symmetric, UVFA becomes a metric on \(S \) up to a correction constant. If we further assume that the MDP is deterministic, the sample-based Bellman residual can be reduced to

\[
V(s, g; \theta) \leftarrow r(s, a, s', g) + \gamma V(s', g; \theta),
\]

which we use to learn our latent space, as detailed in Sec. C.

3 Learning Representations by Latent Planning

Our goal is to learn a representation that goes beyond rote memorization of the dataset. Critically, we want the structure of the embedding to capture the global topology of the dataset, such that for any observation \(o \) in the domain, we can make useful inference with respect to another sample \(o_{\text{goal}} \), no matter how far away \(o_{\text{goal}} \) is. Having access to such a global metric, \(\forall o, o_{\text{goal}} \) pairs, would enable effective planning on non-trivial, high-dimensional, and/or complex topologies that are otherwise prohibitively slow.
To achieve this goal, we first depart from the i.i.d. assumption that supervised learning methods typically make. If all datapoints are independent, we would need to provide supervision in the form of labels to relate one sample to another. Our key assumption is that in a sequential dataset, the temporal sequence usually involves a policy that is locally optimal over a short temporal window. Geometrically speaking, this is the same as saying one can draw geodesics on a manifold by connecting Euclidean segments between points on the manifold, that are sufficiently short. On the learning side, we notice another benefit, that is memorizing data-pairs in a reduced, local neighborhood (w.r.t. each other) is a much easier task in comparison to learning the global metric where there is no constraint on how far the two points could be. This reduced input domain leads to improved generalization, as well as allowing us to use less complex models. We cast this unsupervised representation learning problem from a passive dataset as a reinforcement learning problem on a graph. Different from Watter et al. (2015), Banijamali et al. (2017) and similar to Kurutach et al. (2018), our method does not rely on dynamics of the underlying environment in the form of sampled action data, and neither do we learned a forward model, which distracts from long-range planning. Instead, our imagined game occurs on a graph where disjoint temporal sequences are connected by the local metric function. Our network then optimizes the embedding of this graph by learning a policy for navigating this graph, where this global metric is used as a planning heuristic.

3.1 Noise-Contrastive Learning the Local Metric

In many representation learning problems, one has access only to noisy binary or categorical learning signals. This is because it is often easy to find symmetry transformations in a particular problem that make it trivial to define a binary or ordered categorical relationship between data-points. In skip-grams (Mikolov et al. 2013; Jouzeljewicz et al. 2016) the classifier decides whether a word belongs to a certain context. In time-contrastive networks (Sermanet et al. 2017) classifiers decide whether two views correspond to the same scene. In our case, we extend this dichotomy to one of \{identical, close, or far-apart\}. Formally this can be considered as a natural extension of the standard definition of a metric from the positive real-line to a directed set where each element in the set corresponds to one of the categories. To reflect the order between the category labels, we use a regression objective. The labels are designated 0 for identity, \(k/K\) for true neighbors that are \(k\) steps apart if \(k \leq K\), and 2 for negative samples for other trajectory or the same trajectory but more than \(K\) steps apart. Alg. \ref{alg:CLML} explains the procedure in detail. Fig. \ref{fig:path} illustrates the well-behaved distribution of local distance score for one of our experimental domains. Visualization of pairs show new transitions that are not present in the training trajectories.

3.2 Extrapolating Local Metric to a Globally Consistent Embedding By Planning

To extrapolate the local metric information to a globally consistent embedding that can speed up planning, we first connect those disjoint trajectories in the dataset using the new

\[\text{Algorithm 1} \quad \text{Contrastive Local Metric Learning}\]

\begin{enumerate}
 \item Initialize \(f_\phi\)
 \item Sample \(x_t\) and \(y^0 = 0\)
 \item Sample \(x_t, x_{t+1}\) where \(x_t, x_{t+1} \in \tau_t, y^+ = 1\)
 \item Sample \(x_t, x^-\) where \(x^- \sim \tau_j\) where \(x \notin \tau_j, y^- = 2\)
 \item \textbf{for} each epoch \textbf{do}
 \item \hspace{1em} minimize \(\|f_\phi(x, x^-) - y^+\|_2\) for \(x, x^{+,1}, y^{+,1}\)
 \item \textbf{end for}
\end{enumerate}

