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ABSTRACT

Backpropagation is driving today’s artificial neural networks (ANNs). However,
despite extensive research, it remains unclear if the brain implements this algo-
rithm. Among neuroscientists, reinforcement learning (RL) algorithms are often
seen as a realistic alternative: neurons can randomly introduce change, and use un-
specific feedback signals to observe their effect on the cost and thus approximate
their gradient. However, the convergence rate of such learning scales poorly with
the number of involved neurons. Here we propose a hybrid learning approach.
Each neuron uses an RL-type strategy to learn how to approximate the gradients
that backpropagation would provide. We provide proof that our approach con-
verges to the true gradient for certain classes of networks. In both feedforward
and convolutional networks, we empirically show that our approach learns to ap-
proximate the gradient, and can match the performance of gradient-based learn-
ing. Learning feedback weights provides a biologically plausible mechanism of
achieving good performance, without the need for precise, pre-specified learning
rules.

1 INTRODUCTION

It is unknown how the brain solves the credit assignment problem when learning: how does each
neuron know its role in a positive (or negative) outcome, and thus know how to change its activity
to perform better next time? This is a challenge for models of learning in the brain.

Biologically plausible solutions to credit assignment include those based on reinforcement learn-
ing (RL) algorithms and reward-modulated STDP (Bouvier et al., 2016; Fiete et al., 2007; Fiete
& Seung, 2006; Legenstein et al., 2010; Miconi, 2017). In these approaches a globally distributed
reward signal provides feedback to all neurons in a network. Essentially, changes in rewards from
a baseline, or expected, level are correlated with noise in neural activity, allowing a stochastic ap-
proximation of the gradient to be computed. However these methods have not been demonstrated to
operate at scale. For instance, variance in the REINFORCE estimator (Williams, 1992) scales with
the number of units in the network (Rezende et al., 2014). This drives the hypothesis that learning
in the brain must rely on additional structures beyond a global reward signal.

In artificial neural networks (ANNs), credit assignment is performed with gradient-based methods
computed through backpropagation (Rumelhart et al., 1986). This is significantly more efficient
than RL-based algorithms, with ANNs now matching or surpassing human-level performance in
a number of domains (Mnih et al., 2015; Silver et al., 2017; LeCun et al., 2015; He et al., 2015;
Haenssle et al., 2018; Russakovsky et al., 2015). However there are well known problems with
implementing backpropagation in biologically realistic neural networks. One problem is known as
weight transport: an exact implementation of backpropagation requires a feedback structure with the
same weights as the feedforward network to communicate gradients. Such a symmetric feedback
structure has not been observed in biological neural circuits. Despite such issues, backpropagation
is the only method known to solve supervised and reinforcement learning problems at scale. Thus
modifications or approximations to backpropagation that are more plausible have been the focus of
significant recent attention (Scellier & Bengio, 2016; Lillicrap et al., 2016; Lee et al., 2015; Lansdell
& Kording, 2018).

These efforts do show some ways forward. Synthetic gradients demonstrate that learning can be
based on approximate gradients, and need not be temporally locked (Jaderberg et al., 2016; Czar-
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necki et al., 2017). In small feedforward networks, somewhat surprisingly, fixed random feedback
matrices in fact suffice for learning (Lillicrap et al., 2016) (a phenomenon known as feedback align-
ment). But still issues remain: feedback alignment does not work in CNNs, very deep networks,
or networks with tight bottleneck layers. Regardless, synthetic gradients and feedback alignment
show that rough approximations of a gradient signal can be used to learn; even relatively inefficient
methods of approximating the gradient may be good enough.

On this basis, here we propose an RL algorithm to train a feedback system to enable learning. Recent
work has explored similar ideas, but not with the explicit goal of approximating backpropagation
(Miconi, 2017; Miconi et al., 2018; Song et al., 2017). RL-based methods like REINFORCE may
be inefficient when used as a base learner, but they may be sufficient when used to train a system
that itself instructs a base learner. We propose to use REINFORCE-style perturbation approach to
train feedback signals to approximate what would have been provided by backpropagation.

This sort of two-learner system, where one network helps the other learn more efficiently, may
in fact align well with cortical neuron physiology. For instance, the dendritic trees of pyramidal
neurons consist of an apical and basal component (Guergiuev et al., 2017; Kording & Konig, 2001).
Such a setup has been shown to support supervised learning in feedforward networks (Guergiuev
et al., 2017; Kording & Konig, 2001). Similarly, climbing fibers and Purkinje cells may define
a learner/teacher system in the cerebellum (Marr, 1969). These components allow for independent
integration of two different signals, and may thus provide a realistic solution to the credit assignment
problem.

