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ABSTRACT

Conventional out-of-distribution (OOD) detection schemes based on variational
autoencoder or Random Network Distillation (RND) are known to assign lower
uncertainty to the OOD data than the target distribution. In this work, we discover
that such conventional novelty detection schemes are also vulnerable to the blurred
images. Based on the observation, we construct a novel RND-based OOD detector,
SVD-RND, that utilizes blurred images during training. Our detector is simple,
efficient in test time, and outperforms baseline OOD detectors in various domains.
Further results show that SVD-RND learns a better target distribution representation
than the baselines. Finally, SVD-RND combined with geometric transform achieves
near-perfect detection accuracy in CelebA domain.

1 INTRODUCTION

Out-of distribution (OOD), or novelty detection aims to distinguish samples in unseen distribution
from the training distribution. A majority of novelty detection methods focus on noise filtering or
representation learning. For example, we train an autoencoder to learn a mapping from the data
to the bottleneck layer and use the bottleneck representation or reconstruction error to detect an
OOD (Sakruada et al., 2014; Pidhorskyi et al., 2018). Recently, deep generative models (Kingma
et al., 2014; Dinh et al., 2017; Goodfellow et al., 2014; Kingma et al., 2018) are widely used for
novelty detection due to their ability to model high dimensional data. However, such models show
underwhelming performance on detecting OOD, such as detecting SVHN from CIFAR-10 (Nalisnick
et al., 2019). Specifically, generative models assign a higher likelihood to the OOD data than the
training data.

On the other hand, adversarial examples are widely employed to fool the classifier, and training
classifiers against adversarial attacks has shown effectiveness in detecting unknown adversarial
attacks (Tramer et al., 2018). In this work, we propose blurred data as the adversarial example. When
we test novelty detection models on the blurred data generated by Singular Value Decomposition
(SVD), we found that the novelty detection models assign higher confidence to the blurred data than
the original data.

Motivated by this observation, we employ blurring to prevent the OOD detector from overfitting to
low resolution. We propose a new OOD detection model, SVD-RND, which is trained using the idea
of Random Network Distillation (RND) (Burda et al., 2019) to discriminate the training data from
the blurred image. SVD-RND is evaluated in the difficult OOD detection domains where vanilla
generative models show nearly 50% detection accuracy, such as detecting SVHN from CIFAR-10 and
detecting CIFAR-10 from ImageNet (Nalisnick et al., 2019). Compared to conventional baselines,
SVD-RND shows a significant performance gain from 50% to over 90% in these domains. Such
results clearly support the degeneracy of deep OOD detection schemes. Moreover, SVD-RND shows
improvements over baselines on domains where conventional OOD detection schemes show moderate
results, such as CIFAR-10 to LSUN.

2 RELATED WORK

OOD Detection: A majority of OOD detection methods rely on a reconstruction error and represen-
tation learning. Ruff et al. (2018) train a deep neural network to map data into a minimum volume
hypersphere. Generative probabilistic novelty detection (GPND) (Pidhorskyi et al., 2018) employ the
distance to the latent data manifold as the confidence measure and train the adversarial autoencoder
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(AAE) to model the manifold. Deep generative models are widely employed for latent space modeling
in OOD detection (Zenati et al., 2018; Sabokrou et al., 2018). However, a recently proposed paper by
Nalisnick et al. (2019) discover that popular deep generative models, such as variational autoencoder
(VAE) (Kingma et al., 2014) or GLOW (Kingma et al., 2018), fail to detect simple OOD from the
training distribution. While adversarially trained generative models, such as generative adversarial
networks (GAN) (Goodfellow et al., 2014) or AAE, are not discussed in Nalisnick et al. (2019), our
experiments in GPND show that such models can also fail to detect such simple OODs.

OOD Detection with Additional Data: Some methods try to solve OOD detection by appending
additional data or labels for training. Hendrycks et al. (2019) use outlier data independent of OOD
data. Golan et al. (2018) design geometrically transformed data and regularized the classifier to
distinguish geometric transforms, such as translation, flipping, and rotation. Shalev et al. (2018)
fine-tune the image classifier to predict word embedding. However, the intuition behind these methods
is to benefit from potential side information, while our algorithm focuses on compensating the deep
model’s vulnerability to OOD data with a lower effective rank by training against self-generated
blurred image.

Adversarial Examples and OOD Detection on Labeled Data: Some methods combine OOD
detection with classification, resulting in OOD detection in each labeled data. Adversarial examples
can be viewed as generated OOD data that attacks the confidence of a pretrained classifier. Therefore,
two fields share similar methodologies. For example, Hendrycks et al. (2017) set the confidence
as the maximum value of the probability output, which is vulnerable to the adversarial examples
generated by the Fast Sign Gradient Method (FSGM) (Goodfellow et al., 2014). On the other hand,
Liang et al. (2018) employ FSGM counterintuitively to shift the OOD data from the target further,
therefore improving OOD detection. Lee et al. (2018) employ Mahalanobis distance to measure
uncertainty in the hidden features of the network, which also proved efficient in adversarial defense.

