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ABSTRACT

Creating a useful representation of the world takes more than just rote mem-
orization of individual data samples. This is because fundamentally, we use
our internal representation to plan, to solve problems, and to navigate the
world. For a representation to be amenable to planning, it is critical for it
to embody some notion of optimality. A representation learning objective
that explicitly considers some form of planning should generate representa-
tions which are more computationally valuable than those that memorize
samples. In this paper, we introduce Plan2Vec, an unsupervised repre-
sentation learning objective inspired by value-based reinforcement learning
methods. By abstracting away low-level control with a learned local metric,
we show that it is possible to learn plannable representations that inform
long-range structures, entirely passively from high-dimensional sequential
datasets without supervision. A latent space is learned by playing an “Imag-
ined Planning Game" on the graph formed by the data points, using a lo-
cal metric function trained contrastively from context. We show that the
global metric on this learned embedding can be used to plan with O(1)
complexity by linear interpolation. This exponential speed-up is critical
for planning with a learned representation on any problem containing non-
trivial global topology. We demonstrate the effectiveness of Plan2Vec on
simulated toy tasks from both proprioceptive and image states, as well as
two real-world image datasets, showing that Plan2Vec can effectively plan
using learned representations. Additional results and videos can be found
at https://sites.google.com/view/plan2vec.

1 INTRODUCTION

Unsupervised representation learning is often motivated by the goal of reducing human in-
volvement in the learning loop, such that an algorithm can learn directly from streams of
unlabeled data. Much focus has been placed on an algorithm’s transfer performance across
supervised learning tasks. However, for control tasks, where an agent needs to plan with
the representation that is learned to go from one state to another, performance is often
poor (Watferefall, 20IH). A quick glance at the representation learned by a variational
auto-encoder (VAE) reveals that the learned embedding often contains local patches that
are quite reasonable by themselves. However, the global structure of the learned embedding
is often “crumpled”, such that Euclidean lines between points that are sufficiently far-apart
either cross domain-boundaries, or otherwise detach from the support of the learned man-
ifold (see Fig.H). This observation implies that although the VAE objective encourages
embeddings that behave well locally, memorizing individual image samples by reconstruc-
tion is insufficient to attain meaningful global structure.

This raises an interesting and important question: if rote memorization is insufficient, what
else do we need, in order to build an intelligent agent that understands the world sufficiently
to make good plans?

Various works in learning plannable representations attempt to address this issue by learning
locally constrained generative models (Banijamali et all, 2017; Watfer et all, POTH; Kurufach
ef all, 2OTR). One line of work, motivated by controlling complex dynamic systems directly
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from high-dimensional input, attempts to learn generative models that explicitly impose
a reduced local linearity constraint on the learned dynamic manifold (Watfer ef all, POTH;
Banijamali et all, 2017). Such methods contain three major shortcomings. First, some of
these formulations rely on learning a forward model, which can not be applied to datasets
where action data is unavailable or ill-defined. Second, these generative models rely heav-
ily on the inductive prior within image generation, which limits the applicability of these
methods to domains where visual similarities map well to the conceptual space. Finally, the
linear constraint and the optimization objective are both local, yet making plans involves
non-local concepts of distances and direction. How to learn from streams of observation data
to attain a cognitive map of the problem domain without relying on the image similarity
priors provided by generative models, remains an open problem.

In this work, we pose the problem of unsupervised learning a plannable representation as
learning a cognitive map of the domain without access to the underlying sampling process
and the environment. Such a map has two main properties: First, the map is a global device
that can inform conceptual distance between any pairs of observations, beyond the typical
limit of a short spatiotemporal window (Perozzi_ef all, P014; Caron_ef_all, 2OIR). Second,
this map has to be consistent with the local metric®, which is usually abundantly available
via self-supervision.