Thus we implement a network that learns to use feedback signals trained with reinforcement learning
via a global reward signal. We mathematically analyze the model, and compare its capabilities
to other methods for learning in ANNs (e.g. feedback alignment). We prove consistency of the
estimator in particular cases, extending the theory of synthetic gradient-type approaches (Jaderberg
et al., 2016; Czarnecki et al., 2017). We demonstrate that our synthetic gradient model learns as
well as regular backpropagation in small models, overcomes the limitations of feedback alignment
on more complicated feedforward networks, and can be used in convolutional networks. Thus our
method illustrates a biologically realistic way by which the brain could perform gradient descent
learning.

2 LEARNING FEEDBACK WEIGHTS THROUGH PERTURBATIONS

We use the following notation. Let x ∈ Rm represent an input vector. Let an N hidden-layer
network be given by ŷ = f(x) ∈ Rp. This is composed of a set of layer-wise summation and
non-linear activations

hi = f i(hi−1) = σ
(
W ihi−1) ,

for hidden layer states hi ∈ Rni , non-linearity σ, weight matrices W i ∈ Rni×ni−1 and denoting
h0 = x and hN+1 = ŷ. Some loss function L is defined in terms of the network output: L(y, ŷ(x)).
Let L denote the loss as a function of (x,y): L(x,y) = L(y, ŷ(x)). Let data (x,y) ∈ D be drawn
from a distribution ρ. Then we aim to minimize:

E [L(x,y)] .

Backpropagation relies on the error signal ei, computed in a top-down fashion:

ei =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(
(W i+1)Tei+1

)
◦ σ′(W ihi−1), 1 ≤ i ≤ N ,

where ◦ denotes element-wise multiplication.

2.1 BASIC SETUP

Let the loss gradient term be denoted as

λi =
∂L
∂hi

= (W i+1)Tei+1.

In this work we replace λi with an approximation with its own parameters to be learned (known as
a synthetic gradient (Jaderberg et al., 2016; Czarnecki et al., 2017), or error critic (Werbos, 1992)):

λi ≈ g(hi, ẽi+1; θ),
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Figure 1: Learning feedback weights through perturbations. (A) Backpropagation sends error infor-
mation from an output loss function, L, through each layer from top to bottom via the same matrices
W i used in the feedforward network. (B) Node perturbation introduces noise in each layer, ξi, that
perturbs that layer’s output and resulting loss function. The perturbed loss function, L̃, is correlated
with the noise to give an estimate of the error current. This estimate is used to update feedback
matrices Bi to better approximate the error signal.

for parameters θ. Note that we must distinguish the true loss gradients from their synthetic estimates.
Let ẽi be loss gradients computed by backpropagating the synthetic gradients

ẽi =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;

g(hi, ẽi+1; θ) ◦ σ′(W ihi−1), 1 ≤ i ≤ N .

For the final layer the synthetic gradient matches the true gradient: eN+1 = ẽN+1. This setup can
accommodate both top-down and bottom-up information, and encompasses a number of published
models (Jaderberg et al., 2016; Czarnecki et al., 2017; Lillicrap et al., 2016; Nøkland, 2016; Liao
et al., 2016; Xiao et al., 2018).

2.2 STOCHASTIC NETWORKS AND GRADIENT DESCENT

To learn a synthetic gradient we utilze the stochasticity inherent to biological neural networks. A
number of biologically plausible learning rules exploit random perturbations in neural activity (Xie
& Seung, 2004; Seung, 2003; Fiete & Seung, 2006; Fiete et al., 2007; Song et al., 2017). Here, at
each time each unit produces a noisy response:

hi
t = σ

(∑
k

W i
·kh

i−1
t

)
+ chξ

i
t,

for independent Gaussian noise ξi ∼ ν = N (0, I) and standard deviation ch > 0. This generates
a noisy loss L̃(x,y, ξ) and a baseline loss L(x,y) = L̃(x,y, 0). We will use the noisy response
to estimate gradients that then allow us to optimize the baseline L – the gradients used for weight
updates are computed using the deterministic baseline.

2.3 SYNTHETIC GRADIENTS VIA PERTURBATION

For Gaussian white noise, the well-known REINFORCE algorithm (Williams, 1992) coincides with
the node perturbation method (Fiete & Seung, 2006; Fiete et al., 2007). Node perturbation works by
linearizing the loss:

L̃ ≈ L+
∂L
∂hij

chξ
i
j , (1)

such that

E
(

(L̃ − L)chξ
i
j |x,y

)
≈ c2h

∂L
∂hij

∣∣∣∣
x,y

,
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with expectation taken over the noise distribution ν(ξ). This provides an estimator of the loss gradi-
ent

λ̂i := (L̃(x,y, ξ)− L(x,y))
ξi

ch
. (2)

The approximation (1) is made more precise in Theorem 1.