Bayesian Uncertainty Calibration: Bayesian formulation is widely applied for better calibration of
the model uncertainty. Recent works employ bayesian neural networks (Sun et al., 2017) or interpret
a neural network’s architecture in the bayesian formulation, such as dropout (Gal et al., 2016), and
Adam optimizer (Khan et al., 2018). Our baseline, RND (Burda et al., 2019), can be viewed as a
bayesian uncertainty of the model weight under randomly initialized prior (Osband et al., 2018).

3 BACKGROUND

3.1 OUT-OF-DISTRIBUTION (OOD) DETECTION

The goal of OOD detection is to determine whether the data is sampled from the target distribution
D. Therefore, based on the training data Dtrain ⊂ D, we train a scalar function that expresses the
confidence, or uncertainty of the data. The performance of the OOD detector is tested on the Dtest ⊂
D against the OOD dataset DOOD. We denote a target and OOD pair as target : OOD in this paper,
e.g., CIFAR-10 : SVHN.

3.2 RANDOM NETWORK DISTILLATION (RND)

We use RND as the base model of our OOD detector. RND consists of the trainable predictor network
f , and randomly initialized target network g. The predictor network is trained to minimize the l2
distance against the target network on training data.

f∗ = arg min
f

Σx∈Dtrain
‖f(x)− g(x)‖22 (1)

Then, for the newly encountered data x, RND outputs ‖f(x)− g(x)‖22 as uncertainty measure of the
data. The main intuition of the RND is to reduce the distance between f and g only on the target
distribution, hence naturally threshold between the target and the OOD distribution.

In Burda et al. (2019), f is generated by appending two fully connected layers to the network of g,
where g consists of 3 convolution layers and a fully connected layer. In our experiments, we set g as
the first 33 layers of ResNet34 without ReLU activation in the end. f is constructed by appending
two sequential residual blocks. The output size of each residual block is 1024 and 512. We also
discard ReLU activation in the second residual block to match the form of g.
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Figure 1: Test loss of VQ-VAE (left) and RND (middle) on original image and blurred image
(K = 28) of CIFAR-10 data. RND assigns higher confidence to blurred image and OOD data
throughout the training process (right).

We employ RND for our base OOD detector due to its simplicity over generative models. Also, RND
has already shown to be effective in novelty detection on MNIST dataset (Burda et al., 2019). While
the original RND paper employs a single target network to train the predictor network, our main
algorithm employs multiple target networks to discriminate the original data from the blurred images.
We discuss the full algorithm in Section 4.2.

3.3 EFFECTIVE RANK

We use effective rank (Roy et al., 2007) as the metric to measure the ‘blurriness’ of the data in Section
7.2. Then, the log effective rank of the matrix is defined as the entropy of the normalized singular
values of the matrix.

LERd = ΣN
t=1H2

(
σt

ΣN
j=1σj

)
(2)

Then, effective rank is set to two to the power of log effective rank. We set the effective rank of data
as the averaged effective rank of each channel.

4 METHODOLOGY

4.1 GENERATING BLURRED DATA

In this work, blurred images function as adversarial examples to show the degeneracy of deep OOD
detection methods. We directly employ the SVD on the data matrix and force the bottom non-zero
singular values to zero to construct a blurred image. Suppose that data d ∈ D consists of i channels,
where the j-th channel has Nj nonzero singular values σj1 ≥ σj2 ≥ . . . σjNj > 0. Then, the j-th
channel can be represented as the weighted sum of orthonormal vectors.

dj = Σ
Nj

t=1σjtujtv
T
jt (3)

We prune the bottom K non-zero singular values of each channel to construct the blurred image. We
test conventional novelty detection methods on blurred images. We first train the VQ-VAE Oord et al.
(2017) in the CIFAR-10 (Krizhevsky et al., 2009) dataset. Figure 1 shows the loss of VQ-VAE on
the test data and blurred test data (K = 28). We follow the settings of the original paper. VQ-VAE
assigns higher likelihood to the blurred data than the original data.

We note that this phenomenon is not constrained to the generative models. We trained the RND on
the CIFAR-10 dataset and plot the l2 loss in the test data and blurred test data in Figure 1. We plot
the l2 loss on SVHN (Netzer et al., 2011) data for relevance. Multiple skip connections in residual
blocks don’t resolve the information leakage on their own. Furthermore, we plot the average loss
on the blurred test data and original test data during the training procedure. Throughout the training
phase, the model assigns lower uncertainty to the blurred data. This trend is similar to the CIFAR-10 :
SVHN phenomenon in Nalisnick et al. (2019), where the generative model assigns more confidence
to the OOD data from the beginning.
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Figure 2: Train Scenario of SVD-RND (btrain = 1).

