
Under review as a conference paper at ICLR 2020

SUB-POLICY ADAPTATION FOR HIERARCHICAL
REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical reinforcement learning is a promising approach to tackle long-horizon
decision-making problems with sparse rewards. Unfortunately, most methods still
decouple the lower-level skill acquisition process and the training of a higher level
that controls the skills in a new task. Leaving the skills fixed can lead to significant
sub-optimality in the transfer setting. In this work, we propose a novel algorithm
to discover a set of skills, and continuously adapt them along with the higher level
even when training on a new task. Our main contributions are two-fold. First,
we derive a new hierarchical policy gradient with an unbiased latent-dependent
baseline, and we introduce Hierarchical Proximal Policy Optimization (HiPPO),
an on-policy method to efficiently train all levels of the hierarchy jointly. Second,
we propose a method of training time-abstractions that improves the robustness
of the obtained skills to environment changes. Code and videos are available at
sites.google.com/view/hippo-rl.

1 INTRODUCTION

Reinforcement learning (RL) has made great progress in a variety of domains, from playing games
such as Pong and Go (Mnih et al., 2015; Silver et al., 2017) to automating robotic locomotion
(Schulman et al., 2015; Heess et al., 2017; Florensa et al., 2018b), dexterous manipulation (Florensa
et al., 2017b; Andrychowicz et al.), and perception (Nair et al., 2018; Florensa et al., 2018a). Yet,
while humans are able to modularize and reuse skills across a variety of tasks, most work in RL is still
learning from scratch when faced with a new problem. This is particularly inefficient when tackling
multiple related tasks that are hard to solve due to sparse rewards or long horizons.

A promising technique to overcome this limitation is hierarchical reinforcement learning (HRL)
(Sutton et al., 1999; Florensa et al., 2017a). In this paradigm, policies have several modules of
abstraction, so the reuse of a subset of the modules becomes easier. The most common case consists
of temporal abstraction (Precup, 2000; Dayan & Hinton, 1993), where a higher-level policy (manager)
takes actions at a lower frequency, and its actions condition the behavior of some lower level skills or
sub-policies. When transferring knowledge to a new task, most prior works fix the skills and train
a new manager on top. Despite having a clear benefit in kick-starting the learning in the new task,
having fixed skills can considerably cap the final performance on the new task (Florensa et al., 2017a).
Little work has been done on adapting pre-trained sub-policies to be optimal for a new task.

In this paper, we develop a new framework for simultaneously adapting all levels of temporal
hierarchies. First, we derive an efficient approximated hierarchical policy gradient. The key insight is
that, despite the decisions of the manager being unobserved latent variables from the point of view of
the Markovian environment, from the perspective of the sub-policies they can be considered as part
of the observation. We show that this provides a decoupling of the manager and sub-policy gradients,
which greatly simplifies the computation in a principled way. It also theoretically justifies a technique
used in other prior works (Frans et al., 2018). Second, we introduce a sub-policy specific baseline for
our hierarchical policy gradient. We prove that this baseline is unbiased, and our experiments reveal
faster convergence, suggesting efficient gradient variance reduction. Then we introduce a more stable
way of using this gradient, Hierarchical Proximal Policy Optimization (HiPPO). This method helps
us take more conservative steps in our policy space (Schulman et al., 2017), critical in hierarchies
because of the interdependence of each layer. Results show that HiPPO is highly efficient when
learning from scratch, i.e. adapting randomly initialized skills, and when adapting pretrained skills on

1

Under review as a conference paper at ICLR 2020

a new task. Finally, we evaluate the benefit of randomizing the time-commitment of the sub-policies,
and show it helps both in terms of final performance and zero-shot adaptation on similar tasks.

2 PRELIMINARIES AND PROBLEM STATEMENT

Figure 1: Temporal hierarchy studied in this paper. A la-
tent code zt is sampled from the manager policy πθh(zt|st)
every p time-steps, using the current observation skp. The
actions at are sampled from the sub-policy πθl(at|st, zkp)
conditioned on the same latent code from timestep t = kp to
timestep (k + 1)p− 1

We define a discrete-time finite-
horizon discounted Markov decision
process (MDP) by a tuple M =
(S,A,P, r, ρ0, γ,H), where S is a
state set, A is an action set, P :
S × A × S → R+ is the transition
probability distribution, γ ∈ [0, 1] is
a discount factor, and H the horizon.
Our objective is to find a stochastic
policy πθ that maximizes the expected
discounted reward within the MDP,
η(πθ) = Eτ [

∑T
t=0 γ

tr(st, at)]. We
use τ = (s0, a0, ...,) to denote the
entire state-action trajectory, where
s0 ∼ ρ0(s0), at ∼ πθ(at|st), and
st+1 ∼ P(st+1|st, at).
In this work, we tackle the problem
of learning a hierarchical policy and
efficiently adapting all the levels in
the hierarchy to perform a new task.
Usually, hierarchical policies are composed of a higher level, or manager πθh(zt|st), and a lower level,
or sub-policy πθl(at′ |zt, st′). The higher level does not take actions in the environment directly, but
rather outputs a command, or latent variable zt ∈ Z , that conditions the behavior of the lower level.
We focus on the common case where Z = Zn making the manager choose among n sub-policies, or
skills, to execute. The manager typically operates at a lower frequency than the sub-policies, only
observing the environment every p time-steps. When the manager receives a new observation, it
decides which low level policy to commit to for p environment steps by the means of a latent code z.
Figure 1 depicts this framework where the high level frequency p is a random variable, which is a
contribution of this paper as described in section 4.4.