2.4 TRAINING A FEEDBACK NETWORK

There are many possible sensible choices of g(·). For example, taking g as simply a function of
each layer’s activations: λi = g(hi) is in fact sufficient parameterization to express the true gradient
function (Jaderberg et al., 2016). We may expect, however, that the gradient estimation problem be
simpler if each layer is provided with some error information obtained from the loss function and
propagated in a top-down fashion. Symmetric feedback weights may not be biologically plausible,
and random fixed weights may only solve certain problems of limited size or complexity (Lillicrap
et al., 2016). However, a system that can learn to appropriate feedback weights B may be able to
align the feedforward and feedback weights as much as is needed to successfully learn.

We investigate various choices of g(hi, ẽi+1;Bi+1) outlined in the applications below. Parameters
Bi+1 are estimated by solving the least squares problem:

B̂i+1 = arg min
B

E
∥∥∥g(hi, ẽi+1;B)− λ̂i

∥∥∥2
2
. (3)

Unless otherwise noted this was solved by gradient-descent, updating parameters once with each
minibatch. Refer to the supplementary material for additional experimental descriptions and param-
eters.

3 THEORETICAL RESULTS

We can prove the estimator (3) is consistent as ch → 0 in some particular cases. First consider
consistency of the ‘feedback-alignment’ estimator: gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1. To prove
consistency we must show the expectation of the Taylor series approximation (1) is well behaved.
That is, we must show the expected remainder term of the expansion:

E ij(ch) = E

[
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1|x,y

]
,

is finite. This requires some additional assumptions on the problem. We prove the result under the
following assumptions:

• A1: the noise ξ is subgaussian,
• A2: the loss function L(x,y) is analytic on D,
• A3: the error matrices ẽn(ẽn)T are full rank, for 1 ≤ n ≤ N + 1,
• A4: the mean of the remainder and error terms is bounded:

E
[
En(ch)(ẽn+1)T

]
<∞,

for 1 ≤ n ≤ N .

Under these assumptions convergence follows from consistency of the least squares estimator for
linear models.

Consider first convergence of the final layer feedback matrix, BN+1.
Theorem 1. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1, then the least squares estimator

(B̂N+1)T := λ̂N (eN+1)T
(
eN+1(eN+1)T

)−1
, (4)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂N+1 = WN+1,

where plim indicates convergence in probability.
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Theorem 1 thus establishes convergence of B in a shallow (1 hidden layer) non-linear network,
provided the activation function and loss function are smooth. In a deep, linear network we can also
use Theorem 1 to establish convergence over the rest of the layers of the network.
Theorem 2. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1 and σ(x) = x, the least squares
estimator

(B̂n)T := λ̂n−1(ẽn)T
(
ẽn(ẽn)T

)−1
1 ≤ n ≤ N + 1, (5)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n = Wn, 1 ≤ n ≤ N + 1.

Given these results we can establish consistency for the ‘direct feedback alignment’ (DFA;
Nøkland (2016)) estimator: gDFA(hi, ẽN+1;Bi+1) = (Bi+1)T ẽN+1. Theorem 1 applies triv-
ially since for the final layer, the two approximations have the same form: gFA(hN , ẽN+1; θN ) =
gDFA(hN , ẽN+1; θN ). Theorem 2 can be easily extended according to the following:
Corollary 1. Assume A1-4. For gDFA(hi, ẽN+1;Bi+1) = Bi+1ẽN+1 and σ(x) = x, the least
squares estimator

(B̂n)T := λ̂n−1(ẽN+1)T
(
ẽN+1(ẽN+1)T

)−1
1 ≤ n ≤ N + 1, (6)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n =

n∏
j=N+1

W j , 1 ≤ n ≤ N + 1.

Proofs and a discussion of the assumptions are provided in the supplementary material.

Thus for a non-linear shallow network or a deep linear network, for both gFA and gDFA, we have
the result that, for sufficiently small ch, if we fix the network weights W and train B through node
perturbation then we converge to W . Validation that the method learns to approximate W , for fixed
W , is provided in the supplementary material. In practice, we update B and W simultaneously.
Some convergence theory is established for this case in (Jaderberg et al., 2016; Czarnecki et al.,
2017).

4 APPLICATIONS

4.1 FULLY CONNECTED NETWORKS SOLVING MNIST

First we investigate g(hi, ˜ei+1;Bi+1) = (Bi+1)T ˜ei+1, which describes a non-symmetric feedback
network (Figure 1). To demonstrate the method can be used to solve simple supervised learning
problems we use node perturbation with a four-layer network and MSE loss to solve MNIST (Figure
2). Updates to W i are made using the synthetic gradients

∆W i = ηẽihi−1,

for learning rate η. The feedback network needs to co-adapt with the feedforward network in order
to continue to provide a useful error signal. We observed that the system is able to adjust to provide a
close correspondence between the feedforward and feedback matrices in both layers of the network
(Figure 2A).

We observed that the relative error between Bi and W i is lower than what is observed for feedback
alignment, suggesting that this co-adaptation of both W i and Bi is indeed beneficial. The relative
error depends on the amount of noise used in node perturbation – lower variance doesn’t necessarily
imply the lowest error between W and B, suggesting there is an optimal noise level that balances
bias in the estimate and the ability to co-adapt to the changing feedforward weights.