Figure 1: Example of a path (black dashed arrow) found across independent trajectories (colored lines) from an initial state (gray circle) to a goal state (blue square), with learned local metric creating new connections.

\[\text{expressed over pairs, even though each sample in the pair covers the entire support of the state space.}\]
connections found by the trained local metric function \(f_\phi \) (see Alg. 3 and Fig. 3). Our goal is to learn an embedding on which there exists a metric that correctly reflects the difference in reachability between points in the neighborhood of the current observation, and the goal. Now formulated as an reinforcement learning problem, this is equivalent to learning a goal-conditioned value function \(V(s, g) \) at state \(s \) towards the goal \(g \). Similarly, the local metric \(f \) becomes the cost to travel the distance between state \(s \) and the next step \(s' \). The action set \(\mathcal{A}(s) \) for the agent consists of a flexible number 1-step neighbors, and is defined differently at each node \(s \) in the graph. Now to learn this value function, we propose two variants: The first variant (see Alg. 3) runs multi-step value iteration using transitions sampled from the graph. To improve rate of learning, we use hindsight experience re-labeling [Andrychowicz et al. 2017] to insert positive reaching examples. The second variant (see Alg. 3 in appendix) replaces 1-step greedy policy used to sample trajectories with Dijkstra’s shortest path first (SPF) search [Dijkstra 1959] on the graph [Zhang et al. 2018]. The distance of the learned metric function \(V(s, g) \) is the sum of each segment in the shortest plan.

Algorithm 2 Unsupervised Learning by Latent Plans

Require: planning horizon \(H \)
Require: set of observation sequences \(S = \{r = x_{[0:T]}\} \)
Require: local metric function \(\varphi(x, x') \rightarrow \mathbb{R}^+ \)
Require: reward function \(r(x, x_g) = -f_\phi(x, x_g) \)

1: Initialize global embedding \(\Phi(x, x') \rightarrow \mathbb{R}^+ \)
2: repeat
3: \(\text{sample } x_0, x_g \in S \text{ as start and goal} \)
4: \(\text{repeat } \{h=0, h++\} \)
5: \(\text{find set } n = \{x' \text{ s.t. } \varphi(x_0, x') \in N(1, \epsilon)\} \)
6: \(\text{find } x^* = \arg \min_{x' \in n} \varphi(x_0, x_g) \)
7: \(\text{compute } r_t = r(x^*, x_g) \)
8: \(\text{add } (x, x^*, r_t, x_g) \text{ to buffer } B \)
9: until \(r = 0 \) or \(h = H \)
10: Sample \((x, x', r, x_g) \) from \(B \)
11: minimize \(\delta = \|\Phi(x, x_g), r + V_\Phi(x', x_g)\|_p \)
12: until convergence

4 Experimental Evaluation

In this section, we experimentally answer the following questions: 1) Can we build a graph from sequential datasets using a contrastively trained local metric? 2) Can we extrapolate this local metric to a global embedding, and make planning easier? 3) Would Plan2Vec work in domains other than navigation, and learn features that are not visually apparent? To answer these questions, we show quantitative results on simulated 2D navigation. Then we extend Plan2Vec to the challenging deformable object manipulation tasks. Finally, we show that Plan2Vec can learn non-visual features of the domain where other methods perform poorly, on a real-world large-scale street view dataset.

4.1 Simulated Navigation

Our first domain is a room with a continuous, 2-dimensional state space. A camera looks down on a square arena with a robot (blue block). The trajectory data consist of top-down images of the arena. We use ground-truth coordinates for evaluation only. Our experiment covers three room layouts with increasing level of difficulty: an open room, a room with a table in the middle, and a room with a wall separating it into two corridors that resembles a C-shaped maze (see Fig. 3).

