
Under review as a conference paper at ICLR 2020

DOUBLE NEURAL COUNTERFACTUAL REGRET MINI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Counterfactual regret minimization (CFR) is a fundamental and effective technique
for solving Imperfect Information Games (IIG). However, the original CFR algorithm
only works for discrete states and action spaces, and the resulting strategy is maintained
as a tabular representation. Such tabular representation limits the method from being
directly applied to large games. In this paper, we propose a double neural representation
for the IIGs, where one neural network represents the cumulative regret, and the other
represents the average strategy. Such neural representations allow us to avoid manual
game abstraction and carry out end-to-end optimization. To make the learning efficient,
we also developed several novel techniques including a robust sampling method and
a mini-batch Monte Carlo Counterfactual Regret Minimization (MCCFR) method,
which may be of independent interests. Empirically, on games tractable to tabular
approaches, neural strategies trained with our algorithm converge comparably to their
tabular counterparts, and significantly outperform those based on deep reinforcement
learning. On extremely large games with billions of decision nodes, our approach
achieved strong performance while using hundreds of times less memory than the
tabular CFR. On head-to-head matches of hands-up no-limit texas hold’em, our neural
agent beat the strong agent ABS-CFR 1 by 9.8±4.1 chips per game. It’s a successful
application of neural CFR in large games.

1 INTRODUCTION

While significant advance has been made in addressing large perfect information games, such as Go (Silver
et al., 2016), solving imperfect information games remains a challenging task. For Imperfect Information
Games (IIG), a player has only partial knowledge about her opponents before making a decision, so that
she has to reason under the uncertainty about her opponents’ information while exploiting the opponents’
uncertainty about herself. Thus, IIGs provide more realistic modeling than perfect information games
for many real-world applications, such as trading, traffic routing, and politics.

Nash equilibrium is a typical solution concept for a two-player perfect-recall IIG. One of the most effective
approaches is CFR (Zinkevich et al., 2007), which minimizes the overall counterfactual regret so that the av-
erage strategies converge to a Nash equilibrium. However the original CFR only works for discrete states and
action spaces, and the resulting strategy is maintained as a tabular representation. Such tabular representa-
tion limits the method from being directly applied to large games. To tackle this challenge, one can simplify
the game by grouping similar states together to solve the simplified (abstracted) game approximately via
tabular CFR (Zinkevich et al., 2007; Lanctot et al., 2009). Constructing an effective abstraction, however,
demands rich domain knowledge and its solution may be a coarse approximation of true equilibrium.

Function approximation can be used to replace the tabular representation. Waugh et al. (2015) combines
regression tree function approximation with CFR based on handcrafted features, which is called Regression
CFR (RCFR). However, since RCFR uses full traversals of the game tree, it is still impractical for large
games. Moravcik et al. (2017) propose a seminal approach DeepStack, which uses fully connected neural
networks to represent players’ counterfactual values, tabular CFR however was used in the subgame
solving. Jin et al. (2017) use deep reinforcement learning to solve regret minimization problem for
single-agent settings, which is different from two-player perfect-recall IIGs.

1 ABS-CFR is the advanced version of HITSZ LMW 2pn, who won the third prize of the 2018 Annual Computer
Poker Competition (ACPC). In our experiment, we chosen its advanced version as the benchmark. The official website
of ACPC is http://www.computerpokercompetition.org.

1

Under review as a conference paper at ICLR 2020

To learn approximate Nash equilibrium for IIGs in an end-to-end manner, Heinrich et al. (2015) and
Heinrich & Silver (2016) propose eXtensive-form Fictitious Play (XFP) and Neural Fictitious Self-Play
(NFSP), respectively, based on deep reinforcement learning. In a NFSP model, the neural strategies are
updated by selecting the best responses to their opponents’ average strategies. These approaches are
advantageous in the sense that they do not rely on abstracting the game, and accordingly their strategies
can improve continuously with more optimization iterations. However fictitious play empirically converges
much slower than CFR-based approaches. Srinivasan et al. (2018) use actor-critic policy optimization
methods to minimize regret and achieve performance comparable to NFSP.

Thus it remains an open question whether a purely neural-based end-to-end approach can achieve
comparable performance to tabular based CFR approach. In the paper, we solve this open question by
designing a double neural counterfactual regret minimization (DNCFR) algorithm 2. To make a neural
representation, we modeled imperfect information game by a novel recurrent neural network with attention.
Furthermore, in order to improve the convergence of the neural algorithm, we also developed a new
sampling technique which converged much more efficient than the outcome sampling, while being more
memory efficient than the external sampling. In the experiment, we conducted a set of ablation studies
related to each novelty. The experiments showed DNCRF converged to comparable results produced by its
tabular counterpart while performing much better than NFSP. In addition, we tested DNCFR on extremely
large game, heads-up no-limit Texas Hold’em (HUNL). The experiments showed that DNCFR with only
a few number of parameters achieved strong neural strategy and beat ABS-CFR.

2 BACKGROUND ℎ0

ℎ1

ℎ3 ℎ4

ℎ7𝑧1 𝑧2

F C

P B

P B F C

ℎ2

ℎ5 ℎ6

ℎ8

F C

P B

P B F C

𝑧3 𝑧4 𝑧5 𝑧6

𝑧7 𝑧8 𝑧9 𝑧10

player 0

player 1

chance

infoset

infoset
𝑣0
𝜎(𝐵|𝐼0)𝑣0

𝜎(𝑃|𝐼0)

𝑣0
𝜎 𝐼0

= 𝑣0
𝜎 𝑃 𝐼0 𝜎0 𝑃 𝐼0

+ 𝑣0
𝜎𝑡(𝐵|𝐼0)𝜎0(𝐵|𝐼0)

𝑟0
𝜎(𝐵|𝐼0)=𝑣0

𝜎 𝐵 𝐼0 − 𝑣0
𝜎(𝐼0)

Figure 1: Extensive-Form IIG and Information Set

• Notation.Figure 1 illustrates an extensive game
for a finite set N = {0,1,...,n−1} of n players.
Define xvi as the hidden information of player i
in IIG. xv−i refers to hidden variables of all players
other than i. H refers to a finite set of histories.
h∈H denotes a possible history (or state), which
consists of each player’s hidden variable and ac-
tions taken by all players including chance. The
empty sequence ∅ is a member of H. hj v h
denotes hj is a prefix of h. Z ⊆H denotes the
terminal histories and any member z∈Z is not a prefix of any other sequences. A(h)={a :ha∈H} is the
set of available actions after non-terminal history h∈H\Z. A player function P assigns a member of
N∪{c} to each non-terminal history, where c is the chance (we set c=−1). P(h) is the player who takes
an action after history h. For each player i, imperfect information is denoted by information set (infoset)
Ii. All states h∈Ii are indistinguishable to i. Ii refers to the set of infosets of i. The utility function ui(z)
defines the payoff of i at state z. See appendix B.1 for more details.

Algorithm 1: CFR Algorithm
For t=1 to T do

vσ
t

i (Ii)=
∑

h∈Ii,hvz,z∈Z

πσ
t

i (h,z)πσ
t

−i(z)ui(z).

(1)
rσ
t

i (a|Ii)=vσ
t

i (a|Ii)−vσ
t

i (Ii). (2)

Rti(a|Ii)=Rt−1
i (a|Ii)+rσ

t

i (a|Ii). (3)

σt+1
i (a|Ii)=

1

|A(Ii)|
if

∑
a∈A(Ii)

Rt,+i (a|Ii)=0

R
t,+
i (a|Ii)∑

a∈A(Ii)
R
t,+
i (a|Ii)

otherwise.

(4)
St(a|Ii)=St−1(a|Ii)+πσ

t

i (Ii)σ
t
i(a|Ii). (5)

σ̄i
T (a|Ii)=

ST (a|Ii)∑
a∈A(Ii)

ST (a|Ii)
. (6)

A strategy profile σ = {σi|σi ∈ Σi, i ∈ N} is a
collection of strategies for all players, where Σi is
the set of all possible strategies for player i. σ−i
refers to strategy of all players other than player i.
For play i ∈ N , the strategy σi(Ii) is a function,
which assigns an action distribution over A(Ii) to
infoset Ii. σi(a|h) denotes the probability of action a
taken by player i at state h. In IIG, ∀h1,h2∈Ii , we
have σi(Ii)=σi(h1)=σi(h2). For iterative method
such as CFR, σt refers to the strategy profile at t-th
iteration. The state reach probability of history h is
denoted by πσ(h) if players take actions according
to σ. The reach probability is also called range in
DeepStack (Moravcik et al., 2017). Similarly, πσi (h)
refers to those for player iwhile πσ−i(h) refers to those
for other players except for i. For an empty sequence
πσ(∅) = 1. One can also show that the reach probability of the opponent is proportional to posterior

2 Solving IIGs via function approximation methods is an important and challenging problem. In the past year, several
concurrent works (Lockhart et al., 2019; Brown et al., 2018; Steinberger, 2019) have been proposed to address this
problem. We will discuss their differences in Section 6.

2

Under review as a conference paper at ICLR 2020

𝐼1

𝐼2 𝐼3

𝐼4

𝑎1 𝑎2

𝑎3 𝑎4 𝑎5 𝑎6

𝑎7 𝑎8

𝑅𝑖
𝑡−1(𝑎|𝐼𝑖)

+

𝑠𝑖
𝑡(𝑎|𝐼𝑖)

𝑆𝑖
𝑡−1(𝑎|𝐼𝑖)

+

𝑞𝑢𝑒𝑟𝑦

𝑞𝑢𝑒𝑟𝑦
𝐼1

𝐼2 𝐼3

𝐼4

𝑎1 𝑎2

𝑎3 𝑎4 𝑎5 𝑎6

𝑎7 𝑎8

𝑠𝑖
𝑡(𝑎|𝐼𝑖)

𝑎𝑙𝑙 𝑖𝑛𝑓𝑜𝑠𝑒𝑡𝑠

𝑎𝑙𝑙 𝑖𝑛𝑓𝑜𝑠𝑒𝑡𝑠

𝑞𝑢𝑒𝑟𝑦

𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑓𝑜𝑠𝑒𝑡𝑠

𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑖𝑛𝑓𝑜𝑠𝑒𝑡𝑠

+

gradient
descent

+Tabular Method Neural Method

gradient
descent

 𝑟𝑖
𝜎𝑡

((𝑎|𝐼𝑖)|𝑄𝑗)

(b)(a) Regret Matching Regret Matching

RegretSumNetwork

AvgStrategyNetwork

 𝑟𝑖
𝜎𝑡

((𝑎|𝐼𝑖)|𝑄𝑗)

Figure 2: (a) tabular CFR and (b) our double neural CFR framework. r̃σ
t

i ((a|Ii)|Qj) is the estimated regret in
MCCFR, Rt−1

i (a|Ii) is the cumulative regret, sti(a|Ii) is the weighted additional strategy and St−1
i (a|Ii) is the

cumulative behavior strategy. In tabular CFR, cumulative regret and strategy are stored in the tabular memory, which
limits it to solve large games. In DNCFR, we use double deep neural networks to approximate these two values.
DNCFR needs less memory than tabular methods because of its generalization.

probability of the opponent’s hidden variable, i.e.,p(xv−i|Ii)∝πσ−i(h), where xvi and Ii indicate a particular
h (proof in Appendix D.1). Finally, the infoset reach probability of Ii is defined as πσ(Ii)=

∑
h∈Iiπ

σ(h).
Similarly, we have πσi (Ii) =

∑
h∈Iiπ

σ
i (h) and πσ−i(Ii) =

∑
h∈Iiπ

σ
−i(h). More details can be found in

Appendix B.3.