Consistent with the low relative error in both layers, we observe that the alignment (the angle be-
tween the estimated gradient and the true gradient – proportional to eTWBT ẽ) is low in each layer
– much lower for node perturbation than for feedback alignment, again suggesting that the method
is much better at communicating error signals between layers (Figure 2B). In fact, recent studies
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Figure 2: Node perturbation in small 4-layer network (784-50-20-10 neurons), for varying noise
levels c, compared to feedback alignment and backpropagation. (A) Relative error between feedfor-
ward and feedback matrix. (B) Angle between true gradient and synthetic gradient estimate for each
layer. (C) Percentage of signs in W i and Bi that are in agreement. (D) Test error for node perturba-
tion, backpropagation and feedback alignment. Curves show mean plus/minus standard error over 5
runs.
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Figure 3: Results with five-layer MNIST autoencoder network. (A) Mean loss plus/minus standard
error over 10 runs. Dashed lines represent training loss, solid lines represent test loss. (B) Latent
space activations, colored by input label for each method. (C) Sample outputs for each method.

have shown that sign congruence of the feedforward and feedback matrices is all that is required to
achieve good performance (Liao et al., 2016; Xiao et al., 2018). Here the sign congruence is also
higher in node perturbation, again depending somewhat the variance. The amount of congruence is
comparable between layers (Figure 2C).

Finally, the learning performance of node perturbation is comparable to backpropagation (Figure
2D) – achieving close to 3% test error. It is better than feedback alignment in this case. The
same learning rate was used for all experiments here, and was not optimized individually for each
method. Thus this result is not indicative of the superior performance of one method over the other
– all methods do converge, and each likely could be optimized to converge faster. These results
instead highlight the qualitative differences between the methods. They suggest node perturbation
for learning feedback weights can be used in deep networks.

4.2 AUTO-ENCODING MNIST

The above results demonstrate node perturbation provides error signals closely aligned with the true
gradients. However, performance-wise they do not demonstrate any clear advantage over feedback
alignment or backpropagation in this small network. A known shortcoming of feedback align-
ment is in very deep networks and in autoencoding networks with tight bottleneck layers (Lilli-
crap et al., 2016). To see if node perturbation has the same shortcoming, we test performance of
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a g(hi, ˜ei+1;Bi+1) = (Bi+1)T ˜ei+1 synthetic gradient on a simple auto-encoding network with
MNIST input data (size 784-200-2-200-784). In this more challenging case we also compare the
method to the ‘matching’ learning rule (Rombouts et al., 2015; Martinolli et al., 2018), in which
updates to B match updates to W , and also a denoising autoencoder (DAE) (Vincent et al., 2008).

As expected, feedback alignment performs poorly, while node perturbation performs better than
backpropagation and comparable ADAM (Kingma & Ba, 2015) (Figure 3A). In fact ADAM begins
to overfit in training, while node perturbation does not. The increased performance relative to back-
propagation is surprising. It may be a similar effect to that speculated to explain feedback alignment
– the method strikes the right balance between providing a useful gradient signal to learn, and con-
straining the updates to be sufficiently aligned with B, acting as a type of regularization (Lillicrap
et al., 2016). The addition of noise in our method may also produce similar behavior to a DAE, in
which noise encourages learning of more robust latent factors (Alain & Bengio, 2015). And, in-
deed, the DAE improves the loss over vanilla backpropagation (Figure 3A). In line with these ideas,
the latent space learnt by node perturbation shows a more uniform separation between the digits,
compared to the networks trained by backpropagation and ADAM. Feedback alignment, in contrast,
does not learn to separate digits in the bottleneck layer at all (Figure 3B), resulting in scrambled
output (Figure 3C). The matched learning rule performs similarly to backpropagation. These results
show that node perturbation is able to successfully communicate error signals through thin layers of
a network as needed.

4.3 CONVOLUTIONAL NEURAL NETWORKS SOLVING CIFAR

Convolutional networks are another known shortcoming of feedback alignment. Here we test the
method on a convolutional neural network (CNN) solving CIFAR (Krizhevsky, 2009). Refer to the
supplementary material for architecture and parameter details. For this network we learn feedback
weights direct from the output layer to each earlier layer: g(hi, ẽi+1;Bi+1) = (Bi+1)T ẽN+1

(similar to ‘direct feedback alignment’ (Nøkland, 2016)). Here this was solved by gradient-descent.
On CIFAR10 we obtain a test accuracy of 75%. When compared with fixed feedback weights and
backpropagation, we see it is advantageous to learn feedback weights on CIFAR10 and marginally
advantageous on CIFAR100 (Table 1). This shows the method can be used in a CNN, and can solve
challenging computer vision problems without weight transport.