Connecting The Dots by Generalization. We first investigate if the contrastively trained local metric function generalizes. To train the local metric contrastively on this domain, we restrict \(K = 1 \), such that only observations that are 1-step away are considered neighbors. The local metric predicts a distance score that is between 0 and 2, where 0 corresponds to identical observations, 1 to neighbors, and 2 to observations that are further apart. Fig. 3a shows the distribution of the score against ground-truth distance. In short ranges, the learned model is able to recover the local metric but saturates as distances...
Figure 3: (1) Local metric score in comparison to ground-truth L_2 distance with predicted neighbors in red. (2) Trajectories given in the dataset. (3) Points from different trajectories are connected by generalizing the local-metric function. Out-of-training-set Connections shown in red. (4) Step sequence in C-Maze, learned via Plan2Vec. Gray dashed circle is the goal position. Red dot is the planned next step (1-step), greedy w.r.t the global metric function being learned. Blue dots are the neighbors sampled using the local metric function. Gray dot indicates the current and past positions of the agent. Sequence shows the agent getting around the wall in C-Maze. (5) Learned value function for a goal location on the bottom left corner (white dashed circle). Blue color is further away, red is close.

Figure 4: Learned Embedding with VAE (top row) vs Plan2Vec (bottom row). The columns correspond to the Open Room, Table, and C-Maze domains. Representation learned by the VAE is wrapped globally. Whereas Plan2Vec correctly stretches out the learned embedding. In C-Maze, the two ends of the tunnel are further apart, correctly reflecting the decrease in reachability between those points.

Figure 5: (left and middle) Difference in learned global metric on Open Room and C-Maze. The goal used to query the value map is indicated by the dashed circle. (right) shows the agent getting around the wall with the learned embedding (blue), where as an Euclidean planner gets stuck.

Table 1: Planning Performance on 2D Navigation

<table>
<thead>
<tr>
<th>State Input</th>
<th>Open Room</th>
<th>Table</th>
<th>C-Maze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>100.0±0.0</td>
<td>96.3±1.4</td>
<td>88.7±3.6</td>
</tr>
<tr>
<td>Plan2vec (L2)</td>
<td>100.0±0.0</td>
<td>96.6±0.9</td>
<td>86.0±4.1</td>
</tr>
<tr>
<td>Plan2vec (pseudo)</td>
<td>96.9±0.5</td>
<td>96.7±2.0</td>
<td>83.1±3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Input</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan2vec (L2)</td>
<td>90.0±2.0</td>
<td>76.4±9.2</td>
<td>80.2±6.3</td>
</tr>
<tr>
<td>SPTM (1-step)</td>
<td>39.7±6.1</td>
<td>23.7±6.1</td>
<td>31.4±6.5</td>
</tr>
<tr>
<td>VAE</td>
<td>73.9±4.3</td>
<td>30.2±6.5</td>
<td>52.7±5.8</td>
</tr>
<tr>
<td>Random</td>
<td>3.2±2.6</td>
<td>3.5±2.5</td>
<td>4.7±2.8</td>
</tr>
</tbody>
</table>

Accelerating Planning with a Learned Cognitive Map. The embedding Plan2Vec learns contains long-range reachability information of the domain, and has the potential to greatly accelerate planning. To evaluate if this is true, we compare with SPTM (Savinov et al, 2018) and VAE (Kingma & Welling, 2013) learned representations under a restricted planning budget. Table 1 shows the success rates on the 2D navigation domains when the planning horizon is limited to a single step in the future. Under this regime, SPTM fails to succeed most of the time. This is because the local similarity increase. The score is well-behaved enough that it is easy to pick suitable values for the neighbor threshold (indicated by the ceiling of the red points). We plot new transitions found by the local metric against those in the dataset (blue). Fig. 3d visualizes the sampled trajectories (in blue, of length 4), whereas Fig. 3c shows the new ones found by the learned local metric function.
function used in the parametric memory does not contain long-range information about
the domain, and hence is insufficient as a planning heuristic for a memoryless planner.
The VAE learned embedding does better on the Open Room domain, but falls short on
more complex room arrangements. In comparison, the representation learned by Plan2Vec
succeeds most of the time. To investigate this further, we visualize the learned global
embedding for VAE versus that of Plan2Vec (Fig. 4). With the Open Room, Plan2Vec
learns a latent space that looks flat. With Table and C-Maze, two points that are close
in Euclidean space but separated by the wall appear far away in the learned latent space,
reflecting the reduced reachability in between. For latent space higher dimension than 3,
we can directly visualize the value function as shown in Fig. 5.