• Counterfactual Regret Minimization. CFR is an iterative method for finding a Nash equilibrium for
zero-sum perfect-recall IIGs (Zinkevich et al., 2007) (Algorithm 1 and Figure 2(a)). Given strategy profile
σ, the counterfactual value (CFV) vσi (Ii) at infoset Ii is defined by Eq. (1). The action CFV of taking
action a is vσi (a|Ii) and its regret is defined by Eq. (2). Then the cumulative regret of action a after T
iterations is Eq. (3), where R0

i (a|Ii) = 0. Define Rt,+i (a|Ii) = max(Rti(a|Ii),0), the current strategy
(or behavior strategy) at t+1 iteration will be updated by Eq. (4). Define sti(a|Ii) = πσ

t

i (Ii)σ
t
i(a|Ii)

as the additional strategy in iteration t, then the cumulative strategy can be defined as Eq. (5), where
S0(a|Ii)=0. The average strategy σ̄it after t iterations is defined by Eq. (6), which approaches a Nash
equilibrium after enough iterations.

• Monte Carlo CFR.Lanctot et al. (2009) proposed a Monte Carlo CFR (MCCFR) to compute the
unbiased estimation of counterfactual value by sampling subsets of infosets in each iteration. Although
MCCFR still needs two tabular storages for saving cumulative regret and strategy as CFR does, it needs
much less working memory than the standard CFR (Zinkevich et al., 2007). This is because MCCFR
needs only to maintain values for those visited nodes into working memory; DefineQ={Q1,Q2,...,Qm},
whereQj∈Z is a set (block) of sampled terminal histories in each iteration, such thatQj spans the set Z.
Define qQj as the probability of considering blockQj, where

∑m
j=1qQj =1. Define q(z)=

∑
j:z∈QjqQj

as the probability of considering a particular terminal history z. For infoset Ii, an estimate of sampled
counterfactual value is ṽσi (Ii|Qj)=

∑
h∈Ii,z∈Qj,hvz

1
q(z)π

σ
−i(z)π

σ
i (h,z)ui(z).

Lemma 1 (Lanctot et al. (2009)) The sampled counterfactual value in MCCFR is the unbiased estimation
of actual counterfactual value in CFR.Ej∼qQj [ṽ

σ
i (Ii|Qj)]=vσi (Ii).

Define σrs as sampled strategy profile, where σrsi is the sampled strategy of player i and σrs−i are those
for other players except for i. The regret of the sampled action a∈A(Ii) is defined by r̃σi ((a|Ii)|Qj)=∑
z∈Qj,havz,h∈Iiπ

σ
i (ha,z)ursi (z)−

∑
z∈Qj,hvz,h∈Iiπ

σ
i (h,z)ursi (z), where ursi (z) = ui(z)

πσ
rs
i (z)

is a new

utility weighted by 1
πσ
rs
i (z)

. The sampled estimation for cumulative regret of action a after t iterations is

R̃ti((a|Ii)|Qj)=R̃t−1
i ((a|Ii)|Qj)+r̃σ

t

i ((a|Ii)|Qj), where R̃0
i ((a|Ii)|Qj)=0.

3 DOUBLE NEURAL COUNTERFACTUAL REGRET MINIMIZATION

Double neural CFR algorithm will employ two neural networks, one for the cumulative regretR, and the
other for the average strategy S shown in Figure 2(b).

3.1 MODELING

The iterative updates of CFR algorithm maintain the regret sumRt(a|Ii) and the average strategy σ̄ti(a|Ii).
Thus, our two neural networks are designed accordingly.

• RegretSumNetwork(RSN): according to Eq. (4), the current strategy σt+1(a|Ii) is computed from the
cumulative regretRt(a|Ii). We only need to track the numerator in Eq. (4) since the normalization in
the denominator can be computed easily when the strategy is used. Given infoset Ii and action a, we
design a neural networkR(a,Ii|θtR) to trackRt(a|Ii), where θtR are the network parameters.

3

Under review as a conference paper at ICLR 2020

…

ASN

c3 c6

+

𝛼1

[𝛼1, 𝛼2, … , 𝛼6]

10 10 20 50

Mini-batch Robust Sampling

player 0 player 1 chance

Sequential Representation Attention
Network

𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

RSN

c4c1

ASN RSN

c2 c5

Figure 3: (a) recurrent neural network architecture with attention for extensive games. Both RSN and ASN are
based on this architecture but with different parameters (θR and θS respectively). (b) an overview of the proposed
robust sampling and mini-batch techniques. The trajectories marked by red arrows are the samples produced by robust
sampling (k=2 here).
• AvgStrategyNetwork(ASN): according to Eq. (6), the approximate Nash equilibrium is the weighted

average of all previous behavior strategies up to t iterations, which is computed by the normalization of
cumulative strategy St(a|Ii). Similar to the cumulative regret, we employ the other deep neural network
S(a|θtS) with network parameter θtS to track the cumulative strategy.

3.2 RECURRENT NEURAL NETWORK REPRESENTATION WITH ATTENTION

In order to define ourR and S networks, we need to represent the infoset in extensive-form games. In
such games, players take actions in an alternating fashion and each player makes a decision according to
the observed history. Because the action sequences vary in length, we model them with recurrent neural
networks and each action in the sequence corresponds to a cell in the RNN. This architecture is different
from the one in DeepStack (Moravcik et al., 2017), which used a fully connected deep neural network to
estimate counterfactual value. Figure 3(a) provides an illustration of the proposed deep sequential neural
network representation for infosets. Besides the vanilla RNN, there are several variants of more expressive
RNNs, such as the GRU (Cho et al., 2014) and LSTM (Hochreiter & Schmidhuber, 1997). In our later
experiments, we will compare these different neural architectures as well as a fully connected network
representation.

Furthermore, different position in the sequence may contribute differently to the decision making, we add
an attention mechanism (Desimone & Duncan, 1995; Cho et al., 2015) to the RNN architecture to enhance
the representation. For example, the player may need to take a more aggressive strategy after beneficial
public cards are revealed in a poker game. Thus the information after the public cards are revealed may
be more important. In practice, we find that the attention mechanism can help DNCFR obtain a better
convergence rate. See Appendix E for more details on the architectures.

3.3 OPTIMIZATION METHOD

The parameters in the two neural networks are optimized via stochastic gradient descent in a stage-wise
fashion interleaving with CFR iterations.

3.3.1 OPTIMIZING CURRENT STRATEGY

We useMt
R = {(Ii,r̃σ

t

i ((a|Ii)|Qj))|for all sampled Ii} to store the sampled Ii and the corresponding
regret r̃σ

t

i ((a|Ii)|Qj)) for all players in t-th iteration, whereQj is the sampled block (shown in Figure 2(b)).
These samples are produced by our proposed robust sampling and mini-batch MCCFR methods, which
will be discussed in Section 4. According to Eq. (3), we optimize the cumulative regret neural network
R(a,Ii|θt+1

R) using the following loss function

L(R)=
∑
i∈N,
Ii∈Ii,
a∈A(Ii)

(
R(·|θtR)+r̃σ

t

i (·|Qj)−R(·|θt+1
R)

)2

if Ii inMt
R(

R(·|θtR)+0−R(·|θt+1
R)

)2

otherwise,
(7)

whereR((a|Ii)|θtR) refers toR(·|θtR), r̃σ
t

i ((a|Ii)|Qj) refers to r̃σ
t

i (·|Qj), θtR refers to the old parameters
and θt+1

R is the new parameters we need to optimize. Note that, Eq. (7) is minimized based on the samples
of all the players rather than a particular player i. In standard MCCFR, if the infoset is not sampled, the
corresponding regret is set to 0, which leads to unbiased estimation according to Lemma 1. The design of
the loss function in Eq. (7) follows the same intuition. Techniques in Schmid et al. (2018) can be used to
reduce the variance.

4

Under review as a conference paper at ICLR 2020

Sampling unobserved infosets? Theoretically, in order to optimize Eq. (7), we need to collect both
observed and unobserved infosets. This approach requires us to design a suitable sampling method to
select additional training samples from large numbers of unobserved infosets, which will need a lot of
memory and computation. Clearly, this is intractable on large games, such as HUNL. In practice, we find
that minimizing loss only based on the observed samples can help us achieve a converged strategy.

Learning without forgetting? Another concern is that, only a small proportion of infosets are sampled
due to mini-batch training, which may result in the neural networks forgetting values for those unobserved
infosets. To address this challenge, we will use the neural network parameters from the previous iteration
as the initialization, which gives us an online learning/adaptation flavor to the updates. Experimentally, on
large games, due to the generalization ability of the neural networks, even a small proportion of infosets are
used to update the neural networks, our double neural approach can still converge to an approximate Nash
equilibrium. See Appendix F for more details on implementation.

Scaling regret for stable training? According to Theorem 6 in Burch (2017), the cumulative regret
Rti(a|Ii) ≤ ∆

√
|A|T , where |A| = maxIi∈I |A(Ii)| and ∆ = maxIi,a,t |Rt(a|Ii)−Rt−1(a|Ii)|. It

indicates that Rti(a|Ii) will become increasingly large. In practice, we scale the cumulative regret by a
factor of

√
t to make its range more stable. For example, define R̂ti(a|Ii)=Rti(a|Ii)/

√
t, we can update

the cumulative regret Eq. (3) by R̂ti(a|Ii)=(
√
t−1R̂t−1

i (a|Ii)+rσ
t

i (a|Ii))/
√
t, where R̂0

i (a|Ii)=0.