Table 1: Mean test accuracy of CNN over 5 runs trained with backpropagation, node perturbation
and direct feedback alignment (DFA) (Nøkland, 2016; Crafton et al., 2019).

dataset backpropagation node perturbation DFA
CIFAR10 77 75 72

CIFAR100 51 48 47

5 DISCUSSION

Here we implement a perturbation-based synthetic gradient method to train neural networks. We
show that this hybrid approach can be used in both fully connected and convolutional networks.
By removing the symmetric feedforward, feedback weight requirement imposed by backpropaga-
tion this approach is a step towards more biologically-plausible deep learning. In contrast to many
perturbation-based methods, this hybrid approach can solve large-scale problems. We thus believe
this approach can provide powerful and biologically plausible learning algorithms.

The main drawback is that the method does not reach state-of-the-art performance on more inter-
esting datasets like CIFAR (let alone something like ImageNet). We focused on demonstrating that
it is advantageous to learn feedback weights, when compared with fixed weights, and successfully
did so in a number of cases. However, we did not use any additional data augmentation and regu-
larization tricks often employed to reach state-of-the-art performance. Thus fully characterizing the
performance of this method remains important future work.

But the method does has a number of computational advantages. First, without weight transport the
method has better data-movement performance (Crafton et al., 2019; Akrout et al., 2019), meaning
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it may be more efficiently implemented than backpropagation on specialized hardware. Second, by
relying on random perturbations to measure gradients, the method does not rely on the environment
to provide gradients. It works in cases where gradients cannot be backpropagated because our
environment does not readily allow us to do so, which is common in reinforcement learning settings.
Further, the addition of noise to different parts of a neural network is common either as a form of
data augmentation, regularization, or to improve exploration during training (Bengio et al., 2013;
Gulcehre et al., 2016; Neelakantan et al., 2015; Bishop, 1995). And, as mentioned above, noise
may confer robustness to learnt latent spaces in autoencoding applications, similar to the motivation
behind denoising autoencoders (Vincent et al., 2008). In fact, our theoretical results are somewhat
similar to that of Alain & Bengio (2015), who demonstrate that a denoising autoencoder converges to
the unperturbed solution as Gaussian noise goes to zero. Our results apply to subgaussian noise more
generally. Exploring the correspondence between our model and other generative neural networks
is the subject of future work.

While previous research has provided some insight and theory for how feedback alignment works
(Lillicrap et al., 2016; Ororbia et al., 2018; Moskovitz et al., 2018; Bartunov et al., 2018; Baldi et al.,
2018) the effect remains somewhat mysterious, and not applicable in some network architectures.
Recent studies have shown that some of these weaknesses can be addressed by instead imposing sign
congruent feedforward and feedback matrices (Xiao et al., 2018). Yet what mechanism may produce
congruence in biological networks is unknown. Here we show that the shortcomings of feedback
alignment can be addressed in another way: the system can learn to adjust weights as needed to
provide a useful error signal. Our work is closely related to Akrout et al. (2019), which also uses
perturbations to learn feedback weights. However our approach does not divide learning into two
phases, and training of the feedback weights does not occur in a layer-wise fashion.

Here we tested our method in an idealized setting. However the method is consistent with neuro-
biology in two important ways. First, it involves separate learning of feedforward and feedback
weights. This is possible in cortical networks, where complex feedback connections exist between
layers (Lacefield et al., 2019; Richards & Lillicrap, 2019) and pyramidal cells have apical and basal
compartments that allow for separate integration of feedback and feedforward signals (Guerguiev
et al., 2017; Körding & König, 2001). A recent finding that apical dendrites receive reward infor-
mation is particularly interesting (Lacefield et al., 2019). Models like Guerguiev et al. (2017) show
how the ideas in this paper may be implemented in realistic models of spiking neural networks. We
believe such models can be augmented with a perturbation-based rule like ours to provide a better
learning system.

The second feature is that perturbations are used to learn the feedback weights. How can a neu-
ron measure these perturbations? There are many plausible mechanisms (Seung, 2003; Xie & Se-
ung, 2004; Fiete & Seung, 2006; Fiete et al., 2007). For instance, birdsong learning uses empiric
synapses from area LMAN (Fiete et al., 2007), others proposed it is approximated (Legenstein et al.,
2010; Hoerzer et al., 2014), or neurons could use a learning rule that does not require knowing the
noise (Lansdell & Kording, 2018). Further, our model involves the subtraction of a baseline loss
to reduce the variance of the estimator. This does not affect the expected value of the estimator
– technically the baseline could be removed or replaced with a approximation (Legenstein et al.,
2010; Loewenstein & Seung, 2006). Thus both separation of feedforward and feedback systems and
perturbation-based estimators can be implemented by neurons.