Motivated by this problem, we propose Plan2Vec, a method for unsupervised representa-
tion learning that incorporates planning as part of the learning objective. The technical
challenges of this work are threefold: First, the standard formulation of reinforcement learn-
ing requires substantial human supervision in the form of meticulously shaped, dense re-
wards. Different tasks usually require different reward functions, making it difficult to scale
across multiple tasks. The second issue is that reinforcement learning is active, as it re-
quires access to an environment between optimization phases to receive trajectories in order
to learn. Third, to plan on a continuous state and action space, one usually needs to learn
a closed-form behavior policy that outputs actions, or a forward model of the environment
with actions as an input.

The main contribution of this paper overcomes all three of these problems by formulating the
problem of learning the global structure of a data manifold as training a planning agent to
master an imagined “reaching game” on a graph. To solve the issue of offering a reward, we
train a local metric function from local context without supervision, and use it as a sparse,
conceptual reward for reaching the goal with hind-sight relabeling. To address the necessity
of active RL and extending RL to a passive setting, we remove the need for either action
data, or a model of the world, by planning entirely in the latent configuration space on a
graph. Lastly, we formulate the policy as a planning network that uses the global metric
being learned as a planning heuristic. We call our method Plan2Vec, for learning a plannable
embedding space via planning. To help illustrate our method, we lead the introduction of
Plan2Vec with a set of toy tasks on simulated navigation domains, and show visualization
of the components and learned manifold. We then evaluate Plan2Vec under two challenging
task settings: First, we show that we can learn representations on deformable objects such
as a piece of rope, which is otherwise hard to model. Moreover, we show qualitative results
on visual plans between pairs of rope configurations that are randomly selected from the
dataset. Second, we tackle real-world navigation on StreetLearn (IMirowski ef all, POIR),
where we learn to embed a map directly from videos of a car driving through the streets,
with no access to the ground-truth GPS location data. We show quantitatively that under
a constrained planning computation budget, the embedding that Plan2Vec learns using a
globally consistent planning objective outperforms baselines that only plan with the local
metric.

2 TECHNICAL BACKGROUND

We now overview methods that learn a local metric between pairs of images that are close-
by, and proximal dynamic programming under a standard Markov decision process (MDP)

IThis can be relaxed into a pseudo metric, allowing different images to have zero conceptual
distances in-between. This does not affect the applicability of our approach.
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formalism (Suffon_& Rarfd, [998). A more thorough examination of related work can be
found in Appendix [Al

Learning a Local Metric. Intuitively, a metric is a bivariate function that gives a mea-
sure of similarity between two points. Formally, f,pwp : (a,b) — Rt is a symmetric,
real-valued, and positive-definite function over its domain D x D. When distance labels are
available one can learn such a function via supervised learning. In reality, however, we often
need to work with sequential datasets without access to a sampling policy that is jointly
optimized, in which case one cannot assume long-horizon optimality in the sequences we
want to learn from. As a result, the distance information between frames of observations is
only good up to a limited temporal window, beyond which noise dominates.

In language modeling and unsupervised representation learning domains, it is often easy
to construct positive and negative examples, and pose a binary classification objective as
a Noise-Contrastive Density Estimator (NCE) (Gutmann & Hyvarinen, POI0),

f(xi’ C)
L =—log =—"—""—— 1
NCE g ZxNX fz,c)’ (1)
where f is a convex function proportional to the density p(x,c). Minimizing the NCE loss
can be mapped to maximizing a lower-bound on the mutual information between the latent
code ¢ and the data distribution X (Hjelm et all, PZOIR),

P(X]|C)
I(X,¢c)=E|log———=| >log(N) — L . 2
(6,0 = & 1og Tt > tog(v) Ly )
Rather than directly learning a representation this way (Sermanef ef all, 2017), Plan2Vec
extends the standard binary NCE objective to learn a local metric function, and uses it as
a reward function.