While we employ SVD for our main blurring technique, conventional techniques in image processing
can be applied for blurring, such as Discrete Cosine Transform (DCT) or Gaussian Blurring. However,
DCT squares the size of the hyperparameter search space, therefore much harder to optimize than
SVD. We further compare the performance between SVD and other blurring techniques in Section 5.

4.2 OOD DETECTION VIA SVD-RND

We now present our proposed algorithm, SVD-RND. SVD-RND trains the predictor network f to
discriminate between original and blurred datasets. We first generate blurred datasets DKi

from
Dtrain by zeroing the bottom Ki non-zero singular values of each data channel (i = 1, . . . , btrain,
where btrain is the number of generated blurred datasets used for training). Then, we assign a different
randomly initialized target network gi to each DKi . Finally, we assign g0 as the target network for
the original dataset. Predictor network f is trained to minimize the l2 loss against the corresponding
target network on each dataset.

f∗ = arg min
f

[
Σx∈Dtrain

‖f(x)− g0(x)‖22 + Σbtrain
i=1 Σx∈DKi

‖f(x)− gi(x)‖22
]

(4)

When a new sample x is given, SVD-RND outputs ‖f(x)− g0(x)‖22 as the uncertainty of the sample.
Figure 2 shows the training process of SVD-RND. No other regularization techniques or explicit
metrics are employed in SVD-RND.

While SVD-RND directly regularizes only on the blurred images, we expect such regularization
generally improve OOD detection for the following two reasons. First, while RND fails on OODs
generated by blurring, it performs moderately on OODs generated by the orthogonal direction to the
dataset. For the evidence, we show in Appendix C on CIFAR-10 dataset that RND is able to detect
OODs generated by adding noise orthogonal to the data. RND outputs higher uncertainty to every
OOD dataset generated from 20 independent runs.

Second, Equation 4 forces the predictor network f to output g0(x) for the original data x ∈ Dtrain,
and gi(x) for the blurred data x ∈ DKi

. Therefore, f naturally learns to discriminate between the
data and its low-rank projection. From such regularization, we expect f to learn the target distribution-
specific information from the projection vector, which is previously neglected in conventional deep
OOD detection methods. We will verify our reasoning in further experiments.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTING

SVD-RND is examined for the cases in Table 1. CIFAR-10 : SVHN, CelebA (Liu et al., 2015)
: SVHN, and TinyImageNet (Deng et al., 2009) : (SVHN, CIFAR-10, CIFAR-100) are the cases
reported by Nalisnick et al. (2019). We expect SVD-RND outperform conventional OOD detection
methods by a large margin. We also study CIFAR-10 : (LSUN (Yu et al., 2015), TinyImageNet),
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Table 1: Experiment target:OOD domain.

Target OOD

CIFAR-10 SVHN LSUN TinyImageNet
TinyImageNet SVHN CIFAR-10 CIFAR-100
LSUN SVHN CIFAR-10 CIFAR-100
CelebA SVHN CIFAR-10 CIFAR-100

Table 2: OOD detection results (TNR at 95% TPR) on CIFAR-10, TinyImageNet, LSUN, and CelebA
datasets.

TNR(95% TPR)
Method CIFAR-10 TinyImageNet LSUN CelebA

SVD-RND (proposed) 0.969/0.956/0.952 0.991/0.926/0.911 0.995/0.621/0.614 0.999/0.897/0.897
DCT-RND (proposed) 0.899/0.797/0.748 0.929/0.104/0.169 0.971/0.117/0.213 0.989/0.491/0.587
GB-RND (proposed) 0.474/0.803/0.738 0.982/0.264/0.321 0.986/0.176/0.266 0.994/0.455/0.526
RND 0.008/0.762/0.736 0.001/0.001/0.003 0.012/0.034/0.075 0.067/0.231/0.253
GPND 0.050/0.767/0.665 0.077/0.085/0.118 0.051/0.059/0.102 0.084/0.230/0.250
Flip 0.057/0.091/0.081 0.160/0.212/0.231 0.060/0.055/0.083 0.055/0.728/0.750
Rotate 0.235/0.246/0.308 0.711/0.669/0.688 0.341/0.278/0.334 0.950/0.937/0.945
Vertical Translation 0.105/0.649/0.648 0.050/0.012/0.012 0.117/0.044/0.076 0.930/0.887/0.897
Horizontal Translation 0.070/0.675/0.630 0.109/0.005/0.011 0.140/0.043/0.101 0.894/0.874/0.889

LSUN : (SVHN, CIFAR-10, CIFAR-100) and CelebA: (CIFAR-10, CIFAR-100) target : OOD pairs
to examine potential tradeoffs of our method. We implement the baselines and SVD-RND in the
PyTorch framework. 1 For a unified treatment, we resize all images in all datasets to 32×32. We
provide a detailed setting in Appendix B.