There is a large space of plausible learning rules that can learn to use feedback signals in order to
more efficiently learn. These promise to inform both models of learning in the brain and learning
algorithms in artificial networks. Here we take an early step in this direction.
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A PROOFS

We review the key components of the model. Data (x,y) ∈ D are drawn from a distribution ρ. The
loss function is linearized:

L̃ ≈ L+
∂L
∂hij

chξ
i
j , (7)

such that

E
(

(L̃ − L)chξ
i
j |x,y

)
≈ c2h

∂L
∂hij

∣∣∣∣
x,y

,

with expectation taken over the noise distribution ν(ξ). This suggests a good estimator of the loss
gradient is

λ̂i := (L̃(x,y, ξ)− L(x,y))
ξi

ch
. (8)

Let ẽi be the error signal computed by backpropagating the synthetic gradients:

ẽi =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(

(B̂i+1)T ẽi+1
)
◦ σ′(W ihi−1), 1 ≤ i ≤ N.

Then parameters Bi+1 are estimated by solving the least squares problem:

B̂i+1 = arg min
B

E
∥∥∥BT ẽi+1 − λ̂i

∥∥∥2
2
. (9)

Under what conditions can we show that B̂i+1 →W i+1 (with enough data)?

One way to find an answer is to define the synthetic gradient in terms of the system without noise
added. Then BT ẽ is deterministic with respect to x,y and, assuming L̃ has a convergent power
series around ξ = 0, we can write

E(λ̂i|x,y) = E

(
1

c2h

[
∂L
∂hi

(chξ
i
j)

2 +

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1

]
|x,y

)

= (W i+1)Tei+1 + E

(
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1|x,y

)
.

Taken together these suggest we can prove B̂i+1 →W i+1 in the same way we prove consistency of
the linear least squares estimator.

For this to work we must show the expectation of the Taylor series approximation (1) is well behaved.
That is, we must show the expected remainder term of the expansion:

E ij(ch) = E

[
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1|x,y

]
,

is finite and goes to zero as ch → 0. This requires some additional assumptions on the problem.

We make the following assumptions:

• A1: the noise ξ is subgaussian,
• A2: the loss function L(x,y) is analytic on D,
• A3: the error matrices ẽn(ẽn)T are full rank, for 1 ≤ n ≤ N + 1,
• A4: the mean of the remainder and error terms is bounded:

E
[
En(ch)(ẽn+1)T

]
<∞,

for 1 ≤ n ≤ N .

Consider first convergence of the final layer feedback matrix, BN+1. In the final layer it is true that
eN+1 = ẽN+1.
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Theorem 1. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1, then the least squares estimator

(B̂N+1)T := λ̂N (eN+1)T
(
eN+1(eN+1)T

)−1
, (10)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂N+1 = WN+1.

Proof. Let L(m)
ij := ∂mL

∂him
j

. We first show that, under A1-2, the conditional expectation of the esti-

mator (2) converges to the gradient L(1)
Nj as ch → 0. For each λ̂Nj , by A2, we have the following

series expanded around ξ = 0:

λ̂Nj =
1

c2h

∞∑
m=1

L(m)
ij

m!
(chξ

N
j )m+1.

Taking a conditional expectation gives:

E(λ̂Nj |x,y) =(WN+1)TeN+1 + E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j )m+1|x,y

]
.

We must show the remainder term

EN (ch) = E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j )m+1|x,y

]
,

goes to zero as ch → 0. This is true provided each moment E((ξNj )m|x,y) is sufficiently well-
behaved. Using Jensen’s inequality and the triangle inequality in the first line, we have that

∣∣EN (ch)
∣∣ ≤ E

[
1

c2h

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ |chξNj |m+1|x,y

]
, ∀(x,y) ∈ D

[monotone convergence] =

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1E
[
|ξNj |m+1

]
[subgaussian] ≤ K

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1(
√
m+ 1)m+1

= O(ch) as ch → 0. (11)

With this in place, we have that the problem (9) is close to a linear least squares problem, since

λ̂N = (WN+1)TeN+1 + EN (ch) + ηN , (12)

with residual ηN = λ̂N − E(λ̂N |x,y). The residual satisfies

E
(
eN+1(ηN )T

)
= E(eN+1(λ̂N )T − eN+1E((λ̂N )T |x,y))

= E
(
eN+1(λ̂N )T − E

(
eN+1(λ̂N )T |x,y

))
= 0. (13)

This follows since eN+1 is defined in relation to the baseline loss, not the stochastic loss, meaning
it is measurable with respect to (x,y) and can be moved into the conditional expectation.

From (12) and A3, we have that the least squares estimator (10) satisfies

(B̂N+1)T = (WN+1)T + (EN (ch) + ηN )(eN+1)T (eN+1(eN+1)T )−1.
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Thus, using the continuous mapping theorem

plim
T→∞

(B̂N+1)T = (WN+1)T +

[
plim
T→∞

1

T
(EN (ch) + ηN )(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1
[WLLN] = (WN+1)T + E

[
(E(ch) + ηN )(eN+1)T

] [
E(eN+1(eN+1)T )

]−1
[Eq. (13)] = (WN+1)T + E

[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T )

]−1
[A4 and Eq. (11)] = (WN+1)T +O(ch).

