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ABSTRACT

Offset regression is a standard method for spatial localization in many vision tasks,
including human pose estimation, object detection, and instance segmentation.
However, if high localization accuracy is crucial for a task, convolutional neural
networks will offset regression usually struggle to deliver. This can be attributed
to the locality of the convolution operation, exacerbated by variance in scale, clut-
ter, and viewpoint. An even more fundamental issue is the multi-modality of
real-world images. As a consequence, they cannot be approximated adequately
using a single mode model. Instead, we propose to use mixture density networks
(MDN) for offset regression, allowing the model to manage various modes effi-
ciently and learning to predict full conditional density of the outputs given the
input. On 2D human pose estimation in the wild, which requires accurate local-
isation of body keypoints, we show that this yields significant improvement in
localization accuracy. In particular, our experiments reveal viewpoint variation
as the dominant multi-modal factor. Further, by carefully initializing MDN pa-
rameters, we do not face any instabilities in training, which is known to be a big
obstacle for widespread deployment of MDN. The method can be readily applied
to any task with a spatial regression component. Our findings highlight the multi-
modal nature of real-world vision, and the significance of explicitly accounting
for viewpoint variation, at least when spatial localization is concerned.

1 INTRODUCTION

Training deep neural networks is a non-trivial task in many ways. Properly initializing the weights,
carefully tuning the learning rate, normalization of weights or targets, or using the right activation
function can all be vital for getting a network to converge at all. From another perspective, it is
crucial to carefully formulate the prediction task and loss on top of a rich representation to efficiently
leverage all the features learned. For example, combining representations at various network depths
has been shown to be important to deal with objects at different scales Newell et al. (2016); Lin et al.
(2017); Liu et al. (2016).

For some issues, it is relatively straightforward to come up with a network architecture or loss for-
mulation to address them – see e.g. techniques used for multi-scale training and inference. In other
cases it is not easy to manually devise a solution. For example, offset regression is extensively used
in human pose estimation and instance segmentation, but it lacks high spatial precision. Funda-
mental limitations imposed by the convolution operation and downsampling in networks, as well
as various other factors contribute to this – think of scale variation, variation in appearance, clutter,
occlusion, and viewpoint. When analyzing a standard convolutional neural network (CNN) with
offset regression, it seems the network knows roughly where a spatial target is located and moves
towards it, but cannot get precise enough. How can we make them more accurate? That’s the ques-
tion we address in this paper, in the context of human pose estimation. Mixture density models offer
a versatile framework to tackle such challenging, multi-modal settings. They allow for the data to
speak for itself, revealing the most important modes and disentangling them.

To the best of our knowledge, mixture density models have not been successfully integrated in 2D
human pose estimation to date. In fact, our work has only become possible thanks to recent work
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of Zhou et al. (2019a) proposing an offset based method to do dense human pose estimation, object
detection, depth estimation, and orientation estimation in a single forward pass. Essentially, in a
dense fashion they classify some central region of an instance to decide if it belongs to a particular
category, and then from that central location regress offsets to spatial points of interest belonging to
the instance. In human pose estimation this would be keypoints; in instance segmentation it could
be extreme points; and in tracking moving objects in a video this could be used to localize an object
in a future frame Zhou et al. (2019b); Neven et al. (2019); Novotny et al. (2018); Cui et al. (2019).
This eliminates the need for a two stage top-down model or for an ad hoc post processing step in
bottom-up models. The former would make it very slow to integrate a density estimation method,
while for the latter it is unclear how to do so – if possible at all.

In particular, we propose to use mixture density networks (MDN) to help a network disentangle the
underlying modes that, when taken together, force it to converge to an average regression of a target.
We conduct experiments on the MS COCO human pose estimation task Lin et al. (2014), because
its metric is very sensitive to spatial localization: if the ground truth labels are displaced by just a
few pixels, the scores already drop significantly, as shown in top three rows of Table 4. This makes
the dataset suitable for analyzing how well different models perform on high precision localization.
Any application demanding high precision localization can benefit from our approach. For example,
spotting extremely small broken elements on an electronic board or identifying surface defects on a
steel sheet using computer vision are among such applications.