For SVD-RND, we optimize the number of blurred non-zero singular values over different datasets.
We choose the detector with the best performance across the validation data. We provide all the
parameter settings in Appendix B. We also examine the case where the image is blurred by DCT
and Gaussian blurring. For DCT, we apply the DCT to the image, discard low magnitude signals,
and generate the blurred image by inverse DCT. In DCT-RND, we optimize the number of unpruned
signals in the frequency domain. For gaussian blurring, we optimize the shape of the Gaussian kernel.
We denote this method as GB-RND.

We compare the performance of SVD-RND, DCT-RND, and GB-RND to the following baselines.

Generative Probabilistic Novelty Detector: GPND (Pidhorskyi et al., 2018) is a conventional
generative model-based novelty detection method that models uncertainty as a deviation of data to
the latent representation, which is modeled by the adversarial autoencoder. We train GPND with
further parameter optimization.

Geometric Transforms: We compare the effectiveness of the blurred image against geometric
transforms proposed in Golan et al. (2018). The authors use four types of geometric transforms: flip,
rotation, vertical translation, and horizontal translation. We compute the independent effects of each
transformation by setting them as OOD proxies in the RND framework.

RND: We employ RND (Burda et al., 2019) to show the effectiveness of our regularizer directly.

Five metrics on binary hypothesis testing are used to evaluate the OOD detectors: area of the region
under the Receiver Operating Characteristic curve (AUROC), area of the region under the Precision-
Recall curve (AUPR), detection accuracy, and TNR (True negative rate) at 95% TPR (True positive
rate). All criterions are bounded between 0 and 1, and the result close to 1 implies better OOD
detection.

5.2 OOD DETECTION RESULTS

We summarize our results on the TNR in 95% TPR in Table 2. We provide full results in appendix A.
In all target : OOD domains except for the CelebA : (CIFAR-10, CIFAR-100) domain, SVD-RND

1Our code is based on https://github.com/kuangliu/pytorch-cifar
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Figure 3: Left: Performance of SVD-RND (proposed) for different K1. Each filled region is 95%
confidence interval of the detector. SVD-RND shows small confidence interval in the best performing
parameters. Right: Histogram of SVD-RND’s loss to CIFAR-10 and SVHN data.
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Figure 4: Left: Novelty detection performance (TNR at 95% TPR) of SVD-RND and RND on
reduced CIFAR-10 training data. SVD-RND is robust to reduced training data while RND’s detection
performance decreases. Middle: Top-9 anomalous CIFAR-10 test samples detected by SVD-RND.
Right: Top-9 anomalous CIFAR-10 test samples detected by RND.

outperforms all other baselines in every metric. Furthermore, all the proposed techniques outperform
GPND and RND on all target : OOD domains, especially in CIFAR-10 : (LSUN, TinyImageNet)
domains and CelebA: (CIFAR-10, CIFAR-100) domains where even GPND and RND show moderate
results. We plot the performance of SVD-RND in 50 epochs over different K1 in Figure 3. We
increase the number of seeds to 4 to check the stability of our result. In the best performing parameter
for each OOD data, SVD-RND shows narrow confidence intervals.

Furthermore, we plot the output of SVD-RND to target CIFAR-10 data and OOD SVHN data
in K1 = 28. SVD-RND further separates SVHN data compared to baselines in Figure 1. Also,
we compare the test uncertainty of SVD-RND against the test uncertainty of the RND on each
(CIFAR-10, SVHN, LSUN, TinyImageNet) data. For SVD-RND, test-loss of each (CIFAR-10,
SVHN, LSUN, TinyImageNet) data increases (150, 38400, 1516, 2102)% over its test loss of RND.
Therefore, SVD-RND further discriminates OOD from the target distribution.

GPND and RND fail to discriminate OOD from the targets in CIFAR-10 : SVHN, LSUN : (SVHN,
CIFAR-10, CIFAR-100), TinyImageNet : (SVHN, CIFAR-10, CIFAR-100), and CelebA : SVHN
domains. Moreover, GPND performs the SVD of the jacobian matrix in test time, which makes
GPND slower than SVD-RND. Furthermore, we visualize the uncertainty prediction of RND and
SVD-RND. Figure 4 shows the top-9 examples on CIFAR-10 test data, where SVD-RND and RND
assign the highest uncertainty. We observe that SVD-RND assigns higher uncertainty to blurry or
hardly recognizable image compared to RND.
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Table 3: Classification performance of fine-tuned classifier over the activation map trained by SVD-
RND, RND, and randomly initialized weights. RND consistently underperforms over SVD-RND.