Then we have:
lim
ch→0

plim
T→∞

B̂N+1 = WN+1.

We can use Theorem 1 to establish convergence over the rest of the layers of the network when the
activation function is the identity.
Theorem 2. Assume A1-4. For gFA(hi, ẽi+1;Bi+1) = Bi+1ẽi+1 and σ(x) = x, the least squares
estimator

(B̂n)T := λ̂n−1(ẽn)T
(
ẽn(ẽn)T

)−1
1 ≤ n ≤ N + 1, (14)

solves (9) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n = Wn, 1 ≤ n ≤ N + 1.

Proof. Define
W̃n(c) := plim

T→∞
B̂n,

assuming this limit exists. From Theorem 1 the top layer estimate B̂N+1 converges in probability
to W̃N+1(c).

We can then use induction to establish that B̂j in the remaining layers also converges in probability
to W̃ j(c). That is, assume that B̂j converge in probability to W̃ j(c) in higher layersN+1 ≥ j > n.
Then we must establish that B̂n also converges in probability.

To proceed it is useful to also define

˜̃e(c)n :=

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(

(W̃ i+1(c))T ˜̃ei+1
)
◦ σ′(W ihi−1), 1 ≤ i ≤ N,

as the error signal backpropagated through the converged (but biased) weight matrices W̃ (c). Again
it is true that ˜̃eN+1 = eN+1.

As in Theorem 1, the least squares estimator has the form:

(B̂n)T = λ̂n−1(ẽn)T
(
ẽn(ẽn)T

)−1
.

Thus, again by the continuous mapping theorem:

plim
T→∞

(B̂n)T =

[
plim
T→∞

1

T
λ̂n−1(ẽn)T

] [
plim
T→∞

1

T
ẽn(ẽn)T

]−1
=

[
plim
T→∞

1

T
λ̂n−1(eN+1)T B̂N+1 · · · B̂n+1

] [
plim
T→∞

1

T
ẽn(ẽn)T

]−1
In this case continuity again allows us to separate convergence of each term in the product:

plim
T→∞

1

T
λ̂n−1(eN+1)T B̂N+1 · · · B̂n+1 =

[
plim
T→∞

1

T
λ̂n−1(eN+1)T

] [
plim
T→∞

B̂N+1

]
· · ·
[

plim
T→∞

B̂n+1

]
(15)

= E(λ̂n−1(eN+1)T )WN+1(c) · · ·Wn+1(c),

= E(λ̂n−1(˜̃en(c))T )
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using the weak law of large numbers in the first term, and the induction assumption for the remaining
terms. In the same way

plim
T→∞

1

T
ẽn(ẽn)T = E(˜̃en(c)(˜̃en(c))T ).

Note that the induction assumption also implies limc→0
˜̃en(c) = en. Thus, putting it together, by

A3, A4 and the same reasoning as in Theorem 1 we have the result:

lim
ch→0

plim
T→∞

(B̂n)T = lim
c→0

[
(Wn)TE(en(˜̃en(c))T ) + E(En−1(c)(˜̃en(c))T

] [
E(˜̃en(c)(˜̃en(c))T )

]−1
= (Wn)T .

Corollary 1. Assume A1-4. For gDFA(hi, ẽN+1;Bi+1) = Bi+1ẽN+1 and σ(x) = x, the least
squares estimator

(B̂n)T := λ̂n−1(ẽN+1)T
(
ẽN+1(ẽN+1)T

)−1
1 ≤ n ≤ N + 1, (16)

solves (3) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n =
n∏

j=N+1

W j , 1 ≤ n ≤ N + 1.

Proof. For a deep linear network notice that the node perturbation estimator can be expressed as:
λ̂i = (Wn+1 · · ·WN+1)TeN+1 + En(ch) + ηn, (17)

where the first term represents the true gradient, given by the simple linear backpropagation, the
second and third terms are the remainder and a noise term, as in Theorem 1. Define

V n :=

n∏
j=N+1

Wj .

Then following the same reasoning as the proof of Theorem 1, we have:

plim
T→∞

(B̂n+1)T = (V n+1)T +

[
plim
T→∞

1

T
(En(ch) + ηn)(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1
= (V n+1)T + E

[
(E(ch) + ηn)(eN+1)T

] [
E(eN+1(eN+1)T )

]−1
= (V n+1)T + E

[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T )

]−1
= (V n+1)T +O(ch).

Then we have:
lim
ch→0

plim
T→∞

B̂n+1 = V n+1.

A.1 DISCUSSION OF ASSUMPTIONS

It is worth making the following points on each of the assumptions:

• A1. In the paper we assume ξ is Gaussian. Here we prove the more general result of
convergence for any subgaussian random variable.

• A2. In practice this may be a fairly restrictive assumption, since it precludes using relu non-
linearities. Other common choices, such as hyperbolic tangent and sigmoid non-linearities
with an analytic cost function do satisfy this assumption, however.