Universal Value Function Approximator as a Metric. We formulate value iteration
under the Markov decision process (MDP) formalism (Bellman, 1957). The MDP is param-
eterized by the tuple (S, A, P,r). S and A are the sets of states and actions, P(s'|s,a) is
the transition model of the environment, and r(s, a, s’) is the reward function. An agent is
represented by its policy distribution 7(a|s). The state value function V; : S — R represents
the expected discounted future value for being at state s, conditioned on the reward r and
the policy 7. In sample-based value iteration with neural networks, we can learn the value
function by minimizing the empirical Bellman-residual

§=||V(s;0) - B:V||, (3)

where the Bellman optimality operator is defined as
BLV = H}laXP(St+1|St, az) | R(st, ag, St41) + 7y max V(st+1;0) | - (4)

Universal Value Function Approximators (UVFAs) (Schanl_ef"all, PZ0TH) extend this task-
specific reward to learn a “universal” value function by generalizing to all goals g € S.
The reward now conditions on the goal 7(s,a, s’, g). Assuming that the goals are uniformly
sampled from S and the value function is symmetric, UVFA becomes a metric on S up to a
correction constant. If we further assume that the MDP is deterministic, the sample-based
Bellman residual can be reduced to

V(s,9:0) < r(s,a,5,9) +7V(s',9:0), (5)
which we use to learn our latent space, as detailed in Sec. B=2.

3 LEARNING REPRESENTATIONS BY LATENT PLANNING

Our goal is to learn a representation that goes beyond rote memorization of the dataset.
Critically, we want the structure of the embedding to capture the global topology of
the dataset, such that for any observation o in the domain, we can make useful infer-
ence with respect to another sample 0goa1, no matter how far away o0goal is. Having
access to such a global metric, V0,0g0a1 pairs, would enable effective planning on non-
trivial, high-dimensional, and/or complex topologies that are otherwise prohibitively slow.

3
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To achieve this goal, we first depart from the i.i.d. as-
sumption that supervised learning methods typically
make. If all datapoints are independent, we would
need to provide supervision in the form of labels to
relate one sample to another. Our key assumption is
that in a sequential dataset, the temporal sequence
usually involves a policy that is locally optimal over
a short temporal window. Geometrically speaking,
this is the same as saying one can draw geodesics on a
manifold by connecting Euclidean segments between
points on the manifold, that are sufficiently short.
On the learning side, we notice another benefit, that
is memorizing data-pairs in a reduced, local neigh-
borhood (w.r.t. each other) is a much easier task in
comparison to learning the global metric where there
is no constraint on how far the two points could be.
This reduced input domain? leads to improved gen-
eralization, as well as allowing us to use less complex
models. We cast this unsupervised representation
learning problem from a passive dataset as a reinforcement learning problem on a graph.
Different from Waffer ef all (200H); Banijamali et all (2007) and similar to Kurufach ef al

(201R), our method does not rely on dynamics of the underlying environment in the form
of sampled action data, and neither do we learned a forward model, which distracts from
long-range planning. Instead, our imagined game occurs on a graph where disjoint tempo-
ral sequences are connected by the local metric function. Our network then optimizes the
embedding of this graph by learning a policy for navigating this graph, where this global
metric is used as a planning heuristic.

Figure 1: Example of a path (black
dashed arrow) found across indepen-
dent trajectories (colored lines) from
an initial state (gray circle) to a goal
state (blue square), with learned lo-
cal metric creating new connections.

3.1 NOISE-CONTRASTIVE LEARNING THE LOCAL METRIC

In many representation learning prob-
lems, one has access only to noisy bi-
nary or categorical learning signals.
This is because it is often easy to find
symmetry transformations in a par-
ticular problem that make it trivial
to define a binary or ordered categori-
cal relationship between data-points.
In skip-grams (Mikolov_ef_all, DOT3;
Tozetfowicz ef_all, ZOIR) the classifier
decides whether a word belongs to a certain context. In time-contrastive networks (Sermanef
ef-all) 20I7) classifiers decide whether two views correspond to the same scene. In our case,
we extend this dichotomy to one of {identical, close, or far-apart}. Formally this can be
considered as a natural extension of the standard definition of a metric from the positive
real-line to a directed set where each element in the set corresponds to one of the categories.
To reflect the order between the category labels, we use a regression objective. The labels
are designated 0 for identity, k/K for true neighbors that are k steps apart if k¥ < K, and
2 for negative samples for other trajectory or the same trajectory but more thank K steps
apart. Alg. 0 explains the procedure in detail. Fig. B illustrates the well-behaved distribu-
tion of local distance score for one of our experimental domains. Visualization of pairs show
new transitions that are not present in the training trajectories.