3.3.2 OPTIMIZING AVERAGE STRATEGY

The other memoryMt
S = {(Ii,sti(a|Ii)|for all sampled Ii} will store the sampled Ii and the weighted

additional behavior strategy sti(a|Ii) in t-th iteration. Similarly, the loss function L(S) of ASN is defined
by:

L(S)=
∑
i∈N,
Ii∈Ii,
a∈A(Ii)

(
S(·|θtS)+sti(a|Ii)−S(·|θt+1

S)

)2

if Ii inMt
S(

S(·|θtS)+0−S(·|θt+1
S)

)2

otherwise.
(8)

where S(·|θtS) refers to S(a,Ii|θtS), θtS refers to the old parameters and θt+1
S is the new parameters we

need to optimize. According to Algorithm 1, cumulative regret is used to generate behavior strategy in the
next iteration while cumulative strategy is the summation of the weighted behavior strategy. In theory, if we
have all theMt

S in each iteration, we can achieve the final average strategy directly. Based on this concept,
we don’t need to optimize the average strategy network (ASN) S(·|θtS) in each iteration. However, saving
all such values into a huge memory is very expensive on large games. A compromise is that we can save
such values within multiple iterations into a memory, when this memory is large enough, the incremental
value within multiple iterations can be learned by optimizing Eq. (8).

Minimum squared loss versus maximum likelihood? The average strategy is a distribution over actions,
which implies that we can use maximum likelihood method to directly optimize this average strategy. The
maximum likelihood method should base on the whole samples up to t-th iteration rather than only the
additional samples, so that this method is very memory-expensive. To address this limitation, we can
use uniform reservoir sampling method (Osborne et al., 2014) to obtain the unbiased estimation of each
strategy. In practice, we find this maximum likelihood method has high variance and cannot approach
a less exploitable Nash equilibrium. Experimentally, optimization by minimizing squared loss helps us
obtain a fast convergent average strategy profile and uses much less memory than maximum likelihood
method.

3.4 CONTINUAL IMPROVEMENT

When solving large IIGs, prior methods such as Libratus (Brown & Sandholm, 2017) and Deep-
Stack (Moravcik et al., 2017) are based on the abstracted HUNL which has a manageable number
of infosets. The abstraction techniques are usually based on domain knowledge, such as clustering similar
hand-strength cards into the same buckets or only taking discrete actions (e.g., fold, call, one-pot raise and
all in). DNCFR is not limited by the specified abstracted cards or actions. For example, we can use the
continuous variable to represent bet money rather than encode it by discrete action. In practice, DNCFR
can clone an existing tabular representation or neural representation and then continually improve the
strategy from the initialized point. More specifically, for infoset Ii and action a, define R′i(a|Ii) as the
cumulative regret . We can use behavior cloning technique to learn the cumulative regret by optimizing
θ∗R← argminθR

∑
Ii∈Ii

(
R(·|θR)−R′(·|Ii)

)2
. Similarly, the cumulative strategy can be cloned in the

5

Under review as a conference paper at ICLR 2020

same way. Based on the learned parameters, we can warm start DNCFR and continually improve beyond
the tabular strategy profile.

3.5 OVERALL ALGORITHM
Algorithm 2: DNCFR Algorithm
Function Agent(T , b):

For t=1 to T do
if t=1 and using warm starting then

Initialize θtR and θtS from a checkpoint
t←t+1

else
Initialize θtR and θtS randomly.

Mt
R,Mt

S← sampling methods.
Sum aggregate value inMR by infoset.
Remove duplicated records inMS.
θtR← NeuralAgent(R(·|θt−1

R),Mt
R,θ

t−1
R ,β∗R)

θtS← NeuralAgent(S(·|θt−1
S),Mt

S,θ
t−1
S ,β∗S)

return θtR,θtS

Algorithm 2 provides a summary of the proposed
double neural counterfactual regret minimization
approach. In the first iteration, if the system warm
starts from tabular-based methods, the techniques
in Section 3.4 will be used to clone the cumulative
regrets and strategies. If there is no warm start ini-
tialization, we can start our algorithm by randomly
initializing the parameters in RSN and ASN. Then
sampling methods will return the sampled infosets
and values, which are saved in memoriesMt

R and
Mt
S respectively. These samples will be used by

the NeuralAgent algorithm from Algorithm 3 to
optimize RSN and ASN. Further details for the sampling methods will be discussed in the next section.
Due to space limitation, we present NeuralAgent fitting algorithm in Appendix F.

4 EFFICIENT TRAINING

In this section, we will propose two techniques to improve the efficiency of the double neural method.
These techniques can also be used separately in other CFR variants.

4.1 ROBUST SAMPLING TECHNIQUE

In the robust sampling method, the sampled profile is defined by σrs(k) =(σ
rs(k)
i ,σ−i), where player i

will randomly select k actions according to sampled strategy σrs(k)
i (Ii) at Ii and other players randomly

select one action according to σ−i. Robust sampling is a general version of both external sampling
and outcome sampling by sampling k actions in one player’s infosets and using more general sampling
policy. If k=maxIi∈I|A(Ii)| and for each action σrs(k)

i (a|Ii)=1, then robust sampling is identical with
external sampling. If k = 1, σrs(k)

i = σi and q(z)≥ δ > 0 (δ is a small positive number), then robust
sampling is identical with outcome sampling. We give more detailed discussion about their relationship in
Appendix D.2.

Specifically, if player i randomly selects min(k, |A(Ii)|) actions according to discrete uni-
form distribution unif(0, |A(Ii)|) at Ii, i.e., σ

rs(k)
i (a|Ii) = min(k,|A(Ii)|)

|A(Ii)| , then πσ
rs(k)

i (Ii) =∏
h∈Ii,h′vh,h′avh,h′∈I′i

min(k,|A(I′i)|)
|A(I′i)|

and the weighted utility urs(k)
i (z) will be a constant number in

each iteration. In many settings, when k=1, we find such robust sampling schema converges more efficient
than outcome sampling. In contrast, our robust sampling achieves comparable convergence with external
sampling but using less working memory when specifying a suitable k. It’s reasonable because our schema
only samples k rather than all actions in player i′s infosets, the sampled game tree is smaller than the one
by external sampling. In the experiment, we will compare these sampling policies in our ablation studies.

4.2 MINI-BATCH TECHNIQUE

Traditional MCCFR only samples one block in an iteration and provides an unbiased estimation of origin
CFV. In this paper, we present a mini-batch Monte Carlo technique and randomly sample b blocks in one iter-
ation. LetQj denote a block of terminals sampled according to the scheme in Section 4.1, then mini-batch
CFV with mini-batch size b will be ṽσi (Ii|b)=

∑b
j=1

∑
h∈Ii,hvz,z∈Qjπ

σ
−i(z)π

σ
i (h,z)ui(z)/(bq(z)).

Theorem 1 EQj∼mini-batch[ṽ
σ
i (Ii|b)]=vσi (Ii).

We prove that ṽσi (Ii|b) is an unbiased estimation of CFV in Appendix D.3. Following the similar ideas of
CFR and CFR+, if we replace the regret matching by regret matching plus (Tammelin, 2014), we obtain a
mini-batch MCCFR+ algorithm. Our mini-batch technique empirically can sample b blocks in parallel and
converges faster than original MCCFR when performing on multi-core machines.

5 EXPERIMENT

To understand the contributions of various components in DNCFR algorithm, we will first conduct a set
of ablation studies. Then we will compare DNCFR with tabular CFR and deep reinforcement learning

6

Under review as a conference paper at ICLR 2020

(a) Sampling methods (b) Neural architectures (c) Number of parameters (d) Sampling proportion
Figure 4: Log-log performance on Leduc(5). (a) different sampling methods, k refers to the number of sampling
action for the proposed robust sampling method in each infoset. (b) neural architectures. (c) number of parameters. (d)
proportion of observed infosets. Higher proportion indicates more working memory.

method such as NFSP, which is a prior leading function approximation method in IIGs. At last, we conduct
experiments on heads-up no-limit Texas Hold’em (HUNL) to show the scalability of DNCFR algorithm.
The games and key information used in our experiment are listed in Table 1.
Table 1: Summary. #infoset is the number of infosets. #state is the number of states. %observed is the ratio of
observed infosets in each iteration. #emd and #param are the embedding size and the number of parameters in DNCFR.

setting #infoset #state %observed #emd #param action abstraction card abstraction
Leduc(5) 1×104 6×105 5.59% 16 2608 No No
Leduc(10) 3×105 2×106 2.39% 32 7424 No No
Leduc(15) 3×106 2×107 0.53% 64 23360 No No
HUNL(1) 2×108 3×1011 0.01% 64 19200 Yes No
HUNL(2) 8×1010 1×1014 0.001% 512 1070592 Yes No
ABS-CFR 2×1010 2×1013 − − − Yes Yes
HUNL(full) 1×10161 1×10164 − − − Yes No

5.1 SETTINGS AND METRIC

We perform the ablation studies on Leduc Hold’em poker, which is a commonly used poker game in
research community (Heinrich & Silver, 2016; Schmid et al., 2018; Steinberger, 2019; Lockhart et al.,
2019). In our experiments, we test DNCFR on three Leduc Hold’em instances with stack size 5, 10, and
15, which are denoted by Leduc(5), Leduc(10), and Leduc(15) respectively.

To test DNCFR’s scalability, we develop a neural agent to solve HUNL, which contains about 10161

infosets (Johanson, 2013) and has served for decades as challenging benchmark and milestones of solving
IIGs. The rules for such games are given in Appendix A.

The experiments are evaluated by exploitability, which was used as a standard win rate measure in many
key articles (Zinkevich et al., 2007; Lanctot et al., 2009; Michael Bowling, 2015; Brown et al., 2018).
The units of exploitability in our paper is chips per game. It denotes how many chips one player wins
on average per hand of poker. The method with a lower exploitability is better. The exploitability of
Nash equilibrium is zero. In extremely large game, which is intractable to compute exploitability, we use
head-to-head performance to measure different agents.