In summary, our contributions are as follows:

• We propose a new solution for offset regression problems in 2D using MDNs. To the best of
our knowledge this is the first work to propose a full conditional density estimation model
for 2D human pose estimation on a large unconstrained dataset. The method is general and
we expect it to yield significant gains in any spatial dense prediction task.

• We show that using MDN we can have a deeper understanding of what modes actually
make a dataset challenging. Here we observe that viewpoint is the most challenging mode
that forces a single mode model to settle down for a sub-optimal solution.

2 RELATED WORK

Multi-person human pose estimation solutions usually work either top-down or bottom-up. In the
top-down approach, a detector finds person instances to be processed by a single person pose esti-
mator He et al. (2017); Newell et al. (2016); Chen et al. (2018); Li et al. (2019). When region-based
detectors Girshick et al. (2014) are deployed, top-down methods are robust to scale variation. But
they are slower compared to bottom-up models. In the bottom-up approach, all keypoints are local-
ized by means of heatmaps Cao et al. (2017), and for each keypoint an embedding is learned in order
to later group them into different instances. Offset based geometric Cao et al. (2018; 2017); Papan-
dreou et al. (2018) and associative Newell et al. (2017) embeddings are the most successful models.
However, they lead to inferior accuracy and need an ad hoc post-processing step for grouping.

To overcome these limitations, recently Zhou et al. (2019a) proposed a solution that classifies each
spatial location as corresponding to (the center of) a person instance or not and at the same location
generates offsets for each keypoint. This method is very fast and eliminates the need for a detector
or post-processing to group keypoints. In spirit, it is similar to YOLO and SSD models developed
for object detection Redmon et al. (2016); Liu et al. (2016). However, offset regression does not
deliver high spatial precision and the authors still rely on heatmaps to further refine the predictions.
Overcoming this lack of accuracy is the main motivation for this work.

As for the superiority of having multiple choice solutions for vision tasks, Guzman-Rivera et al.
(2012); Lee et al. (2015; 2016); Rupprecht et al. (2017) have shown that having multiple predic-
tion heads while enforcing them to have diverse predictions, works better than a single head or an
ensemble of models. However, they depend on an oracle to choose the best prediction for a given
input. The underlying motivation is that the system later will be used by another application that can
assess and choose the right head for an input. Clearly this is a big obstacle in making such models
practical. And, of course, these methods do not have a mechanism to learn conditional density of
outputs for a given input. This is a key feature of mixture models.

2



Under review as a conference paper at ICLR 2020

Mixture density networks Bishop (1994) have attracted a lot of attention in the very recent years.
In particular, it has been applied to 3D human pose estimation Li & Lee (2019), and 3D hand pose
estimation Ye & Kim (2018). Both works are applied to relatively controlled environments. In 2D
human pose estimation, Rupprecht et al. (2017) have reported unsuccessful application of MDNs,
caused by numerical instabilities originating from the variance values. Here, we show that properly
initializing the variance values easily avoids such instabilities.

3 FORMULATION

We first review the mixture density networks and then show how we adapt it for offset regression.

3.1 MIXTURE DENSITY NETWORKS

Mixture models are theoretically very powerful tools to estimate the density of any distribution
McLachlan & Basford (1988). They recover different modes that contribute to the generation of
a dataset, and are straightforward to interpret. Mixture density networks (MDN) Bishop (1994) is
a technique that enables us to use neural networks to estimate the parameters of a mixture density
model. MDNs estimate the probability density of a target conditioned on the input. This is a key
technique to avoid converging to an average target value given an input. For example, if a 1D
distribution consists of two Gaussians with two different means, trying to estimate its density using
a single Gaussian will result in a mean squashed in between the two actual means, and will fail
to estimate any of them. This effect is well illustrated in Figure 1 of the original paper by Bishop
Bishop (1994).