Algorithm 1 Contrastive Local Metric Learning

Require: set of observation sequences {7 = zjo.17}

: Initialize fy
Sample z; and z1 = ¢, yI =0
Sample mt,m;:l where x;, 2441 €7, yT =1
Sample x;, z~ where ©~ ~ 7; where ¢ ¢ 75, y~ =2
for each epoch do

minimize || fg(z,z*) — y*||2 for z, 2T, y*!
end for

3.2 EXTRAPOLATING LocAL METRIC TO A GLOBALLY CONSISTENT EMBEDDING BY
PLANNING

To extrapolate the local metric information to a globally consistent embedding that can
speed up planning, we first connect those disjoint trajectories in the dataset using the new

Zexpressed over pairs, even though each sample in the pair covers the entire support of the state
space.
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connections found by the trained local metric function fy (see Alg. M and Fig. Bc). Our goal
is to learn an embedding on which there exists a metric that correctly reflects the difference
in reachability between points in the neighborhood of the current observation, and the goal.
Now formulated as an reinforcement learning problem, this is equivalent to learning a goal-
conditioned value function V (s, g) at state s towards the goal g. Similarly, the local metric f
becomes the cost to travel the distance between state s and the next step s’. The action set
A(s) for the agent consists of a flexible number 1-step neighbors, and is defined differently at
each node s in the graph. Now to
learn this value function, we pro- Algorithm 2 Unsupervised Learning by Latent Plans
pose two variants: The first variant Require: planning horizon H
(See Alg. B) runs multi-step value Require: set of observation sequences S = {7 = ax[oir]}
iteration using transitions sampled Require: local metric function p(x,z’) = Rt
from the graph. To improve rate Require: reward function r(z,z,) = — fs(x, z4)
of learning, we use hindsight ex- 1: Initialize global embedding ®(z,z’) = R
perience re-labeling (AndrychowicZ 2: repeat
ef all, PO17) to insert positive reach- sample 2o,z € S as start and goal
ing examples. The second variant repeat {h=0, h++} ,
(see Alg.3 in appendix) replaces 1- find set n = {2 st p(ao,2) € N(L, )}
step greedy policy used to sample find 2” = arg Milly cn (@, 24)

: : - .. , compute 7, = r(z*, z4)
trajectories with Dijkstra’s short- add (z,2",r,,x,) to buffer B
est path first (SPF) search (Dijk3 until 1 — 0 or b — H
stra, [959) on the graph (Zhand 10.  Sample {x,x' 7, 24) from B
ef all, POTR). The distance of the 11:  minimize § = ||Va(z,z4), 7 + Va (2', z,)||
learned metric function V'(s,g) is 12 until convergence g
the sum of each segment in the
shortest plan.

4 EXPERIMENTAL EVALUATION

In this section, we experimentally answer the following questions: 1) Can we build a graph
from sequential datasets using a contrastively trained local metric? 2) Can we extrapolate
this local metric to a global embedding, and make planning easier? 3) Would Plan2Vec work
in domains other than navigation, and learn features that are not visually apparent? To
answer these questions, we show quantitative results on simulated 2D navigation. Then we
extend Plan2Vec to the challenging deformable object manipulation tasks. Finally, we show
that Plan2Vec can learn non-visual features of the domain where other methods perform
poorly, on a real-world large-scale street view dataset.