For reproducibility, we present the implementation details of the neural agent in Algorithm 2, Algorithm 3,
Algorithm 4. Appendix F.4 provides the parameters used in our experiments. Solving HUNL is a
challenging task. Although there are published papers (Moravcik et al., 2017; Brown & Sandholm, 2017),
it lacks of available open source codes for such solvers. The development of HUNL solver not only needs
tedious work, but also is difficult to verify the correctness of the implementation, because of its well known
high variance and extremely large game size. In Appendix G, we provide several approaches to validate
the correctness of our implementation for HUNL.
5.2 ABLATION STUDIES

We first conduct a set of ablation studies related to the mini-batch training, robust sampling, the choice of
neural architecture on Leduc Hold’em.

• Is mini-batch sampling helpful? we present the convergence curves of the proposed robust sampling
method with k = max(|A(Ii)|) under different mini-batch sizes in Figure 8(a) at Appendix C. The
experimental results show that larger batch sizes generally lead to better strategy profiles.
• Is robust sampling helpful? Figure 4 (a) presents convergence curves for outcome sampling, external

sampling(k=max(|A(Ii)|)) and the proposed robust sampling method under the different number of
sampled actions. The outcome sampling cannot converge to a low exploitability(smaller than 0.1 after
1000 iterations). The proposed robust sampling algorithm with k=1, which only samples one trajectory

7

Under review as a conference paper at ICLR 2020

(a) Individual network (b) Warm starting (c) DNCFR vs NFSP (d) Large Leduc Hold’em

Figure 5: Log-log performance. (a) Individual effect of RSN and ASN. RS-MCCFR+ refers to the tabular mini-batch
MCCFR+ method with the proposed robust sampling. RS-MCCFR+-RSN only uses one neural network RSN to learn
cumulative regret while uses a table to save cumulative strategy. RS-MCCFR+-ASN only use one neural network
ASN. RS-MCCFR+-RSN-ASN refers to DNCFR with both RSN and ASN. (b) Warm start from tabular CFR and
RS-MCCFR+. (c) DNCFR vs XFP vs NFSP. (d) Large Leduc(10) and Leduc(15).

like the outcome sampling, can achieve a better strategy profile after the same number of iterations.
With an increasing k, the robust sampling method achieves an even better convergence rate. Experiment
results show k = 3 and 5 have a similar trend with k = max(|A(Ii)|), which demonstrates that the
proposed robust sampling achieves similar performance but requires less memory than the external
sampling. We choose k=3 for the later experiments in Leduc Hold’em.
• Is attention in the neural architecture helpful? Figure 4(b) shows that all the neural architectures

achieved similar results while LSTM with attention achieved slightly better performance with a large
number of iterations. We select LSTM plus attention as the default architectures in the later experiments.
• Do the neural networks just memorize but not generalize? One indication that the neural networks

are generalizing is that they use much fewer parameters than their tabular counterparts. We experimented
with LSTM plus attention networks, and embedding size of 8 and 16 respectively. These architectures
contain 1048 and 2608 parameters respectively. Both of them are much less than the tabular memory
(more than 11083 here) and can lead to a converging strategy profile as shown in Figure 4(c). We
select embedding size 16 as the default parameters. In the later experiments, we will show the similar
conclusion on HUNL.
• Do the neural networks generalize to unseen infosets? To investigate the generalization ability, we

perform the DNCFR with small mini-batch sizes (b=50, 100, 500), where only 3.08%, 5.59%, and
13.06% infosets are observed in each iteration. In all these settings, DNCFR can still converge and
arrive at exploitability less than 0.1 within only 1000 iterations as shown in Figure 4(d). In the later
experiments, we set b=100 as the default mini-batch size.
• What is the individual effect of RSN and ASN? Figure 5(a) presents ablation study of the effects of

RSN and ASN network respectively. Specifically, the method RSN denotes that we only employ RSN
to learn the cumulative regret while the cumulative strategy is stored in a tabular memory. Similarly,
the method ASN only employ ASN to learn the cumulative strategy. Both these single neural methods
perform only slightly better than the DNCFR.
• How well does continual improvement work? As shown in Figure 5(b), warm starting from either

full-width based or sampling based CFR can lead to continual improvements. Specifically, the first 10
iterations are learned by tabular based CFR and RS-MCCFR+. After the behavior cloning in Section 3.4,
the remaining iterations are continually improved by DNCFR.
• How well does DNCFR on larger games? We test DNCFR on large Leduc(10) and Leduc(15), which

contains millions of infosets. Even though only a small proportion of nodes are sampled in each iteration,
Figure 5(d) shows that DNCFR can still converge on these large games.

5.3 COMPARISON AND SPACE-TIME TRADE-OFF

How does DNCFR compare to the tabular counterpart, XFP, and NFSP? NFSP is the prior leading
function approximation method for solving IIG, which is based on reinforcement learning and fictitious
self-play techniques. In the experiment, NFSP requires two memories to store 2×105 state-action pair
samples and 2×106 samples for supervised learning respectively. The memory sizes are larger than the
number of infosets. Figure 5(c) demonstrates that NFSP obtains a 0.06-Nash equilibrium after touching
109 infosets. The XFP obtains the same exploitability when touching about 107 nodes. However, this
method is the precursor of NFSP and updated by a tabular based full-width fictitious play. Our DNCFR
achieves the same performance by touching no more than 106 nodes, which are much fewer than both
NFSP and XFP. The experiment shows that DNCFR converges significantly better than the reinforcement
learning counterpart.

Space and time trade-off. In this experiment, we investigate the time and space needed for DNCFR
to achieve certain exploitability relative to tabular CFR algorithm. We compare their runtime and

8

Under review as a conference paper at ICLR 2020

memory in Figure 6. It’s clear that the number of infosets is much more than the number of pa-
rameters used in DNCFR. For example, on Leduc(15), tabular CFR needs 128 times more memory
than DNCFR. In the figure, we use the ratio between the runtime of DNCFR and CFR as horizontal
axis, and the sampling(observed) infosets ratios of DNCFR and full-width tabular CFR as vertical axis.
Note that, the larger the sampling ratio, the more memory will be needed to save the sampled values.

Figure 6: time space trade-off.

Clearly, there is a trade-off between the relative runtime and relative
memory in DNCFR: the longer the relative runtime, the less the
relative memory needed for DNCFR. It is reasonable to expect
that a useful method should lead to “fair” trade between space
and time. That is onefold increase in relative runtime should lead
onefold decreases in relative memory (the dashed line in Figure 6,
slope -1). Interestingly, DNCFR achieves a much better trade-off
between relative runtime and memory: for onefold increases in
relative runtime, DNCFR may lead to fivefold decreases in relative
memory consumption (red line, slope -5). We believe this is due to
the generalization ability of the learned neural networks in DNCFR.

To present the time space trade off under a range of exploitability, we set the fixed exploitability as 1.0,
0.5, 0.1, 0.05, 0.01 and 0.005 and perform both neural and tabular CFR on Leduc Hold’em. Figure 6
presents DNCFR achieves a much better time and space trade-off. We believe the research on neural CFR
is important for future work and the running time is not the key limitation of our DNCFR. Some recent
works (Schmid et al., 2018; Davis et al., 2019) provide strong variance reduction techniques for MCCFR
and suggest promising direction for DNCFR. In the future, we will combine DNCFR with the latest
acceleration techniques and use multiple processes or distributed computation to make it more efficient.
5.4 HEADS-UP NO-LIMIT TEXAS HOLD’EM

To test the scalability of the DNCFR on extremely large game, we develop a neural agent to solve HUNL.
However, it’s a challenging task to directly solve HUNL even with abstraction technique. For example,
ABS-CFR uses k-means to cluster similar cards into thousands of clusters. Although it’s a rough abstraction
of original HUNL, such agent contains about 2×1010 infosets and needs 80GB memory to store its
strategies. The working memory for training ABS-CFR is even larger (more than about 200GB), because it
needs to store cumulative regrets and other essential variables, such as the abstracted mapping. To make it
tractable for solving HUNL via deep learning, we assemble the ideas from both DeepStack (Moravcik et al.,
2017) and Libratus (Brown & Sandholm, 2017). Firstly, we train flop and turn networks like DeepStack
and use these networks to predict counterfactual value when given two players’ ranges and the pot size.
Specifically, the flop network estimates values after dealing the first three public cards and the turn network
estimates values after dealing the fourth public card. After that, we train blueprint strategies like Libratus.
In contrast, the blueprint strategies in our settings are learned by DNCFR. Because we have value networks
to estimate counterfactual values, there is no need for us to arrive at terminal nodes at the river.

To demonstrate the convergence of DNCFR, firstly, we test it on HUNL(1), which has no limited number
of actions, contains four actions in each infoset, and ends with the terminals where the first three public
cards are dealt. HUNL(1) contains more than 2×108 infosets and 3×1011 states. It’s tractable to compute
its exploitability within the limited time. We believe this game is suitable to evaluate the scalability and
generalization of DNCFR. Figure 7(a) provides the convergence of DNCFR on different embedding size:
emd=8, 16, 32, 64, 128. The smallest neural network only contains 608 parameters while the largest one
contains 71168 parameters. It’s reasonable to expect that a larger neural network typically achieves better
performance because more parameters typically help neural networks represent more complicated patterns
and structures. Figure 7(b) presents the performance of using the different number of stochastic gradient
descent (SGD) updates to train neural network on each MCCFR iteration. The results show that the number
of SGD updates on each iteration affects the asymptotic exploitability of DNCFR. It’s reasonable because
the neural network achieves small loss as the number of gradient descent updates is increasing.

Finally, we measure the head-to-head performance of our neural agent against its tabular version and ABS-
CFR on HUNL. ABS-CFR is a strong HUNL agent, which is the advanced version of the third-place agent
in ACPC 2018. Although ABS-CFR used both card and action abstraction techniques, it still needs 80GB
memory to store its strategies. More details about ABS-CFR are provided in Appendix G.1. Although
abstraction pathologies are well known in extensive games (Waugh et al., 2009), typically, more abstracted
action leads to better strategy in many settings. Following this idea, we use DNCFR to learn blueprint
strategies on HUNL(2), which is similar to HUNL(1) but contains eight actions in each infoset. HUNL(2)
contains 8×1010 infosets. Such large game size makes it intractable to perform subgame solving (Burch

9

Under review as a conference paper at ICLR 2020

100 101 102

Iteration

101

102

103

Ex
pl

oi
ta

bi
lit

y
emd=8
emd=16
emd=32
emd=64
emd=128

(a) embedding size

100 101 102

Iteration

101

102

103

Ex
pl

oi
ta

bi
lit

y

updates=200
updates=2000
updates=10000

(b) gradient descent updates

Match-up Win(chips/h)
ABS-CFR 9.8±4.1
Tabular Agent 0.7±2.2

(c) head-to-head win rate.