3 RELATED WORK

There has been growing interest in HRL for the past few decades (Sutton et al., 1999; Precup, 2000),
but only recently has it been applied to high-dimensional continuous domains as we do in this work
(Kulkarni et al., 2016; Daniel et al., 2016). To obtain the lower level policies, or skills, most methods
exploit some additional assumptions, like access to demonstrations (Le et al., 2018; Merel et al.,
2019; Ranchod et al., 2015; Sharma et al., 2018), policy sketches (Andreas et al., 2017), or task
decomposition into sub-tasks (Ghavamzadeh & Mahadevan, 2003; Sohn et al., 2018). Other methods
use a different reward for the lower level, often constraining it to be a “goal reacher” policy, where the
signal from the higher level is the goal to reach (Nachum et al., 2018; Levy et al., 2019; Vezhnevets
et al., 2017). These methods are very promising for state-reaching tasks, but might require access to
goal-reaching reward systems not defined in the original MDP, and are more limited when training
on tasks beyond state-reaching. Our method does not require any additional supervision, and the
obtained skills are not constrained to be goal-reaching.

When transferring skills to a new environment, most HRL methods keep them fixed and simply train
a new higher-level on top (Hausman et al., 2018; Heess et al., 2016). Other work allows for building
on previous skills by constantly supplementing the set of skills with new ones (Shu et al., 2018),
but they require a hand-defined curriculum of tasks, and the previous skills are never fine-tuned.
Our algorithm allows for seamless adaptation of the skills, showing no trade-off between leveraging
the power of the hierarchy and the final performance in a new task. Other methods use invertible
functions as skills (Haarnoja et al., 2018), and therefore a fixed skill can be fully over-written when a

2

Under review as a conference paper at ICLR 2020

new layer of hierarchy is added on top. This kind of “fine-tuning” is promising, although similar to
other works (Peng et al., 2019), they do not apply it to temporally extended skills as we are interested
in here.

One of the most general frameworks to define temporally extended hierarchies is the options frame-
work (Sutton et al., 1999), and it has recently been applied to continuous state spaces (Bacon et al.,
2017). One of the most delicate parts of this formulation is the termination policy, and it requires sev-
eral regularizers to avoid skill collapse (Harb et al., 2017; Vezhnevets et al., 2016). This modification
of the objective may be difficult to tune and affects the final performance. Instead of adding such
penalties, we propose having skills of a random length, not controlled by the agent during training of
the skills. The benefit is two-fold: no termination policy to train, and more stable skills that transfer
better. Furthermore, these works only used discrete action MDPs. We lift this assumption, and
show good performance of our algorithm in complex locomotion tasks. There are other algorithms
recently proposed that go in the same direction, but we found them considerably more complex, less
principled (their per-action marginalization cannot capture well the temporal correlation within each
option), and without available code or evidence of outperforming non-hierarchical methods (Smith
et al., 2018).

The closest work to ours in terms of final algorithm is the one proposed by Frans et al. (2018).
Their method can be included in our framework, and hence benefits from our new theoretical
insights. We introduce a modification that is shown to be highly beneficial: the random time-
commitment mentioned above, and find that our method can learn in difficult environments without
their complicated training scheme.

4 EFFICIENT HIERARCHICAL POLICY GRADIENTS

When using a hierarchical policy, the intermediate decision taken by the higher level is not directly
applied in the environment. Therefore, technically it should not be incorporated into the trajectory
description as an observed variable, like the actions. This makes the policy gradient considerably
harder to compute. In this section we first prove that, under mild assumptions, the hierarchical
policy gradient can be accurately approximated without needing to marginalize over this latent
variable. Then, we derive an unbiased baseline for the policy gradient that can reduce the variance
of its estimate. Finally, with these findings, we present our method, Hierarchical Proximal Policy
Optimization (HiPPO), an on-policy algorithm for hierarchical policies, allowing learning at all levels
of the policy jointly and preventing sub-policy collapse.

4.1 APPROXIMATE HIERARCHICAL POLICY GRADIENT

Policy gradient algorithms are based on the likelihood ratio trick (Williams, 1992) to estimate the
gradient of returns with respect to the policy parameters as

∇θη(πθ) = Eτ
[
∇θ logP (τ)R(τ)

]
≈ 1

N

n∑
i=1

∇θ logP (τi)R(τi) (1)

=
1

N

n∑
i=1

1

H

H∑
t=1

∇θ log πθ(at|st)R(τi) (2)

In the context of HRL, a hierarchical policy with a manager πθh(zt|st) selects every p time-steps one
of n sub-policies to execute. These sub-policies, indexed by z ∈ Zn, can be represented as a single
conditional probability distribution over actions πθl(at|zt, st). This allows us to not only use a given
set of sub-policies, but also leverage skills learned with Stochastic Neural Networks (SNNs) (Florensa
et al., 2017a). Under this framework, the probability of a trajectory τ = (s0, a0, s1, . . . , sH) can be
written as

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj |skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])[

P (s0)

H∏
t=1

P (st+1|st, at)
]
. (3)

The mixture action distribution, which presents itself as an additional summation over skills, prevents
additive factorization when taking the logarithm, as from Eq. 1 to 2. This can yield numerical

3

Under review as a conference paper at ICLR 2020

instabilities due to the product of the p sub-policy probabilities. For instance, in the case where
all the skills are distinguishable all the sub-policies’ probabilities but one will have small values,
resulting in an exponentially small value. In the following Lemma, we derive an approximation of
the policy gradient, whose error tends to zero as the skills become more diverse, and draw insights on
the interplay of the manager actions.