4.1 SIMULATED NAVIGATION

Our first domain is a room with a continuous, 2- L L4 L
dimensional state space. A camera looks down [ | ° |
on a square arena with a robot (blue block). e o
The trajectory data consist of top-down im-

ages of the arena. We use ground-truth coordi-

nates for evaluation only. Our experiment cov- Figure 2: Simulated 2D navigation envi-
ers three room layouts with increasing level of ronments. We use these domains to illus-
difficulty: an open room, a room with a table in trate the various properties of our method.
the middle, and a room with a wall separating left: Open, middle: Table, right: C-Maze.
it into two corridors that resembles a C-shaped The red circle is the agent, and the blue
maze (see Fig. D). square indicates the desired goal.

Connecting The Dots by Generalization. We first investigate if the contrastively
trained local metric function generalizes. To train the local metric contrastively on this
domain, we restrict K = 1, such that only observations that are 1-step away are considered
neighbors. The local metric predicts a distance score that is between 0 and 2, where 0
corresponds to identical observations, 1 to neighbors, and 2 to observations that are further
apart. Fig. Ba shows the distribution of the score against ground-truth distance. In short
ranges, the learned model is able to recover the local metric but saturates as distances
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C-Maze Local Metric
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Figure 3: (1) Local metric score in comparison to ground-truth Ly distance with predicted
neighbors in red. (2) Trajectories given in the dataset. (3) Points from different trajectories
are connected by generalizing the local-metric function. Out-of-training-set Connections
shown in red. (4) Step sequence in C-Maze, learned via Plan2Vec. Gray dashed circle is
the goal position. Red dot is the planned next step (1-step), greedy w.r.t the global metric
function being learned. Blue dots are the neighbors sampled using the local metric function.
Gray dot indicates the current and past positions of the agent. Sequence shows the agent
getting around the wall in C-Maze. (5) Learned value function for a goal location on the
bottom left corner (white dashed circle). Blue color is further away, red is close.

GoalMassDiscretelmgldLess-v0 [IMazeDiscretelmgldLess-v0

CMazeDiscretelmgldLess-v0

N ¢ = L
CMazeDiscretelmgldLess-v0

°{ om Figure 5: (left and middle)

:'j";_i.. Difference in learned global

o] ¥ metric on Open Room and

o1 C-Maze. The goal used to

°21 4% s query the value map is in-

PL————— dicated by the dashed cir-
cle. (right) shows the agent

Figure 4: Learned Embedding with VAE (top row) vs getting around the wall with

Plan2Vec (bottom row). The columns correspond to the the learned embedding (blue),

Open Room, Table, and C-Maze domains. Representation where as an Euclidean planner

learned by the VAE is wrapped globally. Whereas Plan2Vec gets stuck.

correctly stretches out the learned embedding. In C-Maze,

the two ends of the tunnel are further apart, correctly re-

flecting the decrease in reachability between those points.

increase. The score is well-behaved enough that it is easy to pick suitable values for the
neighbor threshold (indicated by the ceiling of the red points). We plot new transitions
found by the local metric against those in the dataset (blue). Fig. Bb visualizes the sampled
trajectories (in blue, of length 4), whereas Fig. Bc shows the new ones found by the learned
local metric function.

Accelerating ] ]::’lanning with a  ple 1. Planning Performance on 2D Navigation
Learned Cognitive Map. The embd-

ding Plan2Vec learns contains long-range State Input  Open Room  Table C-Maze
reachability information of the domain, Euclidean 100.0£0.0  96.3£1.4  88.7£3.6
and has the potential to greatly accelerate =~ Flan2vec (12) 100.040.0  96.6+0.9  86.0+4.1

. A= Plan2 seud 96.9+0.5  96.742.0  83.14+3.0
planning. To evaluate if this is true, we an2vec (pseudo)

compare with SPTM (Savinov_ef_all, _ 'mase Input

2018) and VAE (Kmema & Welling, gpri(ilies)  Sorser 2s7ial latos
P013) learned representations under a  yag 730443 302465 527458
restricted planning budget. Table M shows  Random 32425  35£25  47£28
the success rates on the 2D navigation

domains when the planning horizon is limited to a single step in the future. Under this

regime, SPTM fails to succeed most of the time. This is because the local similarity
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Figure 6: Number of neighbors per node with examples of out of trajectory connections.
Original nodes are left of the red dashed line and out of trajectory neighbors in orange.