Figure 7: Performance of DNCFR on heads-up no-limit Texas Hold’em. (a) Log-log performance of DNCFR on
HUNL(1) under different embedding size. (b) Log-Log performance of DNCFR on HUNL(1) under different numbers
of gradient descent updates on each iteration. (c) DNCFR beats ABS-CFR by 9.8±4.1 chips per hand and achieves
similar performance with its tabular version but using much less memory.

et al., 2014) in real-time. For the next rounds, we use continual resolving techniques to compute strategy
in real-time. The action size in the look-ahead tree is similar to Table S3 in Moravcik et al. (2017). The
tabular agent is similar to our neural agent except for using tabular CFR to learn blueprint strategies. When
variance reduction techniques (Burch et al., 2018) are applied, Figure 7(c) shows that our neural agent beats
ABS-CFR by 9.8±4.1 chips per game and obtains similar performance (0.7±2.2 chips per game) with
its tabular agent. In contrast, our neural only needs to store 1070592 parameters, which uses much less
memory than both tabular agent and ABS-CFR.

6 RELATED WORKS AND DISCUSSION

Solving IIGs via function approximation methods is an important and challenging problem. Neural
Fictitious Self-Play (NFSP) (Heinrich & Silver, 2016) is a function approximation method based on deep
reinforcement learning, which is a prior leading method to solve IIG. However, fictitious play empirically
converges slower than CFR-based approaches in many settings. Recently, Lockhart et al. (2019) propose a
new framework to directly optimize the final policy against worst-case opponents. However, the authors
consider only small games. Regression CFR (RCFR) (Waugh et al., 2015) is a function approximation
method based on CFR. However, RCFR needs to traverse the full game tree. Such traversal is intractable
in large games. In addition, RCFR uses hand-crafted features and regression tree to estimate cumulative
regret rather than learning features from data. Deep learning empirically performs better than regression
tree in many areas, such as the Transformer and BERT in natural language models (Ashish Vaswani, 2017;
Jacob Devlin, 2018).

In the past year, concurrent works deep CFR (DCFR) (Brown et al., 2018) and single deep CFR (SD-
CFR) (Steinberger, 2019) have been proposed to address this problem via deep learning. DCFR, SDCFR,
RCFR and our DNCFR are based on the framework of counterfactual regret minimization. However,
there are many differences in several important aspects, which are listed as follows. (1) We represent the
extensive-form game by recurrent neural network. The proposed LSTM with attention performs better than
fully connected network (see details in Section 3.2). (2) DNCFR updates the cumulative regret only based
on the additionally collected samples in current iteration rather than using the samples in a big reservoir (see
details in Section 3.3.1). (3) It’s important to use squared-loss for the average strategies rather than log loss.
Because the log loss is based on the big reservoir samples up to T -th iteration, it is very memory-expensive
(see details in Section 3.3.2). (4) Another important aspect to make deep learning model work is that we
divide regret by

√
T and renormalize the regret, because the cumulative regret can grow unboundedly

(see details in Section 3.3.1). (5) Also, DNCFR collects data by an efficiently unbiased mini-batch robust
sampling method, which may be of independent interests to the IIG communities (see details in Section 4).

There are also big differences in the experimental evaluations. In our method, we conduct a set of ablation
studies in various settings. We believe that our ablation studies are informative and could have a significant
impact on these kinds of algorithms. Also, we evaluate DNCFR on extremely large games while RCFR
and SDCFR are only evaluated on small toy games.
7 CONCLUSIONS

We proposed a novel double neural counterfactual regret minimization approach to solve large IIGs by
combining many novel techniques, such as recurrent neural representation, attention, robust sampling, and
mini-batch MCCFR. We conduct a set of ablation studies and the results show that these techniques may
be of independent interests. This is a successful application of applying deep learning into large IIG. We
believe DNCFR and other related neural methods open up a promising direction for future work.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Ashish Vaswani, Noam Shazeer, N. P. J. U. L. J. A. N. G. L. K. I. P. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

Brown, N. and Sandholm, T. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals.
Science, pp. eaao1733, 2017.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep counterfactual regret minimization. arXiv preprint
arXiv:1811.00164, 2018.

Burch, N. Time and Space: Why Imperfect Information Games are Hard. PhD thesis, 2017.

Burch, N., Johanson, M., and Bowling, M. Solving imperfect information games using decomposition. In
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Burch, N., Schmid, M., Moravcik, M., Morill, D., and Bowling, M. Aivat: A new variance reduction
technique for agent evaluation in imperfect information games. In AAAI, 2018.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.
Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

Cho, K., Courville, A., and Bengio, Y. Describing Multimedia Content using Attention-based EncoderDe-
coder Networks. arXiv preprint arXiv:1507.01053, 2015.

Davis, T., Schmid, M., and Bowling, M. Low-variance and zero-variance baselines for extensive-form
games. arXiv preprint arXiv:1907.09633, 2019.

Desimone, R. and Duncan, J. Neural mechanisms of selective visual attention. Number 18, pp. 193–222.
Annual review of neuroscience, 1995.

Ganzfried, S. and Sandholm, T. Potential-aware imperfect-recall abstraction with earth mover’s distance in
imperfect-information games. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

Gibson, R. G. Regret minimization in games and the development of champion multiplayer computer
poker-playing agents. 2014.

Gilpin, A., Sandholm, T., and Sørensen, T. B. A heads-up no-limit texas hold’em poker player: discretized
betting models and automatically generated equilibrium-finding programs. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems-Volume 2, pp. 911–918.
International Foundation for Autonomous Agents and Multiagent Systems, 2008.

Gordon, G. J. No-regret algorithms for structured prediction problems. Number CMU-CALD-05-112.
CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 2005.

Harris, D. and Harris, S. Digital design and computer architecture (2nd ed.), volume ISBN 978-0-12-
394424-5. San Francisco, Calif.: Morgan Kaufmann.

Heinrich, J. and Silver, D. Deep reinforcement learning from self-play in imperfect-information games.
arXiv preprint arXiv:1603.01121, 2016.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play in extensive-form games. pp. 805–813.
International Conference on Machine Learning, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Number 8, pp. 1735–1780. Neural
computation, 1997.

Jacob Devlin, Ming-Wei Chang, K. L. K. T. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jin, P., Keutzer, K., and Levine, S. Regret minimization for partially observable deep reinforcement learning.
arXiv preprint arXiv:1710.11424, 2017.

Johanson, M. Measuring the size of large no-limit poker games. arXiv preprint arXiv:1302.7008, 2013.

11

Under review as a conference paper at ICLR 2020

Johanson, M., Burch, N., Valenzano, R., and Bowling, M. Evaluating state-space abstractions in extensive-
form games. In Proceedings of the 2013 international conference on Autonomous agents and multi-agent
systems, pp. 271–278. International Foundation for Autonomous Agents and Multiagent Systems, 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Lanctot, M., Kevin, W., Martin, Z., and Bowling, M. Monte Carlo sampling for regret minimization in
extensive games. NIPS, 2009.

Lockhart, E., Lanctot, M., Pérolat, J., Lespiau, J., Morrill, D., Timbers, F., and Tuyls, K. Computing
approximate equilibria in sequential adversarial games by exploitability descent. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, pp. 464–470, 2019.

Michael Bowling, Neil Burch, M. J. O. T. Heads-Up Limit Texas Holdem is solved. Science, pp.
347(6218):145–149, 2015.

Moravcik, M., Martin, S., Neil, B., Viliam, L., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson, M.,
and Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science,
(6337):508–513, 2017.

Osborne, M., Lall, A., and Van Durme, B. Exponential reservoir sampling for streaming language models.
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), volume 2, pp. 687–692, 2014.

Osborne, M. J. and Rubinstein, A. A course in game theory, volume 1. MIT Press, 1994.

Ruder, S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2017.

Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec, R., and Bowling, M. Variance Reduction
in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using
Baselines. arXiv preprint arXiv:1809.03057, 2018.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, G. V. D., and et al., J. S. Mastering
the game of Go with deep neural networks and tree search. Nature, (7587), 2016.

Southey, F., Bowling, M. P., Larson, B., Piccione, C., Burch, N., Billings, D., and Rayner, C. Bayes’ bluff:
Opponent modelling in poker. arXiv preprint arXiv:1207.1411, 2012.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J., Tuyls, K., Munos, R., and Bowling, M. Actor-critic
policy optimization in partially observable multiagent environments. In Advances in Neural Information
Processing Systems, pp. 3422–3435, 2018.

Steinberger, E. Single deep counterfactual regret minimization. arXiv preprint arXiv:1901.07621, 2019.

Tammelin, O. Solving large imperfect information games using CFR+. arXiv preprint, 2014.

Waugh, K., Schnizlein, D., Bowling, M., and Szafron, D. Abstraction pathologies in extensive games. In
Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems-Volume
2, pp. 781–788. International Foundation for Autonomous Agents and Multiagent Systems, 2009.

Waugh, K., Morrill, D., Bagnell, J. A., and Bowling, M. Solving Games with Functional Regret Estimation.
In AAAI, 2015.

Zinkevich, M., Michael, J., Michael, B., and Piccione, C. Regret minimization in games with incomplete
information. NIPS, 2007.

12

Under review as a conference paper at ICLR 2020

A GAME RULES

A.1 ONE-CARD POKER

One-Card Poker is a two-players IIG of poker described by Gordon (2005). The game rules are defined as
follows. Each player is dealt one card from a deck ofX cards. The first player can pass or bet, If the first
player bet, the second player can call or fold. If the first player pass, the second player can pass or bet. If
the second player bet, the first player can fold or call. The game ends with two pass, call, fold. The fold
player will lose 1 chip. If the game ends with two passes, the player with higher card wins 1 chip, If the
game ends with call, the player with higher card wins 2 chips.

A.2 LEDUC HOLD’EM

Leduc Hold’em a two-players IIG of poker, which was first introduced in Southey et al. (2012). In Leduc
Hold’em, there is a deck of 6 cards comprising two suits of three ranks. The cards are often denoted by
king, queen, and jack. In Leduc Hold’em, the player may wager any amount of chips up to a maximum of
that player’s remaining stack. There is also no limit on the number of raises or bets in each betting round.
There are two rounds. In the first betting round, each player is dealt one card from a deck of 6 cards. In the
second betting round, a community (or public) card is revealed from a deck of the remaining 4 cards. In
this paper, we use Leduc(x) refer to the Leduc Hold’em with stack size is x.