Target: CIFAR-10
Activation map SVD-RND (K1=28) RND Random

15th (linear) 55.62(1.10) 42.09(0.66) 36.55(0.56)
15th (7-layer) 86.29(0.09) 83.78(0.29) 86,56(0.36)
27th (linear) 52.69(0.24) 38.21(2.00) 24.46(0.42)
27th (7-layer) 70.31(0.24) 57.18(0.49) 66.40(0.31)

On the other hand, OOD detection schemes based on geometric transformations (Golan et al., 2018)
show generally improved results against GPND and RND on detecting OOD data. Especially in
CelebA : (SVHN, CIFAR-10, CIFAR-100) domain, rotation and translation based methods show
prominent performance. However, in the CIFAR-10 target domain, OOD detection schemes based
on geometric transformations show degraded performance against RND or GPND on LSUN and
TinyImageNet OOD data.

Finally, we also investigate the case where limited training data is available. We examine the
performance of SVD-RND and RND in CIFAR-10 : (LSUN, TinyImageNet) domains. Figure 4
shows the TNR at 95% TPR metric of each method when the number of training data is reduced.
For each OOD data, we denote result on SVD-RND as OOD SVD, and denote result on RND as
OOD RND. Compared to RND, SVD-RND shows consistent performance when only 20% of training
data is available.

6 FURTHER ANALYSIS

6.1 REPRESENTATION LEARNING FROM SVD-RND

While SVD-RND outperforms RND on every target : OOD domains, we provide further evidence
that SVD-RND learns superior target distribution representation compared to RND. For the evidence,
we fine-tune the classifier over the fixed activation map of SVD-RND and RND. We set the activation
map as the output of the first 15 or 27 layers of RND and SVD-RND predictor network trained in
CIFAR-10 datasets. For the fine-tuning, we either append three residual blocks and a linear output
layer with softmax activation (denoted as 7-layer in Table 3) or a linear layer (denoted as linear in
Table 3). Then, we fine-tune the appended network for the CIFAR-10 classification task. The SGD
optimizer with learning rate 0.1 is used for fine-tuning, and the learning rate is annealed to 0.01 and
0.001 after 30 and 60 epochs over 100 epochs of training, respectively. We average the result across
three fixed random seeds.

We show our results in Table 3. SVD-RND consistently outperforms RND and the randomly
initialized network on the fine-tuning task. Therefore, the result supports that SVD-RND learns better
target distribution-specific knowledge. Surprisingly, when we fine-tune over 7-layer neural network,
RND consistently underperforms over randomly initialized weights.

6.2 LOG EFFECTIVE RANK CRITERION IN SVD-RND IN ZERO OOD VALIDATION DATA

In our main experiments in Section 5, we used the OOD validation data for tuning the novelty
detection methods. However, in realistic scenarios, OOD data are generally unknown to the detector.
We propose an effective rank based design of SVD-RND that does not use the OOD validation dataset
and compare its performance against the results in Section 5.

In SVD-RND, selecting each K1, . . . ,Kbtrain corresponds to regularization against OOD with similar
effective rank. We propose selecting each Ki such that average of log effective rank on each
blurred dataset is equally spaced to each other. Specifically, suppose the log effective rank of the
data averaged in training dataset Dtrain is LERDtrain

. Then, we set the target log effective rank
LER1,LER2, . . . ,LERbtrain as follows.

LERi =

(
0.5 + 0.5× i− 1

btrain

)
LERDtrain

(5)
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Table 4: Performance of uniform SVD-RND and optimized SVD-RND.

Target: CIFAR-10, OOD: SVHN/LSUN/TinyImageNet. Target: TinyImageNet (TIMG), OOD: SVHN/CIFAR-10/CIFAR-100
Dataset/btrain AUROC TNR(95% TPR) Detection accuracy AUPR in AUPR out

CIFAR-10/3 (uniform) 0.967/0.961/0.961 0.944/0.827/0.836 0.962/0.904/0.904 0.843/0.966/0.962 0.989/0.949/0.953
CIFAR-10/4 (uniform) 0.964/0.987/0.988 0.941/0.954/0.959 0.958/0.957/0.961 0.848/0.989/0.989 0.987/0.983/0.985
CIFAR-10/1 (optimized) 0.981/0.985/0.982 0.969/0.956/0.952 0.980/0.955/0.953 0.903/0.987/0.983 0.993/0.975/0.976

TIMG/3 (uniform) 0.993/0.831/0.814 0.999/0.745/0.701 0.989/0.855/0.832 0.991/0.741/0.725 0.995/0.878/0.864
TIMG/4 (uniform) 0.984/0.939/0.923 0.954/0.880/0.842 0.976/0.927/0.908 0.982/0.915/0.894 0.989/0.938/0.928
TIMG/2 (optimized) 0.983/0.969/0.960 0.991/0.926/0.911 0.980/0.963/0.953 0.978/0.965/0.951 0.989/0.958/0.953

Table 5: OOD detection performance of SVD-ROT-RND and SVD-VER-RND.