function used in the parametric memory does not contain long-range information about
the domain, and hence is insufficient as a planning heuristic for a memoryless planner.
The VAE learned embedding does better on the Open Room domain, but falls short on
more complex room arrangements. In comparison, the representation learned by Plan2Vec
succeeds most of the time. To investigate this further, we visualize the learned global
embedding for VAE versus that of Plan2Vec (Fig. #@). With the Open Room, Plan2Vec
learns a latent space that looks flat. With Table and C-Maze, two points that are close
in Euclidean space but separated by the wall appear far away in the learned latent space,
reflecting the reduced reachability in between. For latent space higher dimension than 3,
we can directly visualize the value function as shown in Fig. B.

4.2 MANIPULATION OF DEFORMABLE OBJECTS

While we have made strides in controlling rigid bodies with reinforcement learning, manip-
ulating deformable objects still remains an open problem. Methods so far rely on learning
a generative model over the image sample (Kurufach“ef all, P0IR). To learn a plannable
representation in a purely discriminative manner we now apply our method to the rope
dataset (Wang et all, 2018). The rope dataset is composed of 18 independent trajectories
with 14k images total. Each image is a gray scale photo of a piece of rope wrapped around
two pegs that are fixed on the table surface. The two pegs help define distinct topology
for the configuration of the rope that needs to be respected for reasonable transitions. The
challenge with the rope dataset is that it does not have a well-defined low-dimensional con-
figuration space, making it difficult to design quantitative evaluation metrics. To get around
this issue, we evaluate our method with planning on single trajectories, where the original
sequences of observation can be used as qualitative baselines. We do find that our local
metric generates a connected graph over all 18 trajectories, therefore there exists a viable
plan from any image o, to any goal image o4. The difficulty of the planning problem varies
with the connectivity of the graph, which is in turn dictated by the threshold set on local
metric ¢. The results presented here uses the second formulation (see Appendix B) that
samples with Dijsktra’s shortest path first algorithm. (201R) perform planning
in this way using an attribute graph to perform block stacking, but learning a representa-
tion is more compact and generalizable. Fig. B shows the distribution of neighbors for a set
threshold 7" = 1.1, with both in and out-trajectory neighbors. This highlights the difficult
of the rope manipulation task and learning a latent representation that reflects a sparse
connectivity graph. Fig. @ shows an example of plan generated by Plan2Vec for a given
start and goal state, where we can see that each transition only perturbs the configuration
of the rope locally.

traj:8:741 traj:8:732 traj:8:727 traj:8:720 traj:3:367 traj:3:363 traj:3:359 traj:3:358
:
Summary of Plan m m - ||" ™ l . " n /“1 T ‘ ) '|
. o, L e . L L L
(4255, 1417) 1.70 171 1.20 117 1.60 1.43 0.46
Query Image  Visual Plans Goal Image

Figure 7: Example of visual plan generated by Plan2Vec on the Rope Domain. Showing
steps coming from two different trajectories (8 and 3). Each transition only perturbs the
configuration of the rope locally.
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4.3 BEYOND VISUAL SIMILARITY: REAL-WORLD NAVIGATION