A.3 HEADS-UP NO-LIMIT TEXAS HOLD’EM

Heads-Up No-Limit Texas hold’em (HUNL) has at most four betting rounds if neither of two players fold
during playing. The four betting rounds are preflop, flop, turn, river respectively. The rules are defined as
follows. In Annual Computer Poker Competition (ACPC), two players each have 20000 chips initially.
One player at the position of small blind, firstly puts 50 chips in the pot, while the other player at the big
blind then puts 100 chips in the pot. After that, the first round of betting is followed. If the preflop betting
round ends without a player folding, then three public cards are revealed face-up on the table and the flop
betting round occurs. After this round, one more public card is dealt (called the turn) and the third round of
betting takes place, followed by a fifth public card (called river) and a final round of betting begins. In
no-limit poker player can take fold, call and bet actions and bet number is from one big blind to a number
of chips a player has left in his stack.

13

Under review as a conference paper at ICLR 2020

B DEFINITION OF EXTENSIVE-FORM GAMES

B.1 DETAILED DEFINITIONS AND NOTATIONS

We define the components of an extensive-form game following Osborne & Rubinstein (1994) (page
200∼ 201). A finite set N = {0,1,...,n−1} of players. Define xvi as the hidden variable of player i
in IIG, e.g., in poker game xvi refers to the private cards of player i. H refers to a finite set of histories.
Each member h = (xvi)i=0,1,...,n−1(al)l=0,...,L−1 = xv0x

v
1...x

v
n−1a0a1...aL−1 of H denotes a possible

history (or state), which consists of each player’s hidden variable and L actions taken by players including
chance. For player i, h also can be denoted as xvix

v
−ia0a1...aL−1, where xv−i refers to the opponent’s

hidden variables. The empty sequence ∅ is a member of H. hj vh denotes hj is a prefix of h, where
hj = (xvi)i=0,1,...,n−1(al)l=1,...,L′−1 and 0 < L′ < L. Z ⊆ H denotes the terminal histories and any
member z ∈ Z is not a prefix of any other sequences. A(h) = {a : ha ∈ H} is the set of available
actions after non-terminal history h∈H\Z. A player function P assigns a member ofN∪{c} to each
non-terminal history, where c denotes the chance player id, which usually is -1. P(h) is the player who
takes an action after history h.

Ii of a history {h∈H :P(h)=i} is an information partition of player i. A set Ii∈Ii is an information
set (infoset) of player i and Ii(h) refers to infoset Ii at state h. Generally, Ii could only remember the
information observed by player i including player i′s hidden variable and public actions. Therefore Ii
indicates a sequence in IIG, i.e., xvi a0a2...aL−1. For Ii∈Ii we denote byA(Ii) the setA(h) and by P(Ii)
the player P(h) for any h∈ Ii. For each player i∈N a utility function ui(z) define the payoff of the
terminal state z.

For player i, the expected game utility uσi =
∑
z∈Zπ

σ(z)ui(z) of σ is the expected payoff of all possible

terminal nodes. Given a fixed strategy profile σ−i, any strategy σ∗i =argmaxσ′i∈Σiu
(σ′i,σ−i)
i of player i

that achieves maximize payoff against πσ−i is a best response. For two players’ extensive-form games, a
Nash equilibrium is a strategy profile σ∗= (σ∗0,σ

∗
1) such that each player’s strategy is a best response

to the opponent. An ε-Nash equilibriumis an approximation of a Nash equilibrium, whose strategy
profile σ∗ satisfies: ∀i∈N , uσ

∗
i
i +ε≥maxσ′i∈Σiu

(σ′i,σ−i)
i . Exploitability of a strategy σi is defined as

εi(σi) =uσ
∗

i −u
(σi,σ

∗
−i)

i . A strategy is unexploitable if εi(σi) = 0. In large two player zero-sum games
such poker, uσ

∗

i is intractable to compute. However, if the players alternate their positions, the value
of a pair of games is zeros, i.e., uσ

∗

0 +uσ
∗

1 = 0 . We define the exploitability of strategy profile σ as
ε(σ)=(u

(σ0,σ
∗
1)

1 +u
(σ∗0 ,σ1)
0)/2.

B.2 EXPLANATION BY EXAMPLE

To provide a more detailed explanation, Figure 1 presents an illustration of a partial game tree in One-Card
Poker. In the first tree, two players are dealt (queen, jack) as shown in the left subtree and (queen, king)
as shown in the right subtree. zi denotes terminal node and hi denotes non-terminal node. There are 19
distinct nodes, corresponding 9 non-terminal nodes including chance h0 and 10 terminal nodes in the left
tree. The trajectory from the root to each node is a history of actions. In an extensive-form game, hi refers
to this history. For example, h3 consists of actions 0:Q, 1:J and P. h7 consists of actions 0:Q, 1:J, P and B.
h8 consists of actions 0:Q, 1:K, P and B. We have h3vh7,A(h3)={P,B} and P(h3)=1.

In IIG, the private card of player 1 is invisible to player 0, therefore h7 and h8 are actually the same for
player 0. We use infoset to denote the set of these undistinguished states. Similarly, h1 and h2 are in the
same infoset. For the right tree of Figure 1, h′3 and h′5 are in the same infoset. h′4 and h′6 are in the same
infoset.

Generally, any Ii ∈ I could only remember the information observed by player i including player i′s
hidden variable and public actions. For example, the infoset of h7 and h8 indicates a sequence of 0:Q,
P, and B. Because h7 and h8 are undistinguished by player 0 in IIG, all the states have a same strategy.
For example, I0 is the infoset of h7 and h8, we have I0 = I0(h7) = I0(h8), σ0(I0) =σ0(h7) =σ0(h8),
σ0(a|I0)=σ0(a|h7)=σ0(a|h8).

14

Under review as a conference paper at ICLR 2020

B.3 DETAILED DEFINITION ABOUT STRATEGY AND NASH EQUILIBRIUM

A strategy profile σ={σi|σi∈Σi,i∈N} is a collection of strategies for all players, where Σi is the set of
all possible strategies for player i. σ−i refers to strategy of all players other than player i. For play i∈N
the strategy σi(Ii) is a function, which assigns an action distribution over A(Ii) to infoset Ii. σi(a|h)
denotes the probability of action a taken by player i∈N∪{c} at state h. In IIG, ∀h1,h2∈Ii , we have
Ii=Ii(h1)=Ii(h2), σi(Ii)=σi(h1)=σi(h2), σi(a|Ii)=σi(a|h1)=σi(a|h2). For iterative method such
as CFR, σt refers to the strategy profile at t-th iteration.

The state reach probability of history h is denoted by πσ(h) if players take actions according to σ. For
an empty sequence πσ(∅)=1. The reach probability can be decomposed into πσ(h)=

∏
i∈N∪{c}π

σ
i (h)=

πσi (h)πσ−i(h) according to each player’s contribution, where πσi (h) =
∏
h′avh,P(h′)=P(h)σi(a|h′) and

πσ−i(h)=
∏
h′avh,P(h′)6=P(h)σ−i(a|h′).

The infoset reach probability of Ii is defined as πσ(Ii) =
∑
h∈Iiπ

σ(h). If h′ v h, the interval state
reach probability from state h′ to h is defined as πσ(h′,h), then we have πσ(h′,h) = πσ(h)/πσ(h′).
πσi (Ii), πσ−i(Ii), π

σ
i (h′,h), and πσ−i(h

′,h) are defined similarly.

15

Under review as a conference paper at ICLR 2020

C ADDITIONAL EXPERIMENT RESULTS

Figure 8(a) shows that the robust sampling with a larger batch size indicates better performance. It’s
reasonable because a larger batch size will lead to more sampled infosets in each iteration and costs more
memory to store such values. If b=1, only one block is sampled in each iteration. The results demonstrate
that the larger batch size generally leads to faster convergence. Because it’s easy to sample the mini-batch
samples by parallel fashion on a large-scale distributed system, this method is very efficient. In practice,
we can specify a suitable mini-batch size according to computation and memory size.

In Figure 8(b), we compared the proposed robust sampling against Average Strategy (AS) sampling (Gibson,
2014) on Leduc Holdem (stack=5). Set the mini-batch size of MCCFR as b=100, k=2 in robust sampling.
The parameters in average strategy sampling are set by ε=k/|A(I)|, τ=0, and β=0. After 1000 iterations,
the performance of our robust sampling is better than AS. More specifically, if k=1, the exploitability of
our robust sampling is 0.5035 while AS is 0.5781. If k=2, the exploitability of our robust sampling is
0.2791 while AS is 0.3238. Robust sampling samples a min(k,|A(I)|) player i’s actions while AS samples
a random number of player i’s actions. Note that, if ρ is small or the number of actions is small, it has
a possibility that the generated random number between 0 and 1 is larger than ρ for all actions, then the
AS will sample zero action. Therefore, AS has a higher variance than our robust sampling. In addition,
according to Gibson (2014), the parameter scopes of AS are ε∈(0,1], τ ∈ [1,∞), β∈ [0,∞) respectively.
They didnt analyze the experiment results for τ <1.

100 101 102 103

Iteration
10 2

10 1

100

Ex
pl

oi
ta

bi
lit

y

RS-MCCFR+(b=1)
RS-MCCFR+(b=1000)
RS-MCCFR+(b=5000)
RS-MCCFR+(b=10000)

(a) Mini-batch size

100 101 102 103

Iteration
10 1

100
Ex

pl
oi

ta
bi

lit
y

strategy sampling(k=1)
strategy sampling(k=2)
robust sampling(k=1)
robust sampling(k=2)

(b) Mini-batch size

Figure 8: Comparison of different CFR-family methods on Leduc Hold’em. (a) Performance of robust
sampling with different batch size. (b) Robust sampling vs strategy sampling.

16

Under review as a conference paper at ICLR 2020

D THEORETICAL ANALYSIS

D.1 REACH PROBABILITY AND POSTERIOR PROBABILITY

Lemma 2 The reach probability of the opponent is proportional to posterior probability of the opponent’s
hidden variable, i.e.,p(xv−i|Ii)∝πσ−i(h), where xvi and Ii indicate a particular h.