4.2 Manipulation of Deformable Objects

While we have made strides in controlling rigid bodies with reinforcement learning, manipu-
ulating deformable objects still remains an open problem. Methods so far rely on learning
a generative model over the image sample (Kurutach et al., 2018). To learn a plannable
representation in a purely discriminative manner we now apply our method to the rope
dataset (Wang et al., 2018). The rope dataset is composed of 18 independent trajectories
with 14k images total. Each image is a gray scale photo of a piece of rope wrapped around
two pegs that are fixed on the table surface. The two pegs help define distinct topology
for the configuration of the rope that needs to be respected for reasonable transitions. The
challenge with the rope dataset is that it does not have a well-defined low-dimensional con-
figuration space, making it difficult to design quantitative evaluation metrics. To get around
this issue, we evaluate our method with planning on single trajectories, where the original
sequences of observation can be used as qualitative baselines. We do find that our local
metric generates a connected graph over all 18 trajectories, therefore there exists a viable
plan from any image o_i to any goal image o_g. The difficulty of the planning problem varies
with the connectivity of the graph, which is in turn dictated by the threshold set on local
metric ϕ. The results presented here uses the second formulation (see Appendix B) that
samples with Dijkstra’s shortest path first algorithm. Zhang et al. (2018) perform planning
in this way using an attribute graph to perform block stacking, but learning a representa-
tion is more compact and generalizable. Fig. 6 shows the distribution of neighbors for a set
threshold $T = 1.1$, with both in and out-trajectory neighbors. This highlights the difficult
of the rope manipulation task and learning a latent representation that reflects a sparse
connectivity graph. Fig. 7 shows an example of plan generated by Plan2Vec for a given
start and goal state, where we can see that each transition only perturbs the configuration
of the rope locally.

![Figure 6: Number of neighbors per node with examples of out of trajectory connections. Original nodes are left of the red dashed line and out of trajectory neighbors in orange.](image_url)

![Figure 7: Example of visual plan generated by Plan2Vec on the Rope Domain. Showing steps coming from two different trajectories (8 and 3). Each transition only perturbs the configuration of the rope locally.](image_url)
4.3 Beyond Visual Similarity: Real-world Navigation

To answer the question of whether Plan2Vec is able to learn non-visual features of the domain, we evaluate on a visual navigation task using the real world dataset StreetLearn (Mirowski et al., 2018). In comparison to the previous two tasks, the StreetLearn dataset offers an interesting alternative because the spatial relationship between views at different locations is not visually apparent. One can not easily tell that Union Square is to the north of Washington Square Park from street views alone. Yet a city resident knows exactly which general direction to turn to. This is in stark contrast to both the Room domain and the rope domain, where visual similarity is easily mapped to being close in the configuration space. We quantitatively evaluate the planning performance of Plan2Vec versus the VAE baseline in Table 2 using generated datasets (Fig. 8). This result shows that the planning performance of VAE on the StreetLearn dataset is barely above that of a random baseline. This is a common short-coming with unsupervised models that rely on the inductive prior of the generator to learn. Plan2Vec, on the other hand, uses planning as a general framework to extend any type of local and semantically meaningful signal to a consistent global embedding. We interpret these results by hypothesizing that Plan2Vec is successful in learning non-visual concepts of reachability (in this case an idea of the map), whereas VAE only clusters the images by visual similarity.

In Table 2, we also include comparisons with SPTM, where the agent is only allowed to plan 1-step ahead. This computation-constrained regime is interesting because a good planning heuristic is critical for good search performance. The result shows that in this regime, Plan2Vec performs well above SPTM, which backs our intuition that a good representation can and should alleviate some of the computational cost of planning at test time. Formally, Plan2Vec’s 1-step greedy planning is \(O(1)\) at test time, whereas SPTM is \(O(E)\) where \(E\) is the size of the graph. This also shows that Plan2Vec memorizes information that is computationally more valuable. Lastly, we observe that Plan2Vec generalizes – despite the agent never having seen a particular combination of starts and goals in the original dataset – by successfully navigating using the values acquired during training time as evidenced by the large jump in performance compared to other methods in Table 2.