To answer the question of whether Plan2Vec is able to learn non- Greenwich Vilage (Smah
visual features of the domain, we evaluate on a visual navigation
task using the real world dataset StreetLearn (Mirowski ef all, / I:I
2018%). In comparison to the previous two tasks, the StreetLearn — «.f 4
dataset offers an interesting alternative because the spatial re- ¢ | 4
lationship between views at different locations is not visually **"| | X
apparent. One can not easily tell that Union Square is to the Df )
north of Washington Square Park from street views alone. Yet A >

a city resident knows exactly which general direction to turn  «»

to. This is in stark contrast to both the Room domain and the T
rope domain, where visual similarity is easily mapped to being
close in the configuration space. We quantitatively evaluate the
planning performance of Plan2Vec versus the VAE baseline in
Table B using generated datasets (Fig. B). This result shows that
the planning performance of VAE on the StreetLearn dataset is
barely above that of a random baseline. This is a common short-coming with unsupervised
models that rely on the inductive prior of the generator to learn. Plan2Vec, on the other
hand, uses planning as a general framework to extend any type of local and semantically
meaningful signal to a consistent global embedding. We interpret these results by hypoth-
esizing that Plan2Vec is successful in learning non-visual concepts of reachability (in this
case an idea of the map), whereas VAE only clusters the images by visual similarity.

5
w072

(-

Figure 8: A visualization
of the three datasets Tiny,
Small, and Medium used
in our experiments.

In Table B, we also include compar- Table 2: 1-step Planning Performance on StreetLearn.
isons with SPTM, where the agent Numbers are percentage of success for reaching goals
is only allowed to plan l-step ahead. that are within 50 steps of the starting point. Full
This computation-constrained regime Graph Search methods succeed 100% of the time.

is interesting because a good planning Success Rate (%)

heuristic is critical for good search per-  gi eetLearn Tiny Small Medium

formance. The result shows that in
this regime. Plan2Vec performs well Plan2vec (Ours) 92.2+29 572+43 51.4+6.9
gune, p SPTM (1-step)  31.5+£58 193+58 202452

above SPTM, which backs our intu- vARE 255+56 144448 169455
ition that a good representation can  Random 19.94+54 120452 127446
and should alleviate some of the com-

putational cost of planning at test time. Formally, Plan2Vec’s 1-step greedy planning is
O(1) at test time, whereas SPTM is O(E) where E is the size of the graph. This also
shows that Plan2Vec memorizes information that is computationally more valuable. Lastly,
we observe that Plan2Vec generalizes — despite the agent never having seen a particular
combination of starts and goals in the original dataset — by successfully navigating using
the values acquired during training time as evidenced by the large jump in performance
compared to other methods in Table B.

5 CONCLUSION

We have presented an approach to attain a globally consistent representation from streams
of observation data in a purely unsupervised fashion without generating images. Integral to
our approach is the incorporation of planning as part of our learning objective, to enforce the
semantic notion of reachability between any pair of images on the learned embedding. This
differs our approach from previous work in learning plannable representations — in that the
plannability is a consequence of the planning objective, instead of local linearity constraints.
In addition, we realize that formulating unsupervised learning as a reinforcement learning
problem has the added benefit of allowing one to insert arbitrary local information about the
domain as the reward R(s, s’), and the explicit including of a maximizing inner step. In this
work we chose to avoid the introduction of variational treatments to the latent space, but
we think the inclusion of such treatment would greatly improve the quality of the learned
embedding.
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APPENDIX

A  ADDITIONAL RELATED WORK

The work most similar to ours from the manifold learning community is DeepWalk (Perozzi
ef~all, p01d). DeepWalk aims to embed a social graph by randomly sampling trajectories,
then use skip-gram (Mikolov_ef-all, 2UT3) to embed each graph node contrastively from
its contrast. This is related to the contrastive learning objective we use to train our local
metric function. Despite of this, the random walk DeepWalk employs to sample those
trajectories is limited in terms of distance of travel. As a result it falls under the category of
representation learning algorithms that only learn from a localized context. Similarly there
is strong connection between our value-iteration learning objective and the diffusion map
literature. In diffusion map, the distance on the learned manifold measures the “diffusion
distance” between two points on a graph G under a markovian transition kernel (Socher
& Hein, 2008). One can consider value-iteration as a non-parametric version of diffusion
map using neural networks for the kernel. A critical difference is that the transition kernel
in diffusion maps is not condition on a goal whereas the policy does. As a consequence,
the diffusion distance fall-off exponentially as the number of steps increases, just like with
DeepWalk. Locally linear embeddings (LLE) could be considered a “stronger” version of
skip-gram, where linear contributions of each neighbor is preserved. However, LLE enforces
global structure, and prevent volume collapse via addition of a global volume regularization
term. This is similar to the variational prior in a variational auto-encoder (VAE) in that
both lack meaningful alignment with planning semantics. Recent work in “robust features”
point to a connection between the injected noise and the alignment between the input and
output manifoldsllyas et all (2009) that might be an interesting direction to explore.