Proof

For player i at infoset Ii and fixed i′s strategy profile σi, i.e., ∀h∈ Ii,πσi (h) is constant. Based on the
defination of extensive-form game, the cominbation of Ii and opponent’s hidden state xv−i can indicate a
particular history h=xvix

v
−ia0a1...aL−1. With Bayes’ Theorem, we can inference the posterior probability

of opponent’s private cards with Equation9.

p(xv−i|Ii)=
p(xv−i,Ii)

p(Ii)
=
p(h)

p(Ii)
∝p(h)

∝p(xvi)p(xv−i)
L∏
l=1

σP(xvi x
v
−ia0a1...al−1)(al|xvixv−ia0a1...al−1)

∝πσ(h)=πσi (h)πσ−i(h)

∝πσ−i(h)

(9)

D.2 ROBUST SAMPLING, OUTCOME SAMPLING AND EXTERNAL SAMPLING

For robust sampling, given strategy profile σ and the sampled block Qj according to sampled profile
σrs(k) =(σ

rs(k)
i ,σ−i), then q(z)=πσ

rs(k)

i (z)πσ−i(z), and the regret of action a∈Ars(k)(Ii) is

r̃σi ((a|Ii)|Qj)= ṽσi ((a|Ii)|Qj)−ṽσi (Ii|Qj)

=
∑

z∈Qj,havz,h∈Ii

1

q(z)
πσ−i(z)π

σ
i (ha,z)ui(z)−

∑
z∈Qj,hvz

1

q(z)
πσ−i(z)π

σ
i (h,z)ui(z)

=
∑

z∈Qj,havz,h∈Ii

ui(z)

πσ
rs(k)

i (z)
πσi (ha,z)−

∑
z∈Qj,hvz,h∈Ii

ui(z)

πσ
rs(k)

i (z)
πσi (h,z)

=
∑

z∈Qj,havz,h∈Ii

πσi (ha,z)ursi (z)−
∑

z∈Qj,hvz,h∈Ii

πσi (h,z)ursi (z),

(10)

where ursi (z)= ui(z)

πσ
rs(k)

i (z)
is the weighted utility according to reach probability πσ

rs(k)

i (z). Because the

weighted utility no long requires explicit knowledge of the opponent’s strategy, we can use this sampling
method for online regret minimization.

Generally, if player i randomly selects min(k,|A(Ii)|) actions according to discrete uniform distribution
unif(0,|A(Ii)|) at infoset Ii, i.e., σ

rs(k)
i (a|Ii)= min(k,|A(Ii)|)

|A(Ii)| , then

πσ
rs(k)

i (Ii)=
∏

h∈Ii,h′vh,h′avh,h′∈I′i

min(k,|A(I′i)|)
|A(I′i)| (11)

and ursi (z) is a constant number when given the sampled profile σrs(k).

Specifically,

• if k=maxIi∈I|A(Ii)|, then σrs(k)
i (Ii)=1, urs(k)

i (z)=ui(z), and

17

Under review as a conference paper at ICLR 2020

r̃σi ((a|Ii)|Qj)=
∑

z∈Qj,hvz,h∈Ii

ui(z)(π
σ
i (ha,z)−πσi (h,z)) (12)

Therefore, robust sampling is same with external sampling when k=maxIi∈I|A(Ii)|. For large
game, because one player should take all actions in her infosets, it’s intractable for external
sampling. The robust sampling is more flexible and memory-efficient than external sampling. In
practice, we can specify a suitable k according our memory. Experimentally, the smaller k can
achieve a similar convergence rate to the external sampling.

• if k = 1 and σrs(k)
i = σi, only one history z is sampled in this case,then urs(k)

i (z) = ui(z)

π
σi
i (z)

,

∃h∈Ii, for a∈Ars(k)(Ii)

r̃σi ((a|Ii)|Qj)= r̃σi ((a|h)|Qj)
=

∑
z∈Qj,havz

πσi (ha,z)ursi (z)−
∑

z∈Qj,hvz

πσi (h,z)ursi (z)

=
(1−σi(a|h))ui(z)

πσi (ha)

(13)

For a 6∈ Ars(k)(Ii), the regret will be r̃σi ((a|h)|j) = 0− ṽσi (h|j). If we add exploration and
guarantee q(z)≥δ>0, then robust sampling is same with outcome sampling when k=1 and
σ
rs(k)
i =σi.

• if k = 1, and player i randomly selects one action according to discrete uniform distribution
unif(0,|A(Ii)|) at infoset Ii, then urs(1)

i (z)= ui(z)

πσ
rs(k)

i (z)
is a constant, ∃h∈Ii, for a∈Ars(k)(Ii)

r̃σi ((a|Ii)|Qj)=
∑

z∈Qj,havz,h∈Ii

πσi (ha,z)ursi (z)−
∑

z∈Qj,hvz,h∈Ii

πσi (h,z)ursi (z)

=(1−σi(a|h))πσi (ha,z)u
rs(1)
i (z)

(14)

if action a is not sampled at state h, the regret is r̃σi ((a|h)|j)=0−ṽσi (h|j). Compared to outcome
sampling, the robust sampling in that case converges more efficient than outcome sampling.

D.3 UNBIASED MINI-BATCH MCCFR

Theorem 1 EQj∼mini-batch[ṽ
σ
i (Ii|b)]=vσi (Ii).

In this section, we prove that mini-Batch MCCFR gives an unbiased estimation of counterfactual value.

Proof

18

Under review as a conference paper at ICLR 2020

EQj∼mini-batch[ṽ
σ
i (Ii|b)]=Eb′∼unif(0,b)[ṽ

σ
i (Ii|b′)]

=Eb′∼unif(0, b)

 b′∑
j=1

∑
h∈Ii,z∈Qj,hvz

πσ−i(z)π
σ
i (h,z)ui(z)

q(z)b′

=Eb′∼unif(0, b)

 1

b′

b′∑
j=1

ṽσi (Ii|Qj)

=

1

b

b∑
b′=1

 1

b′

b′∑
j=1

ṽσi (Ii|Qj)

=

1

b

b∑
b′=1

 1

b′

b′∑
j=1

E(ṽσi (Ii|Qj))

=

1

b

b∑
b′=1

 1

b′

b′∑
j=1

vσi (Ii)

=vσi (Ii)

(15)

19

Under review as a conference paper at ICLR 2020

E SEQUENTIAL REPRESENTATION AND RECURRENT NEURAL NETWORK WITH
ATTENTION

In order to define ourR and S network, we need to represent the infoset Ii∈I in extensive-form games.
In such games, players take action in an alternating fashion and each player makes a decision according to
the observed history. In this paper, we model the behavior sequence as a recurrent neural network and each
action in the sequence corresponds to a cell in RNN. Figure 3 (a) provides an illustration of the proposed
deep sequential neural network representation for infosets.

In standard RNN, the recurrent cell will have a very simple structure, such as a single tanh or sigmoid layer.
Hochreiter & Schmidhuber (1997) proposed a long short-term memory method (LSTM) with the gating
mechanism, which outperforms the standard version and is capable of learning long-term dependencies.
Thus we will use LSTM for the representation. Furthermore, different position in the sequence may
contribute differently to the decision making, we will add an attention mechanism (Desimone & Duncan,
1995; Cho et al., 2015) to the LSTM architecture to enhance the representation. For example, the player
may need to take a more aggressive strategy after beneficial public cards are revealed in a poker game.
Thus the information, after the public cards are revealed may be more important.

More specifically, for l-th cell, define xl as the input vector, which can be either player or chance actions.
Define el as the hidden layer embedding, φ∗ as a general nonlinear function. Each action is represented
by a LSTM cell, which has the ability to remove or add information to the cell state with three different
gates. Define the notation · as element-wise product. The first forgetting gate layer is defined as
gfl =φf(wf [xl,el−1]), where [xl,el−1] denotes the concatenation of xl and el−1. The second input gate
layer decides which values to update and is defined as gil =φi(w

i[xl,el−1]). A nonlinear layer outputs a
vector of new candidate values C̃l=φc(wl[xl,el−1]), which decides what can be added to the state. After
the forgetting gate and the input gate, the new cell state is updated by Cl=gfl ·Cl−1+gil ·C̃l. The third
output gate is defined as gol =φo(w

o[xl,el−1]). Finally, the updated hidden embedding is el=gol ·φe(Cl).
As shown in Figure 3 (a), for each LSTM cell j, the vector of attention weight is learned by an attention
network. Each member in this vector is a scalar αj=φa(w

aej). The attention embedding of l-th cell is
then defined as eal =

∑l
j=1αj ·ej, which is the summation of the hidden embedding ej and the learned

attention weight αj. The final output of the network is predicted by a value network, which is defined as

ỹl :=f(a,Ii|θ)=wyφv(e
a
l)=wyφv

 l∑
j=1

φa(w
aej)·ej

, (16)

where θ refers to the parameters in the defined sequential neural networks. Specifically, φf , φi, φo are
sigmoid functions. φc and φe are hyperbolic tangent functions. φa and φv are rectified linear functions.

Remark. The proposed RSN and ASN share the same neural architecture, but use different parameters.
That is R(a,Ii|θtR) = f(a,Ii|θtR) and S(a,Ii|θtS) = f(a,Ii|θtS). R(·,Ii|θtR) and S(·,Ii|θtS) denote two
vectors of predicted value for all a∈A(Ii).

20

Under review as a conference paper at ICLR 2020

F OPTIMIZING NEURAL REPRESENTATION AND IMPLEMENTATION

F.1 CODE FOR DNCFR FRAMEWORK

Algorithm 2 provides a summary of the proposed double neural counterfactual regret minimization method.
Specifically, in the first iteration, if we start the optimization from tabular-based methods, the techniques in
Section 3.4 should be used to clone the cumulative regrets and strategy, which is used to initialize RSN
and ASN respectively. If there is no warm start initialization, we can start our algorithm by randomly
initializing the parameters in RSN and ASN. After these two kinds of initialization, we use sampling
method, such as the proposed robust sampling, to collect the training samples (include infosets and the
corresponding values), which are saved in memoriesMt

R andMt
S respectively. These samples will be

used by the NeuralAgent algorithm from Algorithm 3 to optimize RSN and ASN. Algorithm 4 provides
the implementation of the proposed mini-batch robust sampling MCCFR. Note that, with the help of the
proposed mini-batch techniques in Section 4, we can collect training samples parallelly on multi-processors
or distributed systems, which also leads to the unbiased estimation according to the proved Theorem 1.
The acceleration training and distribution implementation is beyond the scope of this paper. To compare
the performance of DNCFR and tabular CFR, all of our experiments are running on a single processor.