Target: CelebA, OOD: SVHN/CIFAR-10/CIFAR-100
Method AUROC TNR(95 % TPR) Detection accuracy AUPR in AUPR out

SVD-ROT-RND 0.997/0.996/0.996 0.999/0.993/0.994 0.996/0.991/0.991 0.998/0.998/0.998 0.993/0.986/0.988
SVD-VER-RND 0.999/0.993/0.994 0.999/0.982/0.982 0.998/0.982/0.981 0.999/0.997/0.997 0.998/0.984/0.986
SVD-RND 0.999/0.963/0.964 0.999/0.897/0.897 0.998/0.928/0.928 0.999/0.981/0.981 0.998/0.941/0.943
Rotate 0.974/0.979/0.982 0.950/0.937/0.945 0.964/0.952/0.956 0.950/0.989/0.991 0.981/0.964/0.969
Vertical Translation 0.964/0.961/0.964 0.930/0.887/0.897 0.952/0.923/0.926 0.934/0.979/0.980 0.975/0.941/0.946

Then, we select Ki such that the average of the log effective rank in the blurred dataset with Ki

discarded singular values is closest to LERi. We test our criterion in CIFAR-10 and TinyImageNet
data with different btrain. We train SVD-RND for 25 epochs for btrain = 3, and 20 epochs for
btrain = 4. We show the performance of SVD-RND based on uniform spacing of log effective rank
in (5) in Table 4, which is denoted as SVD-RND (uniform). We also show results of SVD-RND
optimized with the validation OOD data from Table 2 and denote them as SVD-RND (optimized) in
Table 4. Uniform SVD-RND already outperforms the second-best methods in Table 2. Furthermore,
as btrain increases, uniform SVD-RND approaches the performance of the optimized SVD-RND.

6.3 FURTHER IMPROVEMENT OF SVD-RND

While SVD-RND achieves reasonable OOD detection performance, combining SVD-RND with other
baseline algorithms may further enhance the performance. For example, as shown in Table 2, training
against rotated data benefits OOD detection in CelebA dataset. Therefore, we unify SVD-RND and
geometric transform-based method to further improve SVD-RND. We treat both blurred data and
geometrically transformed data as OOD and train the target network to discriminate the original data
from the OOD. We combine rotation and vertical translation with SVD-RND and denote them as
SVD-ROT-RND and SVD-VER-RND, respectively.

We compare the performance of SVD-ROT-RND and SVD-VER-RND against rotation and vertical
translation in CelebA : (SVHN, CIFAR-10, CIFAR-100) domain. We refer readers to the results in
Table 5. We observe that SVD-ROT-RND and SVD-VER-RND outperform their counterparts and
SVD-RND. Especially, SVD-ROT-RND and SVD-VER-RND show significant performance gain in
CelebA : (CIFAR-10, CIFAR-100) domains.

7 CONCLUSION

In this work, we propose SVD-RND that utilizes blurred images as adversarial examples to improve
deep OOD detection method. SVD-RND is employed for adversarial defense against blurred images.
SVD-RND achieves significant performance gain in all target : anomaly domains. Even without
the validation OOD data, we can design SVD-RND to outperform conventional OOD detection
models. We stress that such performance gain is achieved without external data or additional
regularization techniques. Our results strongly support the degeneracy of previous OOD detection
models. Furthermore, experiments on SVD-RND and RND show that the neural network can
potentially learn to perform OOD detection, however overfits to blurred data. Understanding this
phenomenon is crucial to performance of the image-based models.
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A FULL OOD DETECTION RESULTS

Table 6: OOD detection results on CIFAR-10, TinyImageNet, LSUN, and CelebA datasets.

Target: CIFAR-10, OOD: SVHN/LSUN/TinyImageNet
Method AUROC TNR(95% TPR) Detection accuracy AUPR in AUPR out

SVD-RND (proposed) 0.981/0.985/0.982 0.969/0.956/0.952 0.980/0.955/0.953 0.903/0.987/0.983 0.993/0.975/0.976
DCT-RND (proposed) 0.944/0.948/0.925 0.899/0.797/0.748 0.940/0.883/0.861 0.769/0.945/0.909 0.981/0.946/0.930
GB-RND (proposed) 0.624/0.952/0.923 0.474/0.803/0.739 0.722/0.887/0.858 0.311/0.950/0.908 0.860/0.952/0.928
RND 0.211/0.941/0.923 0.008/0.762/0.736 0.500/0.873/0.857 0.180/0.937/0.908 0.560/0.943/0.931
GPND 0.230/0.941/0.895 0.050/0.767/0.665 0.513/0.876/0.828 0.190/0.936/0.872 0.605/0.941/0.905
Flip 0.490/0.616/0.607 0.057/0.091/0.081 0.534/0.601/0.599 0.281/0.663/0.656 0.707/0.564/0.553
Rotate 0.853/0.777/0.824 0.235/0.246/0.308 0.826/0.714/0.755 0.735/0.806/0.840 0.911/0.719/0.773
Vertical Translation 0.276/0.924/0.896 0.105/0.649/0.648 0.540/0.849/0.823 0.193/0.923/0.881 0.654/0.919/0.899
Horizontal Translation 0.279/0.917/0.890 0.070/0.675/0.630 0.523/0.844/0.818 0.193/0.915/0.874 0.637/0.905/0.889