In a regression task, given a dataset containing a set of input vectors as {x0 . . . xn} and the associated
target vectors {t0 . . . tn}, MDN will fit the weigths of a neural network such that it maximizes the
likelihood of the training data. The key formulation then is the representation of the probability
density of the target values conditioned on the input, as shown in equation 1:

p(ti|xi) =
M∑

m=1

αm(xi)φm(ti|xi) (1)

Here M is a hyper-parameter and denotes the number of components constituting the mixture model.
αm(xi) is called mixing coefficient and indicates the probability of component m being responsible
for generation of the sample xi. φm denotes the probability density function of component m for
ti|xi. The conditional density function is not restricted to be Gaussian, but that is the most common
choice and works well in practice. It is given in equation 2:

φm(ti|xi) =
1

(2π)c/2σm(xi)c
exp

{
− ||ti − µm(xi)||2

2σm(xi)2
}

(2)

In equation 2, c is the dimension of the target vector, µm is the component mean and σm is the
common variance for the elements of the target. The variance term does not have to be shared
between dimensions of target space, and can be replaced with a diagonal or full co-variance matrix
if necessary Bishop (1994).

3.2 MDNS APPLIED TO HUMAN POSE ESTIMATION

Given an image with an unspecified number of people in uncontrolled poses, the goal of human
pose estimation is to localize a predefined set of keypoints for each person and have them grouped
together per person. We approach this problem using a mixed bottom-up and top-down formulation
very recently proposed in Zhou et al. (2019a). In this formulation, unlike the top-down methods
there is no need to use an object detector to localize the person instance first. And unlike bottom-up
methods, the grouping is not left as a post-processing step. Rather, at a given spatial location, the
model predicts if it is the central pixel of a person, and at the same location, for each keypoint it
generates an offsets vector to the keypoint location.

This formulation takes the best of both approaches: it is fast like a bottom-up method, and post-
processing free as in a top-down model. At least equally important is the fact that it enables applying
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many advanced techniques in an end-to-end manner. As a case in point, in this paper it allows us
to perform density estimation for human pose in a dense fashion. That is, in a single forward pass
through the network, we estimate the parameters of a density estimation model. In particular, we use
the mixture density model to learn the probability density of poses conditioned on an input image.

Formally, Zhou et al. (2019a) start from an input RGB image I of size H ∗ W ∗ 3, and a CNN
that receives I and generates an output with height H ′, width W ′, and C ′ channels. If we indicate
the downsampling factor of the network with D, then we have H = D ∗ H ′, and similarly for
width. We refer to the set of output pixels as P ′. Given the input, the network generates a dense
2D classification map C to determine instance centers, i.e. Cp′ indicates the probability of location
p′ ∈ P ′ corresponding to the center of a person instance. Simultaneously, at p′, the network predicts
K 2D offset vectors O = [o0p,x, o

0
p,y, . . . , o

K−1
p,x , oK−1p,y ], where K is the number of keypoints that

should be localized. Once the network classifies p′ as a person’s central pixel, the location of each
keypoint is directly given by the offset vectors O.

In the literature, it is common to train for offset regressionO using L1 loss Papandreou et al. (2018);
Kreiss et al. (2019); Cao et al. (2017); Zhou et al. (2019a). However, spatial regression is a multi-
modal task and having a single set of outputs will lead to a sub-optimal prediction, in particular
when precise localization is important. With this in mind, we use mixture density networks to
model the offset regression task. In this case, µm from equation 2 would be used to represent
offsets predicted by different components. Then the density of the ground truth offset vectors G
conditioned on image I is given by equation 3, where the density φm for each component is given
by equation 4. Here Om(I) is the input dependent network output function for component m that
generates offsets and G = [g0p,x, g

0
p,y, . . . , g

K−1
p,x , gK−1p,y ] indicates the ground truth offsets. σm(I) is

the standard deviation of the component m in two dimensions, X and Y. It is shared by all keypoints
of an instance. However, in order to account for scale differences of keypoints, in equation 4 for
each keypoint we divided σm(I) by its scale factor provided in COCO dataset. In this framework,
the keypoints are independent within each component, but the full model does not assume such
independence.

p(G|I) =
M∑

m=1

αm(I)φm(G|I) (3)

φm(G|I) = 1

(2π)c/2σm(I)c
exp

{
− ||G−Om(I)||2

2σm(I)2

}
(4)

Given the conditionally probability density of the ground truth in equation 3, we can define the loss
using the negative log likelihood formulation and minimize it using stochastic gradient descent. The
loss for MDN is given in equation 5. Here N is the number of samples in the dataset. Practically,
this loss term replaces the popular L1 loss. Please note that MDN is implemented in a dense fashion,
that density estimation is done independently at each spatial location p′ ∈ P ′. A schematic overview
of the model is shown in Figure 1.