Lemma 1. If the skills are sufficiently differentiated, then the latent variable can be treated as part
of the observation to compute the gradient of the trajectory probability. Let πθh(z|s) and πθl(a|s, z)
be Lipschitz functions w.r.t. their parameters, and assume that 0 < πθl(a|s, zj) < ε ∀j 6= kp, then

∇θ logP (τ) =
H/p∑
k=0

∇θ log πθh(zkp|skp) +
H∑
t=0

∇θ log πθl(at|st, zkp) +O(nHεp−1) (4)

Proof. See Appendix.

Our assumption can be seen as having diverse skills. Namely, for each action there is just one
sub-policy that gives it high probability. In this case, the latent variable can be treated as part of the
observation to compute the gradient of the trajectory probability. Many algorithms to extract lower-
level skills are based on promoting diversity among the skills (Florensa et al., 2017a; Eysenbach et al.,
2019), therefore usually satisfying our assumption. We further analyze how well this assumption
holds in our experiments section and Table 2.

4.2 UNBIASED SUB-POLICY BASELINE

The policy gradient estimate obtained when applying the log-likelihood ratio trick as derived above
is known to have large variance. A very common approach to mitigate this issue without biasing
the estimate is to subtract a baseline from the returns (Peters & Schaal, 2008). It is well known that
such baselines can be made state-dependent without incurring any bias. However, it is still unclear
how to formulate a baseline for all the levels in a hierarchical policy, since an action dependent
baseline does introduce bias in the gradient (Tucker et al., 2018). It has been recently proposed to
use latent-conditioned baselines (Weber et al., 2019). Here we go further and prove that, under the
assumptions of Lemma 1, we can formulate an unbiased latent dependent baseline for the approximate
gradient (Eq. 5).

Lemma 2. For any functions bh : S → R and bl : S × Z → R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)bh(skp)] = 0

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)bl(st, zkp)] = 0

Proof. See Appendix.

Now we apply Lemma 1 and Lemma 2 to Eq. 1. By using the corresponding value functions as the
function baseline, the return can be replaced by the Advantage function (Schulman et al., 2016), and
we obtain the following approximate policy gradient expression:

ĝ = Eτ
[
(

H/p∑
k=0

∇θ log πθh(zkp|skp)A(skp, zkp)) + (

H∑
t=0

∇θ log πθl(at|st, zkp)A(st, at, zkp))
]

This hierarchical policy gradient estimate can have lower variance than without baselines, but using
it for policy optimization through stochastic gradient descent still yields an unstable algorithm. In
the next section, we further improve the stability and sample efficiency of the policy optimization by
incorporating techniques from Proximal Policy Optimization (Schulman et al., 2017).

4

Under review as a conference paper at ICLR 2020

Algorithm 1 HiPPO Rollout

1: Input: skills πθl(a|s, z), manager πθh(z|s), time-
commitment bounds Pmin and Pmax, horizon H

2: Reset environment: s0 ∼ ρ0, t = 0.
3: while t < H do
4: Sample time-commitment p ∼ Cat([Pmin, Pmax])
5: Sample skill zt ∼ πθh(·|st)
6: for t′ = t . . . (t+ p) do
7: Sample action at′ ∼ πθl(·|st′ , zt)
8: Observe new state st′+1 and reward rt′
9: end for

10: t← t+ p
11: end while
12: Output: (s0, z0, a0, s1, a1, . . . , sH , zH , aH , sH+1)

Algorithm 2 HiPPO

1: Input: skills πθl(a|s, z), man-
ager πθh(z|s), horizon H , learn-
ing rate α

2: while not done do
3: for actor = 1, 2, ..., N do
4: Obtain trajectory with

HiPPO Rollout
5: Estimate advantages

Â(at′ , st′ , zt) and Â(zt, st)
6: end for
7: θ ← θ + α∇θLCLIPHiPPO(θ)
8: end while

4.3 HIERARCHICAL PROXIMAL POLICY OPTIMIZATION

Using an appropriate step size in policy space is critical for stable policy learning. Modifying the
policy parameters in some directions may have a minimal impact on the distribution over actions,
whereas small changes in other directions might change its behavior drastically and hurt training
efficiency (Kakade, 2002). Trust region policy optimization (TRPO) uses a constraint on the KL-
divergence between the old policy and the new policy to prevent this issue (Schulman et al., 2015).
Unfortunately, hierarchical policies are generally represented by complex distributions without closed
form expressions for the KL-divergence. Therefore, to improve the stability of our hierarchical policy
gradient we turn towards Proximal Policy Optimization (PPO) (Schulman et al., 2017). PPO is a
more flexible and compute-efficient algorithm. In a nutshell, it replaces the KL-divergence constraint
with a cost function that achieves the same trust region benefits, but only requires the computation of
the likelihood. Letting wt(θ) =

πθ(at|st)
πθold (at|st)

, the PPO objective is:

LCLIP (θ) = Etmin
{
wt(θ)At, clip(wt(θ), 1− ε, 1 + ε)At

}
Since the likelihood ratio wt(θ) comes from importance sampling, we can adapt our approxi-
mated hierarchical policy gradient with the same approach. Letting wh,kp(θ) =

πθh (zkp|skp)
πθh,old (zkp|skp)

and wl,t(θ) =
πθl (at|st,zkp)

πθl,old (at|st,zkp)
, and using the super-index clip to denote the clipped objective

version, we obtain the new surrogate objective:

LCLIPHiPPO(θ) = Eτ
[H/p∑
k=0

min
{
wh,kp(θ)A(skp, zkp), w

clip
h,kp (θ)A(skp, zkp)

}
+

H∑
t=0

min
{
wl,t(θ)A(st, at, zkp), w

clip
l,t (θ)A(st, at, zkp)

}]
We call this algorithm Hierarchical Proximal Policy Optimization (HiPPO). Next, we introduce a
critical additions: a switching of the time-commitment between skills.