<table>
<thead>
<tr>
<th>StreetLearn</th>
<th>Tiny</th>
<th>Small</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan2vec (Ours)</td>
<td>92.2 ± 2.9</td>
<td>57.2 ± 4.3</td>
<td>51.4 ± 6.9</td>
</tr>
<tr>
<td>SPTM (1-step)</td>
<td>31.5 ± 5.8</td>
<td>19.3 ± 5.8</td>
<td>20.2 ± 5.2</td>
</tr>
<tr>
<td>VAE</td>
<td>25.5 ± 5.6</td>
<td>14.4 ± 4.8</td>
<td>16.9 ± 5.5</td>
</tr>
<tr>
<td>Random</td>
<td>19.9 ± 5.4</td>
<td>12.0 ± 5.2</td>
<td>12.7 ± 4.6</td>
</tr>
</tbody>
</table>

Table 2: 1-step Planning Performance on StreetLearn. Numbers are percentage of success for reaching goals that are within 50 steps of the starting point. Full Graph Search methods succeed 100% of the time.

In Table 2, we also include comparisons with SPTM, where the agent is only allowed to plan 1-step ahead. This computation-constrained regime is interesting because a good planning heuristic is critical for good search performance. The result shows that in this regime, Plan2Vec performs well above SPTM, which backs our intuition that a good representation can and should alleviate some of the computational cost of planning at test time. Formally, Plan2Vec’s 1-step greedy planning is \(O(1)\) at test time, whereas SPTM is \(O(E)\) where \(E\) is the size of the graph. This also shows that Plan2Vec memorizes information that is computationally more valuable. Lastly, we observe that Plan2Vec generalizes – despite the agent never having seen a particular combination of starts and goals in the original dataset – by successfully navigating using the values acquired during training time as evidenced by the large jump in performance compared to other methods in Table 2.

5 Conclusion

We have presented an approach to attain a globally consistent representation from streams of observation data in a purely unsupervised fashion without generating images. Integral to our approach is the incorporation of planning as part of our learning objective, to enforce the semantic notion of reachability between any pair of images on the learned embedding. This differs our approach from previous work in learning plannable representations – in that the plannability is a consequence of the planning objective, instead of local linearity constraints. In addition, we realize that formulating unsupervised learning as a reinforcement learning problem has the added benefit of allowing one to insert arbitrary local information about the domain as the reward \(R(s, s')\), and the explicit including of a maximizing inner step. In this work we chose to avoid the introduction of variational treatments to the latent space, but we think the inclusion of such treatment would greatly improve the quality of the learned embedding.
REFERENCES

APPENDIX

A ADDITIONAL RELATED WORK

The work most similar to ours from the manifold learning community is DeepWalk ([Perozzi et al., 2014]). DeepWalk aims to embed a social graph by randomly sampling trajectories, then use skip-gram ([Mikolov et al., 2013]) to embed each graph node contrastively from its contrast. This is related to the contrastive learning objective we use to train our local metric function. Despite of this, the random walk DeepWalk employs to sample those trajectories is limited in terms of distance of travel. As a result it falls under the category of representation learning algorithms that only learn from a localized context. Similarly there is strong connection between our value-iteration learning objective and the diffusion map literature. In diffusion map, the distance on the learned manifold measures the “diffusion distance” between two points on a graph G under a markovian transition kernel ([Socher & Hein, 2008]). One can consider value-iteration as a non-parametric version of diffusion map using neural networks for the kernel. A critical difference is that the transition kernel in diffusion maps is not condition on a goal whereas the policy does. As a consequence, the diffusion distance fall-off exponentially as the number of steps increases, just like with DeepWalk. Locally linear embeddings (LLE) could be considered a “stronger” version of skip-gram, where linear contributions of each neighbor is preserved. However, LLE enforces global structure, and prevent volume collapse via addition of a global volume regularization term. This is similar to the variational prior in a variational auto-encoder (VAE) in that both lack meaningful alignment with planning semantics. Recent work in “robust features” point to a connection between the injected noise and the alignment between the input and output manifold ([Ilyas et al., 2019]) that might be an interesting direction to explore.