Target: TinyImageNet, OOD: SVHN/CIFAR-10/CIFAR-100
Method AUROC TNR(95% TPR) Detection accuracy AUPR in AUPR out

SVD-RND (proposed) 0.983/0.969/0.960 0.991/0.926/0.911 0.980/0.963/0.953 0.978/0.965/0.951 0.989/0.958/0.953
DCT-RND (proposed) 0.950/0.317/0.403 0.929/0.104/0.169 0.958/0.541/0.569 0.758/0.404/0.438 0.984/0.441/0.518
GB-RND (proposed) 0.993/0.497/0.551 0.982/0.264/0.321 0.991/0.616/0.643 0.969/0.492/0.522 0.998/0.606/0.655
RND 0.079/0.184/0.213 0.001/0.001/0.003 0.500/0.500/0.500 0.163/0.363/0.371 0.513/0.316/0.324
GPND 0.256/0.367/0.395 0.077/0.085/0.118 0.514/0.520/0.536 0.190/0.424/0.436 0.630/0.434/0.473
Flip 0.550/0.550/0.569 0.160/0.212/0.231 0.636/0.620/0.625 0.294/0.519/0.533 0.765/0.569/0.591
Rotate 0.845/0.806/0.821 0.711/0.669/0.688 0.868/0.822/0.832 0.541/0.727/0.742 0.933/0.823/0.841
Vertical Translation 0.131/0.185/0.213 0.050/0.012/0.012 0.521/0.502/0.501 0.171/0.362/0.370 0.567/0.323/0.329
Horizontal Translation 0.210/0.184/0.224 0.109/0.005/0.011 0.548/0.500/0.052 0.182/0.362/0.375 0.627/0.317/0.334

Target: LSUN, OOD: SVHN/CIFAR-10/CIFAR-100
Method AUROC TNR(95% TPR) Detection accuracy AUPR in AUPR out

SVD-RND (proposed) 0.986/0.795/0.801 0.995/0.621/0.614 0.983/0.787/0.783 0.975/0.724/0.730 0.990/0.828/0.834
DCT-RND (proposed) 0.984/0.508/0.575 0.971/0.117/0.213 0.981/0.535/0.583 0.920/0.513/0.552 0.995/0.534/0.621
GB-RND (proposed ) 0.993/0.538/0.601 0.986/0.176/0.266 0.989/0.566/0.609 0.967/0.534/0.570 0.997/0.580/0.656
RND 0.190/0.430/0.467 0.012/0.034/0.075 0.500/0.500/0.514 0.177/0.476/0.489 0.557/0.427/0.479
GPND 0.250/0.459/0.487 0.051/0.059/0.102 0.513/0.509/0.529 0.192/0.486/0.495 0.611/0.462/0.509
Flip 0.438/0.486/0.507 0.060/0.055/0.083 0.524/0.508/0.522 0.249/0.511/0.525 0.685/0.468/0.500
Rotate 0.909/0.752/0.779 0.341/0.278/0.334 0.889/0.736/0.764 0.807/0.700/0.721 0.943/0.743/0.778
Vertical Translation 0.258/0.415/0.446 0.117/0.044/0.076 0.548/0.506/0.515 0.190/0.458/0.469 0.650/0.435/0.471
Horizontal Translation 0.287/0.402/0.459 0.140/0.043/0.101 0.557/0.504/0.526 0.196/0.451/0.475 0.670/0.424/0.495

Target: CelebA, OOD: SVHN, CIFAR-10, CIFAR-100
Method AUROC TNR(95% TPR) Detection accuracy AUPR in AUPR out

SVD-RND (proposed) 0.999/0.963/0.964 0.999/0.897/0.897 0.998/0.928/0.928 0.999/0.981/0.981 0.998/0.941/0.943
DCT-RND (proposed) 0.997/0.854/0.879 0.989/0.491/0.587 0.989/0.771/0.797 0.996/0.936/0.945 0.997/0.736/0.794
GB-RND (proposed) 0.997/0.824/0.845 0.994/0.455/0.526 0.994/0.748/0.762 0.996/0.918/0.926 0.998/0.694/0.750
RND 0.410/0.743/0.741 0.067/0.231/0.253 0.512/0.681/0.678 0.439/0.883/0.879 0.459/0.500/0.523
GPND 0.407/0.742/0.737 0.084/0.230/0.250 0.536/0.680/0.680 0.461/0.879/0.870 0.478/0.502/0.520
Flip 0.402/0.898/0.906 0.055/0.728/0.750 0.507/0.840/0.851 0.440/0.946/0.948 0.447/0.830/0.845
Rotate 0.974/0.979/0.982 0.950/0.937/0.945 0.964/0.952/0.956 0.950/0.989/0.991 0.981/0.964/0.969
Vertical Translation 0.964/0.961/0.964 0.930/0.887/0.897 0.952/0.923/0.926 0.934/0.979/0.980 0.975/0.941/0.946
Horizontal Translation 0.955/0.940/0.949 0.894/0.874/0.889 0.929/0.920/0.926 0.926/0.963/0.968 0.967/0.922/0.932