4.4 VARYING TIME-COMMITMENT

Most hierarchical methods either consider a fixed time-commitment to the lower level skills (Florensa
et al., 2017a; Frans et al., 2018), or implement the complex options framework (Precup, 2000; Bacon
et al., 2017). In this work we propose an in-between, where the time-commitment to the skills
is a random variable sampled from a fixed distribution Categorical(Tmin, Tmax) just before
the manager takes a decision. This modification does not hinder final performance, and we show
it improves zero-shot adaptation to a new task. This approach to sampling rollouts is detailed in
Algorithm 1. The full algorithm is detailed in Algorithm 2.

5

Under review as a conference paper at ICLR 2020

(a) Ant Gather (b) Snake Gather (c) Block Half Cheetah (d) Block Hopper

Figure 2: Environments used to evaluate the performance of our method

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 3: Analysis of different time-commitment and algorithms on learning from scratch in different
environments.

5 EXPERIMENTS

We designed our experiments to answer the following questions: 1) How does HiPPO compare
against a flat policy when learning from scratch? 2) Does it lead to more robust policies? 3) How
well does it adapt already learned skills? and 4) Does our skill diversity assumption hold in practice?

5.1 TASKS

We evaluate our approach on a variety of robotic navigation tasks of different difficulties. The first two
comprise the Hopper and Half-Cheetah robots jumping over short walls, obtaining a sparse reward of
+1 for each wall they clear. The final two use the Gather environment (Duan et al., 2016), depicted
in Figure 2, in which the agent must collect apples (green balls, +1 reward) while avoiding bombs
(red balls, -1 reward). The only available perception is through a LIDAR-type sensor indicating
at what distance are the objects in different directions, as depicted in the bottom left corner of
Fig. 2a-2b. This is a challenging hierarchical task with sparse rewards that requires to simultaneously
learn perception, locomotion, and higher-level planning capabilities. We use 2 different types of
robots within this environment. Snake is a 5-link robot with a 17-dimensional observation space and
4-dimensional action space; and Ant a quadrupedal robot with a 27-dimensional observation space
and 8-dimensional action space. Both can move and rotate in all directions, and Ant faces the added
challenge of avoiding falling over irrecoverably. All environments are simulated with the physics
engine MuJoCo (Todorov et al., 2012).

5.2 LEARNING FROM SCRATCH AND TIME-COMMITMENT

In this section, we study the benefit of using our HiPPO algorithm instead of standard PPO on a
flat policy (Schulman et al., 2017). The results, reported in Figure 3, demonstrate that training from
scratch with HiPPO leads to faster learning and better performance than flat PPO. Furthermore, we
show that the benefit of HiPPO does not just come from having temporally correlated exploration:
PPO with action repeat converges at a lower performance than our method. HiPPO leverages a more
efficient way the time-commitment, as suggested by the poor performance of the ablation where we
set p = 1, when the manager takes an action every environment step too. Finally, Figure 4 shows the
effectiveness of using the presented skill-dependent baseline.

6

Under review as a conference paper at ICLR 2020

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 4: Effect of using a skill-conditioned baseline, as defined in Section 4.2

5.3 COMPARISON TO OTHER METHODS

In this section we compare HiPPO to current state-of-the-art hierarchical methods. First, we evaluate
against HIRO (Nachum et al., 2018), an off-policy RL method that is based on training a goal-reaching
lower level policy. This method performs well when the lower level has access to all the information
to perform the task. However, as can be seen in Fig. 6, it is unable to perform our Gather tasks.
As further detailed in Appendix C, this algorithm is very sensitive to not having access to some
information, like the exact (x, y) position of the robot in Gather. In contrast, our method is able to
perform well directly from the raw sensory inputs described in Section 5.1. We also compare against
an adaptation of Option-Critic (Bacon et al., 2017) that can be used for continuous action-spaces
and has already been used as baseline in works such as Ghosh et al. (2019); Smith et al. (2018). It
is also unable to perform our Gather tasks, and we hypothesize that their algorithm is provides less
time-correlated exploration. We also provide a comparison to what would be a direct application of
the Hierarchical Vanilla Policy Gradient (HierVPG) algorithm, and we see that without the use of a
trust-region-like technique as in PPO the algorithm is very unstable. A comparison to other works
that do not allow for skill adaptation, like Florensa et al. (2017a), can be found in Fig. 5.

5.4 ROBUSTNESS TO DYNAMICS PERTURBATIONS

We investigate the robustness of HiPPO to changes in the dynamics of the environment. We per-
form several modifications to the base Snake Gather and Ant Gather environments. One at a
time, we change the body mass, dampening of the joints, body inertia, and friction characteris-
tics of both robots. The results, presented in Table 1, show that HiPPO with randomized period
Categorical([Tmin, Tmax]) is able to better handle these dynamics changes. In terms of the drop
in policy performance between the training environment and test environment, it outperforms HiPPO
with fixed period on 6 out of 8 related tasks. These results suggest that the randomized period exposes
the policy to a wide range of scenarios, which makes it easier to adapt when the environment changes.

Gather Algorithm Initial Mass Dampening Inertia Friction

Snake
Flat PPO 2.72 3.16 (+16%) 2.75 (+1%) 2.11 (-22%) 2.75 (+1%)
HiPPO, p = 10 4.38 3.28 (-25%) 3.27 (-25%) 3.03 (-31%) 3.27 (-25%)
HiPPO random p 5.11 4.09 (-20%) 4.03 (-21%) 3.21 (-37%) 4.03 (-21%)

Ant
Flat PPO 2.25 2.53 (+12%) 2.13 (-5%) 2.36 (+5%) 1.96 (-13%)
HiPPO, p = 10 3.84 3.31 (-14%) 3.37 (-12%) 2.88 (-25%) 3.07 (-20%)
HiPPO random p 3.22 3.37 (+5%) 2.57 (-20%) 3.36 (+4%) 2.84 (-12%)

Table 1: Zero-shot transfer performance of flat PPO, HiPPO, and HiPPO with randomized period.
The performance in the initial environment is shown, as well as the average performance over 25
rollouts in each new modified environment.