• A3. It is hard to establish general conditions under which ẽn(ẽn)T will be full rank. While
it may be a reasonable assumption in some cases.

Extensions of Theorem 2 to a non-linear network may be possible. However, the method of proof
used here is not immediately applicable because the continuous mapping theorem can not be applied
in such a straightforward fashion as in Equation (15). In the non-linear case the resulting sums over
all observations are neither independent or identically distributed, which makes applying any law of
large numbers complicated.
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Figure 4: Convergence of node perturbation method in a two hidden layer neural network (784-50-
20-10) with MSE loss, for varying noise levels c. Node perturbation is used to estimate feedback
matrices that provide gradient estimates for fixed W . (A) Relative error (‖W i − Bi‖F /‖W i‖F )
for each layer. (B) Angle between true gradient and synthetic gradient estimate at each layer. (C)
Percentage of signs in W i and Bi that are in agreement. (D) Relative error when number of neurons
is varied (784-N-50-10). (E) Angle between true gradient and synthetic gradient estimate at each
layer.

B VALIDATION WITH FIXED W

We demonstrate the method’s convergence in a small non-linear network solving MNIST for differ-
ent noise levels, ch, and layer widths (Figure 4). As basic validation of the method, in this experiment
the feedback matrices are updated while the feedforward weights W i are held fixed. We should ex-
pect the feedback matrices Bi to converge to the feedforward matrices W i. Here different noise
variance does results equally accurate estimators (Figure 4A). The estimator correctly estimates the
true feedback matrix W 2 to a relative error of 0.8%. The convergence is layer dependent, with the
second hidden layer matrix, W 2, being accurately estimated, and the convergence of the first hidden
layer matrix, W 1, being less accurately estimated. Despite this, the angles between the estimated
gradient and the true gradient (proportional to eTWBT ẽ) are very close to zero for both layers
(Figure 4B) (less than 90 degrees corresponds to a descent direction). Thus the estimated gradients
strongly align with true gradients in both layers. Recent studies have shown that sign congruence of
the feedforward and feedback matrices is all that is required to achieve good performance Liao et al.
(2016); Xiao et al. (2018). Here significant sign congruence is achieved in both layers (Figure 4C),
despite the matrices themselves being quite different in the first layer. The number of neurons has an
effect on both the relative error in each layer and the extent of alignment between true and synthetic
gradient (Figure 4D,E). The method provides useful error signals for a variety of sized networks,
and can provide useful error information to layers through a deep network.

C EXPERIMENT DETAILS

Details of each task and parameters are provided here. All code is implemented in TensorFlow.

C.1 FIGURE 2

Networks are 784-50-20-10 with an MSE loss function. A sigmoid non-linearity is used. A batch
size of 32 is used. B is updated using synthetic gradient updates with learning rate η = 0.0005, W
is updated with learning rate 0.0004, standard deviation of noise is 0.01. Same step size is used for
feedback alignment, backpropagation and node perturbation.
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C.2 FIGURE 3

Network has dimensions 784-200-2-200-784. Activation functions are, in order: tanh, identity, tanh,
relu. MNIST input data with MSE reconstruction loss is used. A batch size of 32 was used. In this
case stochastic gradient descent was used to updateB. Values forW step size, noise variance andB
step size were found by random hyperparameter search for each method. The denoising autoencoder
used Gaussian noise with zero mean and standard deviation σ = 0.3 added to the input training data.

C.3 FIGURE 4

Networks are 784-50-20-10 (noise variance) or 784-N-50-10 (number of neurons) solving MNIST
with an MSE loss function. A sigmoid non-linearity is used. A batch size of 32 is used. Here
W is fixed, and B is updated according to an online ridge regression least-squares solution. This
was used becase it converges faster than the gradient-descent based optimization used for learning
B throughout the rest of the text, so is a better test of consistency. A regularization parameter of
γ = 0.1 was used for the ridge regression. That is, for each update, Bi was set to the exact solution
of the following:

B̂i+1 = arg min
B

E
∥∥∥g(hi, ẽi+1;B)− λ̂i

∥∥∥2
2

+ γ‖B‖2F . (18)

C.4 CNN ARCHITECTURE AND IMPLEMENTATION

Code and CNN architecture are based on the direct feedback alignment implementation of Crafton
et al. (2019). Specifically, for both CIFAR10 and CIFAR100, the CNN has the architecture
Conv(3x3, 1x1, 32), MaxPool(3x3, 2x2), Conv(5x5, 1x1, 128), MaxPool(3x3, 2x2), Conv(5x5,
1x1, 256), MaxPool(3x3, 2x2), FC 2048, FC 2048, Softmax(10). Hyperparameters (learning rate,
feedback learning rate, and perturbation noise level) were found through random search. All other
parameters are the same as Crafton et al. (2019). In particular, ADAM optimizer was used, and
dropout with probability 0.5 was used.
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