B DATA PREPROCESSING, NETWORK SETTINGS, PARAMETER SETTINGS FOR
MAIN EXPERIMENT

To make the OOD detection task harder, we reduce CelebA, TinyImageNet, and LSUN data into
50000 training data (for test dataset, we reduce the CelebA test data to 26032 examples). For
TinyImageNet data, we discard half of the images in each class, resulting in 250 training samples
for each 200 class. Reduction in LSUN dataset results in 5000 data for each 10 class. Also, the first
1000 images of the test OOD data are used for validation. For SVD-RND, and all other RND based
detectors, we use the same structure for f and g defined in Section 3.2. The number of parameter
updates is fixed across the experiments. The Adam optimizer, with a learning rate of 10−4, is used
for RND based OOD detection methods. The learning rate is annealed to 10−5 in half of the training
process. For our main experiment, we average the result across two fixed random seeds.

In SVD-RND, DCT-RND, and GB-RND, we use one blurred data for CIFAR-10 and CelebA dataset,
and two blurred data for TinyImageNet and LSUN dataset. For SVD-RND, We optimize across
K1 ∈ {18, 20, 22, 24, 25, 26, 27, 28} in the CIFAR-10 and CelebA datasets. For TinyImageNet
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and LSUN datasets, we optimize over K1 ∈ {8, 10, 12, 14} and K2 ∈ {22, 24, 26, 28}. In DCT-
RND, we define Ki as the number of unpruned signals in the frequency domain. For CIFAR-10
and CelebA datasets, we optimize K1 across {4, 8, 12, 14, 16, 20, 24, 28}. For TinyImageNet and
LSUN datasets, we optimize over K1 ∈ {20, 24, 28, 32} and K2 ∈ {40, 44, 48, 52}. For gaussian
blurring, we optimize over the shape (xi, yi) of the Gaussian kernel. We optimize the parameter
over xi ∈ {1, 3, 5} , yi ∈ {1, 3, 5} for each blurred data. To fix the number of updates, we train
SVD-RND, DCT-RND, and GB-RND for 50 epochs in the CIFAR-10 and CelebA datasets, and 34
epochs for the rest.

For GPND, the settings for the original paper are followed. Furthermore, we optimize the recon-
struction loss λ1 and adversarial loss λ2 for discriminator Dz across λ1 ∈ {8, 9, 10, 11, 12} and
λ2 ∈ {1, 2, 3}. We choose the parameters with the best validation performance in 100 epochs,

For RND, we train over 100 epochs.

Finally, for geometric transforms, we optimize the magnitude of the shift of horizontal translation
and vertical translation methods. We optimize the magnitude of translation across {4, 8, 12, 16} and
choose the parameter with the best validation performance. Detector is trained for d 100

|T |+1e epochs,
where |T | is the number of transformations. The number of transformations is 1 in flipping, 2 for
horizontal and vertical translation, and 3 for rotation.

C RND ON GENERATED OODS BY INCREMENTING ORTHOGONAL VECTOR

Table 7: Test uncertainty of RND on OOD CIFAR-10 data generated by adding orthogonal noise to
the CIFAR-10 data.

Data Original Blurred α = 5 α = 10 α = 15 α = 20

Average Uncertainty(×10−5) 5.631 5.190 5.648 5.795 6.051 6.437

In Section 4.2, we proposed that data in the blurred direction is the main weakness of the conventional
novelty detection methods. For the evidence, we present the results on OODs generated by adding
vectors orthogonal to the data. Precisely, we sample a Gaussian vector z and compute the component
of the random vector zorth,x that is orthogonal to the data x.

zorth,x = z − zTx

xTx
x (6)

We scale the l2 norm of the orthogonal vector zorth,x on each data to be α% of the l2 norm of the
signal. We plot the average uncertainty of RND on the original data, blurred data, and the perturbed
data in Table 7. From the 20 independent runs on the perturbed data, we report the case with smallest
test uncertainty in Table 7. We vary α from 5 to 20. While blurring reduces average test uncertainty
of RND, adding orthogonal vector to the data incerases the test uncertainty of RND.
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