5.5 ADAPTATION OF PRE-TRAINED SKILLS

For the Block task, we use DIAYN (Eysenbach et al., 2019) to train 6 differentiated subpolicies in
an environment without any walls. Here, we see if these diverse skills can improve performance
on a downstream task that’s out of the training distribution. For Gather, we take 6 pre-trained
subpolicies encoded by a Stochastic Neural Network (Tang & Salakhutdinov, 2013) that was trained

7

Under review as a conference paper at ICLR 2020

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 5: Benefit of adapting some given skills when the preferences of the environment are different
from those of the environment where the skills were originally trained.

in a diversity-promoting environment (Florensa et al., 2017a). We fine-tune them with HiPPO on the
Gather environment, but with an extra penalty on the velocity of the Center of Mass. This can be
understood as a preference for cautious behavior. This requires adjustment of the sub-policies, which
were trained with a proxy reward encouraging them to move as far as possible (and hence quickly).
Fig. 5 shows that using HiPPO to simultaneously train a manager and fine-tune the skills achieves
higher final performance than fixing the sub-policies and only training a manager with PPO. The two
initially learn at the same rate, but HiPPO’s ability to adjust to the new dynamics allows it to reach a
higher final performance.

5.6 SKILL DIVERSITY ASSUMPTION

In Lemma 1, we derived a more efficient and numerically stable gradient by assuming that the
sub-policies are diverse. In this section, we empirically test the validity of our assumption, as well
as the quality of our approximation. For this we run, on Snake Gather and Ant Gather, the HiPPO
algorithm both from scratch and with given pretrained skills as described in the previous section. In
Table 2, we report the average maximum probability under other sub-policies, corresponding to ε from
the assumption. We observe that in all settings this is on the order of magnitude of 0.1. Therefore,
under the p = 10 that we use in our experiments, the term we neglect has a factor εp−1 = 10−10. It is
not surprising then that the average cosine similarity between the full gradient and the approximated
one is almost 1, as also reported in Table 2.

Gather Algorithm Cosine Similarity maxz′ 6=zkp πθl(at|st, z′)

Snake Adapt given skills 0.98± 0.01 0.09± 0.04
HiPPO 0.97± 0.03 0.12± 0.03

Ant Adapt given skills 0.96± 0.04 0.11± 0.05
HiPPO 0.94± 0.03 0.13± 0.05

Table 2: Empirical evaluation of Lemma 1. On the right column we evaluate the quality of our
assumption by computing what is the average largest probability of a certain action under other skills.
On the left column we report cosine similarity between our approximate gradient and the gradient
computed using Eq. 3 without approximation.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we examined how to effectively adapt hierarchical policies. We began by deriving a
hierarchical policy gradient and approximation of it. We then proposed a new method, HiPPO, that
can stably train multiple layers of a hierarchy jointly. The adaptation experiments suggested that we
can optimize pretrained skills for downstream environments, and learn emergent skills without any
unsupervised pre-training. We also demonstrate that HiPPO with randomized period can learn from
scratch on sparse-reward and long time horizon tasks, while outperforming non-hierarchical methods
on zero-shot transfer.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with
Policy Sketches. International Conference in Machine Learning, 2017. URL http://github.
com/.

Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, and Alex Ray. Learning Dexterous
In-Hand Manipulation. pp. 1–27.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The Option-Critic Architecture. AAAI, pp. 1726–
1734, 2017. URL http://arxiv.org/abs/1609.05140.

Christian Daniel, Herke van Hoof, Jan Peters, Gerhard Neumann, Thomas Gärtner, Mirco Nanni,
Andrea Passerini, and Celine B Robardet Christian Daniel ChristianDaniel. Probabilistic inference
for determining options in reinforcement learning. Machine Learning, 104(104), 2016. doi:
10.1007/s10994-016-5580-x.

Peter Dayan and Geoffrey E. Hinton. Feudal Reinforcement Learning. Advances in Neural Informa-
tion Processing Systems, pp. 271–278, 1993. ISSN 0143991X. doi: 10.1108/IR-08-2017-0143.
URL http://www.cs.toronto.edu/~fritz/absps/dh93.pdf.

Yan Duan, Xi Chen, John Schulman, and Pieter Abbeel. Benchmarking Deep Reinforcement
Learning for Continuous Control. International Conference in Machine Learning, 2016. URL
http://arxiv.org/abs/1604.06778.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You Need:
Learning Skills without a Reward Function. International Conference in Learning Representations,
2019. URL http://arxiv.org/abs/1802.06070.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic Neural Networks for Hierarchical Re-
inforcement Learning. International Conference in Learning Representations, pp. 1–17, 2017a.
ISSN 14779129. doi: 10.1002/rcm.765. URL http://arxiv.org/abs/1704.03012.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
Curriculum Generation for Reinforcement Learning. Conference on Robot Learning, pp. 1–16,
2017b. ISSN 1938-7228. doi: 10.1080/00908319208908727. URL http://arxiv.org/
abs/1707.05300.

Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and Martin Riedmiller.
Self-supervised Learning of Image Embedding for Continuous Control. In Workshop on Inference
to Control at NeurIPS, 2018a. URL http://arxiv.org/abs/1901.00943.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic Goal Generation for
Reinforcement Learning Agents. International Conference in Machine Learning, 2018b. URL
http://arxiv.org/abs/1705.06366.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta Learning Shared
Hierarchies. International Conference in Learning Representations, pp. 1–11, 2018. ISSN
14639076. doi: 10.1039/b203755f. URL http://arxiv.org/abs/1710.09767.

Mohammad Ghavamzadeh and Sridhar Mahadevan. Hierarchical Policy Gradient Algorithms. In-
ternational Conference in Machine Learning, 2003. URL http://chercheurs.lille.
inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf.

Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning Actionable Representations with
Goal-Conditioned Policies. International Conference in Learning Representations, 2019.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent Space Policies for
Hierarchical Reinforcement Learning. Internation Conference in Machine Learning, 2018. URL
http://arxiv.org/abs/1804.02808.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When Waiting is not an Option :
Learning Options with a Deliberation Cost. AAAI, 9 2017. URL http://arxiv.org/abs/
1709.04571.

9

http://github.com/
http://github.com/
http://arxiv.org/abs/1609.05140
http://www.cs.toronto.edu/~fritz/absps/dh93.pdf
http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1707.05300
http://arxiv.org/abs/1901.00943
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1710.09767
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://chercheurs.lille.inria.fr/~ghavamza/my_website/Publications_files/icml03.pdf
http://arxiv.org/abs/1804.02808
http://arxiv.org/abs/1709.04571
http://arxiv.org/abs/1709.04571

Under review as a conference paper at ICLR 2020

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an Embedding Space for Transferable Robot Skills. International Conference in Learning
Representations, pp. 1–16, 2018.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, David Silver, and
Google Deepmind. Learning and Transfer of Modulated Locomotor Controllers. 2016. URL
https://arxiv.org/abs/1610.05182.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, and David Silver. Emergence of
Locomotion Behaviours in Rich Environments. 7 2017. URL http://arxiv.org/abs/
1707.02286.

Sham Kakade. A Natural Policy Gradient. Advances in Neural Information Processing Systems,
2002.

Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi CSAIL, and Joshua B Tenenbaum BCS.
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Moti-
vation. Advances in Neural Information Processing Systems, pp. 1–13, 2016.

Hoang M Le, Nan Jiang, Alekh Agarwal, Miroslav Dud, and Yue Hal. Hierarchical Imitation and
Reinforcement Learning. International Conference in Machine Learning, 2018.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical Actor-Critic. arXiv:1712.00948, 12 2017.
URL http://arxiv.org/abs/1712.00948.

Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical Reinforcement Learning with Hindsight.
International Conference on Learning Representations, 5 2019. URL http://arxiv.org/
abs/1805.08180.

Josh Merel, Arun Ahuja, Vu Pham, Saran Tunyasuvunakool, Siqi Liu, Dhruva Tirumala, Nicolas
Heess, and Greg Wayne. Hierarchical visuomotor control of humanoids. International Conference
in Learning Representations, 2019. URL http://arxiv.org/abs/1811.09656.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei a Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

Ofir Nachum, Honglak Lee, Shane Gu, and Sergey Levine. Data-Efficient Hierarchical Reinforcement
Learning. Advances in Neural Information Processing Systems, 2018.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
Reinforcement Learning with Imagined Goals. Adavances in Neural Information Processing
Systems, 2018.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. MCP: Learning
Composable Hierarchical Control with Multiplicative Compositional Policies. 5 2019. URL
http://arxiv.org/abs/1905.09808.

Jan Peters and Stefan Schaal. Natural Actor-Critic. Neurocomputing, 71(7-9):1180–1190, 2008.
ISSN 09252312. doi: 10.1016/j.neucom.2007.11.026.

Doina Precup. Temporal abstraction in reinforcement learning, 1 2000. URL https://
scholarworks.umass.edu/dissertations/AAI9978540.

Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric Bayesian Reward
Segmentation for Skill Discovery Using Inverse Reinforcement Learning. 2015. ISSN 21530866.
doi: 10.1109/IROS.2015.7353414.

John Schulman, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimization.
International Conference in Machine Learning, 2015.

10

https://arxiv.org/abs/1610.05182
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1712.00948
http://arxiv.org/abs/1805.08180
http://arxiv.org/abs/1805.08180
http://arxiv.org/abs/1811.09656
http://arxiv.org/abs/1905.09808
https://scholarworks.umass.edu/dissertations/AAI9978540
https://scholarworks.umass.edu/dissertations/AAI9978540

Under review as a conference paper at ICLR 2020

John Schulman, Philipp Moritz, Sergey Levine, Michael I Jordan, and Pieter Abbeel. HIGH-
DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMA-
TION. International Conference in Learning Representations, pp. 1–14, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Pol-
icy Optimization Algorithms. 2017. URL https://openai-public.s3-us-west-2.
amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf.

Arjun Sharma, Mohit Sharma, Nicholas Rhinehart, and Kris M Kitani. Directed-Info GAIL: Learning
Hierarchical Policies from Unsegmented Demonstrations using Directed Information. Interna-
tional Conference in Learning Representations, 2018. URL http://arxiv.org/abs/1810.
01266.

Tianmin Shu, Caiming Xiong, and Richard Socher. Hierarchical and interpretable skill acquisition in
multi-task reinforcement Learning. International Conference in Learning Representations, 3:1–13,
2018. doi: 10.1109/MWC.2016.7553036.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of Go without human knowledge. Nature, 550(7676):354–359, 10 2017. ISSN 14764687.
doi: 10.1038/nature24270. URL http://arxiv.org/abs/1610.00633.