LMDN =

N∑
i=1

− ln

M∑
m=1

αm(Ii)φm(Gi|Ii) (5)

We do not modify the other loss terms used in Zhou et al. (2019a). This includes a binary classifica-
tion loss LC , a keypoint heatmap loss LHM (used for refinement), a small offset regression loss to
compensate for lost spatial precision due to downsampling for both center and keypoints LCoff

and
LKPoff

, and a loss for instance size regression Lwh. The total loss is given in equation 6:

Ltotal = LC + 0.1LMDN + LHM + LCoff
+ LKPoff

+ 0.1Lwh (6)

3.3 INFERENCE

Once the network is trained, at each spatial location, C will determine if that is the center of a person
(the bounding box center is used for training). Each MDN component at that location will generate
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Figure 1: Schematic overview of our proposed solution using mixture density networks.

offsets conditioned on the input. To obtain the final offset vectors, we can use either the mixture
of the components or the component with the highest probability. We do experiments with both
and using the maximum component leads to slightly better results. Once we visually investigate
what modes the components have learned, they seem to have very small overlap. Hence, it is not
surprising that both approaches have similar performance Bishop (1994).

4 EXPERIMENTS

We train and test our model on MS COCO 2017 dataset Lin et al. (2014). For training, we use
64k images that have at least one person instance (coco-train). For ablation studies we use the
standard validation set containing 5k images (coco-val). At training, for computing the likelihood,
we ignore the keypoints that are not annotated. Proper initialization of the variance is very important
for successful training of the network. When initialized just to be positive, it leads to instability and
mode collapse Cui et al. (2019); Rupprecht et al. (2017); Li & Lee (2019). So we initialize the
variance such that the smallest value is 10. This is decided in relation to the dataset. To generate
variance values, we use the exponential linear units (ELU) Clevert et al. (2015), but modify it such
that minimum values is 10. We did experiment with smaller and larger values for minimum, but
did not observe any significant difference. To avoid numerical issues, we have implemented the log
likelihood using the LogSumExp function.

Our implementation is on top of the code base published by Zhou et al. (2019a), and we use their
model as the base in our comparisons. The network architecture is based on a version of stacked
hourglass Newell et al. (2016) presented in Law & Deng (2018). We refer to this architecture as
LargeHG. To analyse effect of model capacity, we also conduct experiments with smaller variants.
The SmallHG architecture is obtained by replacing the residual layers with convolutional layers, and
XSmallHG is obtained by further removing one layer from each hourglass level.

Unless stated otherwise, all models are trained for 50 epochs (1X schedule) using batch size 12
and ADAM optimizer Kingma & Ba (2014) with learning rate 2.5e-4. Only for visualization and
comparison to state-of-the-art we use a version of our model trained for 150 epochs (3X). Except for
comparison with the state-of-the-art, we have re-trained the base model to assure fair comparison.

4.1 NUMBER OF COMPONENTS

To analyse effect of number of components, we train on XSmallHG and SmallHG architectures
with up to 5 components, and on LargeHG architecture with up to 3 components. Table 1 shows the
evaluation results for various models on the coco-val. The table also shows the evaluation for MDN
models when we ignore the predictions by particular components. We report predictions with and
without using the extra heatmap based refinement deployed in Zhou et al. (2019a). This refinement
is a post-processing step, which tries to remedy the lack of enough precision in offset regression by
pushing the detected keypoints towards the nearest detection from the keypoint heatmaps.

It is clear that MDN leads to a significant improvement. Interestingly, only two modes will be
retrieved, no matter how many components we train and how big the network is. Having more
than two components results in slightly better recall, but it will not improve precision. Only when
the network capacity is very low more than two component seems to have significant contribution
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Table 1: Evaluations of models trained for 50 epochs. MDNX , indicates MDN withX components,
”w/o CX” indicates average precision when predictions by component X are ignored.