Our treatment of the state space dataset as a graph is quite similar to the semi-parametric topological memory (SPTM) introduced in ([Savinov et al., 2018]). In SPTM however, the authors are concerned that a metric embedding for a domain does not always exist, so the focus becomes solving navigation instead of learning a vector embedding. In our experiment, we show quantitatively that the local embedding SPTM uses to make plans is insufficient if the hard-coded planner has a restricted planning budget, whereas the globally consistent representation that Plan2Vec learns via value iteration still plans well. Our result illustrates the importance for an agent to acquire such a globally view of the domain and use it as heuristic for planning, despite that this representation might not carry a true metric.

Embed to control (E2C), RCE, L-SBMP and causal InfoGAN ([Watter et al., 2015; Bani-jamali et al., 2017; Ichter & Pavone, 2018; Kurutach et al., 2018]) are a line of generative model that explicitly incorporate forward modeling in the latent space. They show that the learned representation is plannable, without directly incorporating a planner as part of their learning objective. Our goal is drastically different – Plan2Vec learns a representation by planning, as opposed to just showing one can plan with a learned representation. Plan2Vec explicitly acquires the concept of “reachability” conditioned on an optimal policy as part of the representation. This results in a semantically meaningful and locally consistent global structure.

Another branch of work coming from the reinforcement learning community are self-supervised or task-agnostic RL ([Florensa et al., 2019; Kalin et al., 2017; Pong et al., 2019]). These work aim to reduce the amount of human involvement in designing reinforcement learning algorithms for individual tasks. Plan2Vec is distinguished from these proposals in that we do not aim to learn a policy distribution $\pi(a|o)$. Instead, we want to learn generalizable representations of the environments that makes learning such a low-level policy, or running classical control algorithms more efficient. By abstracting away the actions, Plan2Vec is able to plan over much longer horizons, as demonstrated in Sec. 4.

B ALTERNATIVE VARIANT OF PLAN2VEC

In value-based reinforcement learning algorithm, the behavioral policy is responsible for sampling from the environment. A deficiency with a memory-less ϵ-greedy behavioral policy
we found, is that sometimes the agent would get “stuck” in a cycle, where it keep traversing through the same nodes back and forth. This is an issue that can be solved by adopting a planning policy that has memory.

The second variant of our algorithm replaces the ϵ-greedy policy with Dijkstra’s shortest path first (SPF) search algorithm for sampling (in red). Due to the finite size of the dataset, we use the planned trajectory to directly train the value function via regression. The sampling efficiency of the planning algorithm can be future improved by replacing SPF with methods that uses planning heuristic, for instance A*.

<table>
<thead>
<tr>
<th>Algorithm 3</th>
<th>Plan2Vec with Dijkstra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Require:</td>
<td>planning horizon H</td>
</tr>
<tr>
<td>Require:</td>
<td>set of observation sequences $S = { \tau = x_{[0:T]} }$</td>
</tr>
<tr>
<td>Require:</td>
<td>local metric function $\varphi(x, x') \Rightarrow \mathbb{R}^+$</td>
</tr>
<tr>
<td>Require:</td>
<td>reward function $r(x, x_g) = -f_\theta(x, x_g)$</td>
</tr>
<tr>
<td>Require:</td>
<td>Dijkstra D</td>
</tr>
<tr>
<td>1:</td>
<td>Initialize global embedding $\Phi(x, x') \Rightarrow \mathbb{R}^+$</td>
</tr>
<tr>
<td>2:</td>
<td>repeat</td>
</tr>
<tr>
<td>3:</td>
<td>sample $x_0, x_g \in S$ as start and goal</td>
</tr>
<tr>
<td>4:</td>
<td>shortest plan ${ s_{[0:H]} } = D(G, x, x_g)$</td>
</tr>
<tr>
<td>5:</td>
<td>minimize $\delta = | V_\theta(x, x_g), \sum_{s_{[0:H]}} f(s_i, s_{i+1}) |_p$</td>
</tr>
<tr>
<td>6:</td>
<td>until convergence</td>
</tr>
</tbody>
</table>