Matthew J. A. Smith, Herke van Hoof, and Joelle Pineau. An inference-based policy gradient method
for learning options, 2 2018. URL https://openreview.net/forum?id=rJIgf7bAZ.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. Multitask Reinforcement Learning for Zero-shot
Generalization with Subtask Dependencies. Advances in Neural Information Processing Systems,
2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:
181–211, 1999. URL http://www-anw.cs.umass.edu/~barto/courses/cs687/
Sutton-Precup-Singh-AIJ99.pdf.

Yichuan Tang and Ruslan Salakhutdinov. Learning Stochastic Feedforward Neural Networks. Ad-
vances in Neural Information Processing Systems, 2:530–538, 2013. doi: 10.1.1.63.1777.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo : A physics engine for model-based control.
pp. 5026–5033, 2012.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E Turner, Zoubin Ghahramani, and Sergey
Levine. The Mirage of Action-Dependent Baselines in Reinforcement Learning. Internation
Conference in Machine Learning, 2018. URL http://arxiv.org/abs/1802.10031.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol
Vinyals, and Koray Kavukcuoglu Google DeepMind. Strategic Attentive Writer for Learning
Macro-Actions. Advances in Neural Information Processing Systems, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal Networks for Hierarchical Reinforcement Learning.
International Conference in Machine Learning, 2017. URL https://arxiv.org/pdf/
1703.01161.pdf.

Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit Assignment Techniques in
Stochastic Computation Graphs. 1 2019. URL http://arxiv.org/abs/1901.01761.

Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8(3-4):229–256, 1992.

11

https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
https://openai-public.s3-us-west-2.amazonaws.com/blog/2017-07/ppo/ppo-arxiv.pdf
http://arxiv.org/abs/1810.01266
http://arxiv.org/abs/1810.01266
http://arxiv.org/abs/1610.00633
https://openreview.net/forum?id=rJIgf7bAZ
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://www-anw.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
http://arxiv.org/abs/1802.10031
https://arxiv.org/pdf/1703.01161.pdf
https://arxiv.org/pdf/1703.01161.pdf
http://arxiv.org/abs/1901.01761

Under review as a conference paper at ICLR 2020

A HYPERPARAMETERS AND ARCHITECTURES

For all experiments, both PPO and HiPPO used learning rate 3× 10−3, clipping parameter ε = 0.1,
10 gradient updates per iteration, a batch size of 100,000, and discount γ = 0.999. HiPPO used
n = 6 sub-policies. Ant Gather has a horizon of 5000, while Snake Gather has a horizon of 8000 due
to its larger size. All runs used three random seeds. HiPPO uses a manager network with 2 hidden
layers of 32 units, and a skill network with 2 hidden layers of 64 units. In order to have roughly the
same number of parameters for each algorithm, flat PPO uses a network with 2 hidden layers with
256 and 64 units respectively. For HiPPO with randomized period, we resample p ∼ Uniform{5, 15}
every time the manager network outputs a latent, and provide the number of timesteps until the
next latent selection as an input into both the manager and skill networks. The single baselines and
skill-dependent baselines used a MLP with 2 hidden layers of 32 units to fit the value function. The
skill-dependent baseline receives, in addition to the full observation, the active latent code and the
time remaining until the next skill sampling.

B PROOFS

Lemma 1. If the skills are sufficiently differentiated, then the latent variable can be treated as part
of the observation to compute the gradient of the trajectory probability. Concretely, if πθh(z|s) and
πθl(a|s, z) are Lipschitz in their parameters, and 0 < πθl(at|st, zj) < ε ∀j 6= kp, then

∇θ logP (τ) =
H/p∑
k=0

∇θ log πθh(zkp|skp) +
p∑
t=1

∇θ log πθl(at|st, zkp) +O(nHεp−1) (5)

Proof. From the point of view of the MDP, a trajectory is a sequence τ =
(s0, a0, s1, a1, . . . , aH−1, sH). Let’s assume we use the hierarchical policy introduced above, with
a higher-level policy modeled as a parameterized discrete distribution with n possible outcomes
πθh(z|s) = Categoricalθh(n). We can expand P (τ) into the product of policy and environment
dynamics terms, with zj denoting the jth possible value out of the n choices,

P (τ) =

(H/p∏
k=0

[n∑
j=1

πθh(zj |skp)
(k+1)p−1∏
t=kp

πθl(at|st, zj)
])[

P (s0)

H∏
t=1

P (st+1|st, at)
]

Taking the gradient of logP (τ) with respect to the policy parameters θ = [θh, θl], the dynamics
terms disappear, leaving:

∇θ logP (τ) =
H/p∑
k=0

∇θ log
(n∑
j=1

πθl(zj |skp)
(k+1)p−1∏
t=kp

πs,θ(at|st, zj)
)

=

H/p∑
k=0

1∑n
j=1 πθh(zj |skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

n∑
j=1

∇θ
(
πθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)
)

The sum over possible values of z prevents the logarithm from splitting the product over the p-step
sub-trajectories. This term is problematic, as this product quickly approaches 0 as p increases, and
suffers from considerable numerical instabilities. Instead, we want to approximate this sum of
products by a single one of the terms, which can then be decomposed into a sum of logs. For this we
study each of the terms in the sum: the gradient of a sub-trajectory probability under a specific latent
∇θ
(
πθh(zj |skp)

∏(k+1)p−1
t=kp πθl(at|st, zj)

)
. Now we can use the assumption that the skills are easy

to distinguish, 0 < πθl(at|st, zj) < ε ∀j 6= kp. Therefore, the probability of the sub-trajectory under
a latent different than the one that was originally sampled zj 6= zkp, is upper bounded by εp. Taking
the gradient, applying the product rule, and the Lipschitz continuity of the policies, we obtain that for
all zj 6= zkp,

12

Under review as a conference paper at ICLR 2020

∇θ
(
πθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)
)
= ∇θπθh(zj |skp)

(k+1)p−1∏
t=kp

πθl(at|st, zj)+

(k+1)p−1∑
t=kp

πθh(zj |skp)
(
∇θπθl(at|st, zj)

) (k+1)p−1∏
t=kp
t′ 6=t

πθl(at′ |st′ , zj)

= O(pεp−1)

Thus, we can across the board replace the summation over latents by the single term corresponding to
the latent that was sampled at that time.