Architecture Model
Average Precision (AP)/ Average Recall(AR)

w/ refinement w/o C1 w/o C2 w/o C3 w/o C4 w/o C5

XSmallHG Base 40.3/50.2 48.5/58.5 - - - - -
XSmallHG MDN1 41.1/50.6 49.1/58.3 - - - - -
XSmallHG MDN2 43.7/53.3 50.3/59.9 33.9/40.5 11.3/13.3 - - -
XSmallHG MDN3 44.4/54.1 50.8/60.5 44.5/54.2 12.0/16.4 33.5/39.9 - -
XSmallHG MDN5 42.9/53.3 50.1/60.1 37.8/47.4 18.6/30.3 33.2/44.9 40.9/50.4 43.1/53.3
SmallHG Base 41.2/50.9 48.6/58.6 - - - - -
SmallHG MDN1 43.4/53.7 51.3/60.9 - - - - -
SmallHG MDN2 47.9/58.0 54.3/64.0 11.8/14.2 36.9/66.1 - - -
SmallHG MDN3 48.9/59.5 54.6/64.4 12.8/17.1 36.6/44.5 49.3/59.5 - -
SmallHG MDN5 48.8/59.4 54.8/64.9 48.5/58.7 48.8/48.9 36.7/44.4 49.2/59.4 13.2/18.0
LaregHG Base 46.4/56.1 54.0/63.2 - - - - -
LaregHG MDN1 47.7/57.6 55.1/64.2 - - - - -
LaregHG MDN2 52.3/62.0 57.7/66.8 40.6/48.1 12.4/14.4 - - -
LaregHG MDN3 52.3/62.7 57.2/67.3 12.9/17.3 52.4/62.8 40.7/47.8 - -

to the predictions. On the XSmallHG with MDN5, four of the five components have significant
contribution to the final predictions. Although, two of them have much more significant effect.
Visualizing prediction by various models, makes it clear that one of the modes focuses on frontal
view instances, and the other one on the instance with backward view. Figure 2 shows sample
visualisation from MDN3 model trained with 3X schedule.

We further evaluate the MDN2 trained on the LargeHG on various subsets of the COCO validation
split by ignoring predictions by each of components or forcing all predictions to be made by a
particular component. The detailed evaluations are presented in table 2. The results show that the
components correlate well with face viability, confirming the conclusion we make by visualising
predictions. It is worth noting that although we use annotation of nose as indicator of face visibility,
it is noisy, as in some case the person is view from side such that nose is just barely visible and the
side view is very close to back view (like the first image in the third row of Figure 2). But, even this
noisy split is enough to show that two modes are chose based on viewpoint.

Figure 2: Sample predictions by the MDN3 on coco-val. Instance scale variance (in X and Y
dimensions) is shown by an ellipse around the predicted center. Blue and red color of boxes and
ellipses represent the two different modes (the third mode is redundant as shown in Table 1).
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Table 2: AP and AR on different subsets of coco-val for MDN2 trained on LargeHG.

Components
used for evaluation

coco-val subset

All Visible
Keypoints

Occluded
Keypoints

Visible
Face

Occluded
Face

Full model 53.2/62.0 56.3/65.5 38.0/50.4 63.4/70.8 52.8/60.9
Keep C1 predictions only 12.5/14.4 13.1/15.1 9.6/12.3 4.0/4.3 37.0/40.8
Keep C2 predictions only 41.4/48.1 44.0/51.1 29.6/39.7 60.5/67.0 16.4/20.7

All with C1 38.0/49.9 40.8/53.4 27.8/41.3 43.9/55.0 45.1/54.2
All with C2 38.4/52.1 41.1/55.5 29.0/43.2 60.6/69.0 16.7/30.0

Subset name Description
All The full coco validation split

Visible Keypoints All keypoints that are occluded and annotated are ignored
Occluded Keypoints All keypoints that are visible and annotated are ignored

Visible Face Instances with at least 5 annotated keypoints where nose is visible and annotated
Occluded Face Instances with at least 5 annotated keypoints where nose is occluded or not annotated

Table 3: Statistics for coco-val subsets and MDN max component. For face visibility, instances with
more than 5 annotated keypoints (in parentheses for minimum of 10) are used. For components,
predictions with score at least .5 are considered (in parentheses for minimum of .7).