Our treatment of the state space dataset as a graph is quite similar to the semi-parametric
topological memory (SPTM) introduced in (Savinov_ef-all, POIR). In SPTM however, the
authors are concerned that a metric embedding for a domain does not always exist, so the
focus becomes solving navigation instead of learning a vector embedding. In our experiment,
we show quantitatively that the local embedding SPTM uses to make plans is insufficient
if the hard-coded planner has a restricted planning budget, whereas the globally consistent
representation that Plan2Vec learns via value iteration still plans well. Our result illustrates
the importance for an agent to acquire such a globally view of the domain and use it as
heuristic for planning, despite that this representation might not carry a true metric.

Embed to control (E2C), RCE, L-SBMP and causal InfoGAN (Waffer ef all, PO15; Bani
jamali et all, 2017; [chfer & Pavond, DOIR; Kurnfach ef all, 20IR) are a line of generative
model that explicitly incorporate forward modeling in the latent space. They show that the
learned representation is plannable, without directly incorporating a planner as part of their
learning objective. Our goal is drastically different — Plan2Vec learns a representation by
planning, as opposed to just showing one can plan with a learned representation. Plan2Vec
explicitly acquires the concept of “reachability” conditioned on an optimal policy as part of
the representation. This results in a semantically meaningful and locally consistent global
structure.

Another branch of work coming from the reinforcement learning community are self-
supervised or task-agnostic RL [Florensa_ef_all (20049); Kahn_ef_all (P0017); Pong et all
(2019). These work aim to reduce the amount of human involvement in designing rein-
forcement learning algorithms for individual tasks. Plan2Vec is distinguished from these
proposals in that we do not aim to learn a policy distribution 7(a|o). Instead, we want
to learn generalizable representations of the environments that makes learning such a low-
level policy, or running classical control algorithms more efficient. By abstracting away the
actions, Plan2Vec is able to plan over much longer horizons, as demonstrated in Sec. .

B  ALTERNATIVE VARIANT OF PLAN2VEC

In value-based reinforcement learning algorithm, the behavioral policy is responsible for
sampling from the environment. A deficiency with a memory-less e-greedy behavioral policy
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we found, is that sometimes the agent would get “stuck” in a cycle, where it keep traversing
through the same nodes back and forth. This is an issue that can be solved by adopting a

planning policy that has memory.

The second variant of our algorithm
replaces the e-greedy policy with
Dijstra’s shortest path first (SPF)
search algorithm for sampling (in
red). Due to the finite size of the
dataset, we use the planned trajec-
tory to directly train the value func-
tion via regression. The sampling
efficiency of the planning algorithm
can be future improved by replac-
ing SPF with methods that uses
planning heuristic, for instance A*.

Algorithm 3 Plan2Vec with Dijkstra

Require:
Require:

planning horizon H
set of observation sequences S = {7 = z[o.7]}

Require: local metric function p(x,z’) = Rt
Require: reward function r(z,xz4) = —fe(x, z4)
Require: Dijkstra D

1: Initialize global embedding ®(z,z’) = R

2: repeat

3 sample zo,zy € S as start and goal

4:  shortest plan {sjo.u} = D(G, z,z4)

5 minimize § = HV<1>(32, Zg), ES[O:H] f(sq, 81‘+1)Hp
6: until convergence
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