∇θ logP (τ) =
H/p∑
k=0

1

πθh(zkp|skp)
∏(k+1)p−1
t=kp πθl(at|st, zkp)

∇θ
(
P (zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)
+
nH

p
O(pεp−1)

=

H/p∑
k=0

∇θ log
(
πθh(zkp|skp)

(k+1)p−1∏
t=kp

πθl(at|st, zkp)
)
+O(nHεp−1)

= Eτ
[(H/p∑

k=0

∇θ log πθh(zkp|skp) +
H∑
t=1

∇θ log πθl(at|st, zkp)
)]

+O(nHεp−1)

Interestingly, this is exactly∇θP (s0, z0, a0, s1, . . .). In other words, it’s the gradient of the probabil-
ity of that trajectory, where the trajectory now includes the variables z as if they were observed.

Lemma 2. For any functions bh : S → R and bl : S × Z → R we have:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] = 0

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)b(st, zkp)] = 0

Proof. We can use the law of iterated expectations as well as the fact that the interior expression only
depends on skp and zkp:

Eτ [
H/p∑
k=0

∇θ logP (zkp|skp)b(skp)] =
H/p∑
k=0

Eskp,zkp [Eτ\skp,zkp [∇θ logP (zkp|skp)b(skp)]]

=

H/p∑
k=0

Eskp,zkp [∇θ logP (zkp|skp)b(skp)]

13

Under review as a conference paper at ICLR 2020

Then, we can write out the definition of the expectation and undo the gradient-log trick to prove that
the baseline is unbiased.

Eτ [
H/p∑
k=0

∇θ log πθh(zkp|skp)b(skp)] =
H/p∑
k=0

∫
(skp,zkp)

P (skp, zkp)∇θ log πθh(zkp|skp)b(skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)∇θ log πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)

∫
zkp

πθh(zkp|skp)
1

πθh(zkp|skp)
∇θπθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ
∫
zkp

πθh(zkp|skp)dzkpdskp

=

H/p∑
k=0

∫
skp

P (skp)b(skp)∇θ1dskp

= 0

Subtracting a state- and subpolicy- dependent baseline from the second term is also unbiased, i.e.

Eτ [
H∑
t=0

∇θ log πs,θ(at|st, zkp)b(st, zkp)] = 0

We’ll follow the same strategy to prove the second equality: apply the same law of iterated expecta-
tions trick, express the expectation as an integral, and undo the gradient-log trick.

Eτ [
H∑
t=0

∇θ log πθl(at|st, zkp)b(st, zkp)]

=

H∑
t=0

Est,at,zkp [Eτ\st,at,zkp [∇θ log πθm(at|st, zkp)b(st, zkp)]]

=

H∑
t=0

Est,at,zkp [∇θ log πθl(at|st, zkp)b(skp, zkp)]

=

H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)

∫
at

πθl(at|st, zkp)∇θ log πθl(at|st, zkp)datdzkpdst

=

H∑
t=0

∫
(st,zkp)

P (st, zkp)b(st, zkp)∇θ1dzkpdst

= 0

C HIRO SENSITIVITY TO OBSERVATION-SPACE

In this section we provide a more detailed explanation of why HIRO (Nachum et al., 2018) performs
poorly under our environments. As explained in our related work section, HIRO belongs to the general
category of algorithms that train goal-reaching policies as lower levels of the hierarchy (Vezhnevets
et al., 2017; Levy et al., 2017). These methods rely on having a goal-space that is meaningful for the
task at hand. For example, in navigation tasks they require having access to the (x, y) position of the
agent such that deltas in that space can be given as meaningful goals to move in the environment.
Unfortunately, in many cases this is not a readily available information (if there’s no GPS signal or

14

Under review as a conference paper at ICLR 2020

(a) Block Hopper (b) Block Half Cheetah (c) Snake Gather (d) Ant Gather

Figure 6: Comparison of HiPPO and HierVPG to prior hierarchical methods HIRO and Option Critic.

Figure 7: HIRO performance with and without access to its ground truth (x, y), which it needs to
communicate useful goals.

other positioning system installed), but only raw sensory inputs, like cameras or the LIDAR sensors
we mimic in our environments. In such cases, our method still performs well because it doesn’t
rely on the goal-reaching extra supervision that is leveraged (and detrimental in such case) in HIRO
and similar methods. In Figure 7, we show that knowing the ground truth location is critical for its
success.

We have reproduced the HIRO results in Fig. 7, and using the same code-based removed the ground-
truth (x, y), so we are convinced that our results showcase a failure mode of HIRO.

15

	Introduction
	Preliminaries and problem statement
	Related Work
	Efficient Hierarchical Policy Gradients
	Approximate Hierarchical Policy Gradient
	Unbiased Sub-Policy Baseline
	Hierarchical Proximal Policy Optimization
	Varying Time-commitment

	Experiments
	Tasks
	Learning from Scratch and time-commitment
	Comparison to other methods
	Robustness to Dynamics Perturbations
	Adaptation of Pre-Trained Skills
	Skill Diversity Assumption

	Conclusions and Future Work
	Hyperparameters and Architectures
	Proofs
	HIRO sensitivity to observation-space