Occluded Keypoints Visible Keypoints Occluded Face Visible Face comp1comp1comp1 (back view) comp2comp2comp2 (front view)

12.3 87.7 30.3 (22.1) 69.7 (77.9) 25.5 (27.0) 74.5 (70.0)

Table 3 compares portion of the dataset each subset comprises against portion of predictions made
by each component of MDN2. Obviously, the component statistics correlates well with the face
visibility, which in fact is an indicator of viewpoint in 2D. Majority of instances in the dataset are in
frontal view, and similarly the front view component makes majority of the prediction.

Related to our results, Belagiannis & Zisserman (2017) have shown that excluding occluded key-
points from training (by treating them as background) leads to improved performance. More re-
cently, Ye & Kim (2018) achieves more accurate 3D habd pose estimation by proposing a model
that directly predicts occlusion of a keypoint in order to use it for selecting a downstream model.
And, here we illustrate that occlusion caused by viewpoint imposes more challenge to spatial regres-
sion models, than other possible factors, like variation in pose itself.

4.2 L1 VS NORMALIZED L2

It is common to train offset regression targets with L1 loss Zhou et al. (2019a); Papandreou et al.
(2018); Law & Deng (2018). In contrast, the single component version of our model is technically
equal to L2 loss normalized by the instance scale learned via MDN variance terms. This is in
fact equal to directly optimizing the MS COCO OKS scoring metric for human pose estimation.
Comparing the performance of the two losses in Table 3, we see normalized L2 yields superior
results. That is, for any capacity, MDN1 outperforms the base model which is trained using L1.

4.3 FINE GRAINED EVALUATION

For a deeper insight on what body parts gain the most from the MDN, we do fine grained evaluation
for various keypoint subsets. In doing so, we modify the COCO evaluation script such that it only
considers set of keypoints we are interested in. Table 4 shows the results. For the facial keypoints
where the metric is the most sensitive, the improvement is higher. nevertheless, the highest improve-
ment comes for the wrists, which have the highest freedom to move. On the other hand, for torso
keypoints (shoulders and hips) which are the most rigid, there is almost no different in comparison
to base model.

4.4 EXPLICIT BINARY CLASSIFICATION

Given that MDN revels two modes, we build a hierarchical model by doing a binary classification
and using it to choose from two separate full MDN models. The goal is to see, if binary classification
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Table 4: Fine grained evaluation on coco-val in terms of average precision.

All Facial None Facial Nose Eyes Ears Shoulders Elbows Wrists Hips Knees Ankles
Ground truth displaced by 1 pixel 96.0 83.7 99.6 77.9 76.5 88.7 99.4 99.0 97.1 99.2 97.4 95.2

Ground truth displaced by 2 pixels 80.4 47.4 93.4 42.3 39.8 59.8 93.4 91.0 86.8 97.2 93.1 91.7

Ground truth displaced by 3 pixels 63.0 25.6 82.7 22.6 21.0 35.8 82.0 78.3 71.2 91.3 84.6 83.3
Base model 46.4 44.3 45.7 42.3 42.2 43.9 59.5 43.6 31.7 58.5 44.1 38.2
MDN2MDN2MDN2 52.3 54.1 49.9 50.3 50.5 54.0 60.3 50.8 41.7 58.3 47.6 42.6
Relative improvement 12.7 % 22.1% 9.2 % 18.9% 19.7% 23.0% 1.3% 16.5% 31.5% -0.3% 7.9% 11.5%

works as well as MDN2. Note that the classification is not directly supervised, as we do not have
any such annotation. This model also divides the data analogous to MDN2. However, on the
SmallHG architecture, MDN2 reaches AP of 47.9 and the hierarchical version achieves 46.5 (with
refinement and flip test AP is 55.6 vs 54.7). Therefore, a two component MDN that learns full
conditional probability density and assumes dependence between target dimensions delivers higher
performance.

p(G|I) = v1 ∗ φm1(G|I) + v2 ∗ φm2(G|I)

s.t. v1 + v2 = 1, v1 ≥ 0, v2 ≥ 0
(7)

4.5 COMPARISON TO THE STATE-OF-THE-ART

For comparison to the state-of-the-art in human pose estimation, we train MDN1 and MDN3 for
150 epochs using the LaregHG architecture, and test it on COCO test-dev split. The results are
presentetd in Table 5. Using MDN significantly improves the offset regression accuracy (row 6 vs
row 10 of the table). When refined, both models achieve similar performance.

In contrast to all other state-of-the-art models, MDNs performance drops if we deploy the ad-hoc
left-right flip augmentation at inference time. This is a direct consequence of using a multi-modal
prediction model which learns to deal with viewpoint. It is important to note that left-right flip is
used widely for increasing accuracy at test time for object detection and segmentation tasks as well.
Therefore, we expect our method to improve performance for those tasks as well.

MDN1 with refinement gives slightly lower accuracy than the base model. Our investigation at-
tributes this discrepancy to a difference in the training batch size. The official base model is trained
with batch size 24, but we train all models with batch size 12, due to limited resources. Under the
same training setting, MDN1 will outperform the base model, as shown in Table 1.

Table 5: Performance on COCO test-dev. Unless stated otherwise, all results correspond to single-
scale inference with left-right flip augmentation. The top rows belong to top-down models, and the
middle rows to bottom-up models.

model AP AP50 AP75 APM APL

Mask R-CNN He et al. (2017) 63.1 87.3 68.7 57.8 71.4
Simple baselines Xiao et al. (2018) 73.7 91.9 81.1 70.3 80.0
PersonLab Papandreou et al. (2018) 66.5 88.0 72.6 62.4 72.3

OpenPose Cao et al. (2018) 64.2 86.2 70.1 61.0 68.8
AssociativeEmbedding Newell et al. (2017) 62.8 84.6 69.2 57.5 70.6

Base model Zhou et al. (2019a) 55.0 83.5 59.7 49.4 64.0
Base model refined Zhou et al. (2019a) 63.0 86.8 69.6 58.9 70.4

MDN1 w/o left-right flip (ours) 55.1 80.3 60.7 53.0 61.7
MDN1 refined (ours) 61.1 83.7 67.6 57.2 69.7

MDN3 (ours) 57.9 82.7 63.7 52.3 67.8
MDN3 w/o left-right flip (ours) 59.0 82.7 65.3 56.4 65.9

MDN3 refined (ours) 62.9 85.1 69.4 58.8 71.4

5 DISCUSSION

We have shown mixture density models significantly improve spatial offset regression accuracy.
Further, we have demonstrate that MDNs can be deployed on real world data for conditional density
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estimation without facing mode collapse. Analyzing the ground truth data and revealed modes,
we have observe that in fact MDN picks up on a mode, that significantly contributes to achieving
higher accuracy and it can not be incorporated in a single mode model. In the case of human
pose estimation, it is surprising that viewpoint is the dominant factor, and not the pose variation.
This stresses the fact that real world data is multi-modal, but not necessarily in the way we expect.
Without a principled approach like MDNs, it is difficult to determine the most dominant factors in a
data distribution.

A stark difference between our work and others who have used mixture models is the training data.
Most of the works reporting mode collapse rely on small and controlled datasets for training. But
here we show that when there is a large and diverse dataset, just by careful initialization of parame-
ters, MDNs can be trained without any major instability issues. We have made it clear that one can
actually use a fully standalone multi-hypothesis model in a real-world scenario without the need to
rely on an oracle or postponing model selection to a downstream task.

We think there is potential to learn more finer modes from the dataset, maybe on the pose variance,
but this needs further research. Specially, it will be very helpful if the role of training data diversity
could be analysed theoretically. At the same time, the sparsity of revealed modes also reminds us of
the sparsity of latent representations in generative models Xu et al. (2019). We attribute this to the
fact that deep models, even without advanced special prediction mechanism, are powerful enough
to deliver fairly high quality results on the current datasets. Perhaps, a much needed future direction
is applying density estimation models to fundamentally more challenging tasks like the very recent
large vocabulary instance segmentation task Gupta et al. (2019).
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