F.2 CODE FOR NEURAL NETWORKS

Algorithm 3: Optimization of Deep Neural Network

Function NeuralAgent(f(·|θT−1),M, θT−1, β∗):
initialize optimizer, scheduler
θT←θT−1,lbest←∞,tbest←0
For t=1 to βepoch do

loss← []
For each training epoch do
{x(i),y(i)}mi=1∼M
batch loss← 1

m

∑m
i=1(f(x(i)|θT−1)+y(i)−f(x(i)|θT))2

back propagation batch loss with learning rate lr
clip gradient of θT to [−ε,ε]d
optimizer(batch loss)
loss.append(batch loss)

lr←sheduler(lr)
if avg(loss)<βloss then

θTbest←θT , early stopping.
else if avg(loss)<lbest then

lbest=avg(loss), tbest←t, θTbest←θT

if t−tbest>βre then
lr←βlr

return θT

Notations in Neural Networks. Define βepoch as training epoch, βlr as learning rate, βloss as the criteria
for early stopping, βre as the upper bound for the number of iterations from getting the minimal loss last
time, θt−1 as the old parameter learned in t−1 iteration, f(·|θt−1) as the neural network,M as the training
samples including infosets and the corresponding targets. To simplify notations, we use β∗ to denote the set
of hyperparameters in the proposed deep neural networks. β∗R and β∗S refer to the sets of hyperparameters
in RSN and ASN respectively.

Optimize Neural Networks. Algorithm 3 provides the implementation of the optimization technique for
both RSN and ASN. BothR(a,Ii|θt+1

R) and S(a,Ii|θtS) are optimized by mini-batch stochastic gradient
descent method. In this paper, we use Adam optimizer (Kingma & Ba, 2014) with both momentum and
adaptive learning rate techniques. We also replace Adam by other optimizers such as Nadam, RMSprop,
Nadam Ruder (2017) in our experiments, however, such optimizers do not achieve better experimental
results. In practice, existing optimizers (Ruder, 2017) may not return a relatively low enough loss because of
potential saddle points or local minima. To obtain a relatively higher accuracy and lower optimization loss,
we design a novel scheduler to reduce the learning rate when the loss has stopped decrease. Specifically,

21

Under review as a conference paper at ICLR 2020

the scheduler reads a metrics quantity, e.g, mean squared error. If no improvement is seen for a number of
epochs, the learning rate is reduced by a factor. In addition, we will reset the learning rate in both optimizer
and scheduler once loss stops decreasing within βre epochs. Gradient clipping mechanism is used to limit
the magnitude of the parameter gradient and make optimizer behave better in the vicinity of steep cliffs.
After each epoch, the best parameters, which lead to the minimum loss, will replace the old parameters.
Early stopping mechanism is used once the lowest loss is less than the specified criteria βloss.

The feature is encoded as following. As shown in the figure 3 (a), for a history h and player P(h), we
use vectors to represent the observed actions including chance player. For example, on Leduc Hold’em,
the input feature xl for l-th cell is the concatenation of three one-hot features including the given private
cards, the revealed public cards and current action a. Both the private cards and public cards are encoded
by one-hot technique (Harris & Harris), where the value in the existing position is 1 and the others are 0. If
there are no public cards, the respective position will be filled with 0. The betting chips in the encoded
vector will be represented by the normalized cumulative spent, which is the cumulative chips dividing the
stack size. For HUNL, each card is encoded by a vector with length 17: 13 for ranking embedding and 4
for suit embedding. The actions in public sequences are represented by one-hot and the raise action is also
represented by the normalized cumulative spent.

22

Under review as a conference paper at ICLR 2020

F.3 CODE FOR MINI-BATCH ROBUST SAMPLING MCCFR

Algorithm 4: Mini-Batch RS-MCCFR with Double Neural Networks
Function Mini-Batch-MCCFR-NN(t):
Mt
R←∅,Mt

S←∅
For all i=1 to b do in parallel then

MCCFR-NN(t,∅,0,1,1)
MCCFR-NN(t,∅,1,1,1)

returnMt
R,Mt

S

Function MCCFR-NN(t, h, i, πi, π
rs(k)
i):

Ii←Ii(h) if h∈Z then
return ui(h)

π
rs(k)
i

else if P(h)=−1 then
a∼σ−i(Ii)
return MCCFR-NN(t,ha,i,πi,π

rs(k)
i)

else if P(h)=i then
R̂i(·|Ii)←R(·,Ii|θtR) if t>1 else−→0
σi(Ii)←CalculateStrategy(R̂i(·|Ii),Ii)
vi(h)←0,ri(·|Ii)←~0,si(·|Ii)←~0
Ars(k)(Ii)← sampling k different actions according to σrs(k)

i

For a∈Ars(k)(Ii) do
vi(a|h)←MCCFR-NN(t,ha,i,πiσi(a|Ii),πrsi σ

rs(k)
i (a|Ii))

vi(h)←vi(h)+vi(a|h)σi(a|Ii)
For a∈Ars(k)(Ii) do

ri(a|Ii)←vi(a|h)−vi(h)
si(a|Ii)←πσi (Ii)σi(a|Ii)

Store updated cumulative regret tuple (Ii,ri(·|Ii)) inMt
R

Store updated current strategy dictionary (Ii,si(·|Ii)) inMt
S

return vi(h)
else

R̂−i(·|Ii)←R(·,Ii|θtR) if t>1 else−→0
σ−i(Ii)←CalculateStrategy(R̂−i(·|Ii),Ii)
a∼σ−i(Ii)
return MCCFR-NN(t,ha,i,πi,π

rs(k)
i)

Function CalculateStrategy(Ri(·|Ii),Ii):
sum←

∑
a∈A(Ii)

max(Ri(a|Ii),0)

For a∈A(Ii) do
σi(a|Ii)= max(Ri(a|Ii),0)

sum if sum> 0 else 1
|A(Ii)|

return σi(Ii)

Algorithm 4 presents one application scenario of the proposed mini-batch robust sampling method. The
function MCCFR-NN will traverse the game tree like tabular MCCFR, which starts from the root h=∅.
Define Ii as the infoset of h. Suppose that player i will sample k actions according to the robust sampling.
Algorithm 4 is defined as follows.

•If the history is terminal, the function returns the weighted utility.

•If the history is the chance player, one action a∈A(Ii) will be sampled according to the strategy σ−i(Ii).
Then this action will be added to the history, i.e., h←ha.

•If P(Ii)= i, the current strategy can be updated by the cumulative regret predicted by RSN. Then we
sample k actions according the specified sampled strategy profile σrs(k)

i . After a recursive updating, we can

23

Under review as a conference paper at ICLR 2020

obtain the counterfactual value and regret of each action at Ii. For the observed nodes, their counterfactual
regrets and numerators of the corresponding average strategy will be stored inMt

R andMt
S respectively.

•If P(Ii) is the opponent, only one action will be sampled according the strategy σ−i(Ii).

The function Mini-Batch-MCCFR-NN presents a mini-batch sampling method, where b blocks will be
sampled in parallel. This mini-batch method can help the MCCFR to achieve an unbiased estimation of
CFV. The parallel implementation makes this method efficient in practice.

F.4 HYPERPARAMETERS

In experiments, we set the network hyperparameters as following.

Hyperparameters on Leduc Hold’em. The Leduc(5), Leduc(10) and Leduc(15) in our experiments
have 1.1×104 infosets (6×104 states), 3×105 (1.5×106 states) and 3×106 (2×107 states) infosets
respectively. We set k=3 as the default parameter in the provable robust sampling method on all such
games. For the small Leduc(5), we select b=100 as the default parameter in the mini-batch MCCFR ??,
which only samples 5.59% infosets in each iteration. For the larger Leduc(10) and Leduc(15), we select
default b=500, which visit (observe) only 2.39% and 0.53% infosets in each iteration. To train RSN and
ASN, we set the default embedding size for both neural networks as 16, 32, and 64 for Leduc(5), Leduc(10),
and Leduc(15) respectively. There are 256 samples will be used to update the gradients of parameters by
mini-batch stochastic gradient descent technique. We select Adam (Kingma & Ba, 2014) as the default
optimizer and LSTM with attention as the default neural architecture in all the experiments. The neural
networks only have 2608, 7424, and 23360 parameters respectively, which are much less than the number
of infosets. The default learning rate of Adam is βlr=0.001. A scheduler, who will reduce the learning
rate based on the number of epochs and the convergence rate of loss, help the neural agent to obtain a
high accuracy. The learning rate will be reduced by 0.5 when loss has stopped improving after 10 epochs.
The lower bound on the learning rate of all parameters in this scheduler is 10−6. To avoid the algorithm
converging to potential local minima or saddle points, we will reset the learning rate to 0.001 and help the
optimizer to obtain a better performance. θTbest is the best parameters to achieve the lowest loss after T
epochs. If average loss for epoch t is less than the specified criteria βloss=10−4 for RSN (set this parameter
as 10−5 for RSN), we will early stop the optimizer. We set βepoch=2000 and update the optimizer 2000
maximum epochs. For ASN, we set the loss of early stopping criteria as 10−5. The learning rate will be
reduced by 0.7 when loss has stopped improving after 15 epochs.

For NFSP in our experiment, we set the hyperparameters according to its original paper (Heinrich &
Silver, 2016). The neural network in NFSP had 1 hidden layer of 64 neurons and rectified linear activation.
The reinforcement and supervised learning rates were set to 0.1 and 0.005. Both neural networks were
optimized by vanilla stochastic gradient descent for every 128 steps in the game. The mini-batch sizes for
both neural networks were 128. The sizes of memories were 200k and 2m for reinforcement learning and
supervised learning respectively. we set the anticipatory parameter in NFSP to 0.1. The exploration in
ε-greedy policies started at 0.06 and decayed to 0.

Hyperparameters on HUNL. To solve HUNL(1) and HUNL(2), we sample 0.01% and 0.001% infosets
in each iteration. The batch size of training neural network is set to 100000. We prefer to using large
batch size, because gradient descent spends most of running time. Typically, larger batch size indicates
less number of gradient decent updates. We perform DNCFR under different number of embedding
sizes and the steps of gradient descent updates. The experiment results are presented in Figure 7. Other
hyperparameters in neural networks and optimizers are set to be the same with Leduc(15).

24

Under review as a conference paper at ICLR 2020

G ABS-CFR, DEEPSTACK, DOUBLE NEURAL CFR AND HUNL

0 20 40 60 80 100 120

Iteration

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Hu
be

r L
os

s

Preflop Loss of Auxiliary Network
Training Sample
Validation Sample

(a) Preflop loss of CFV Network

0 100 200 300 400 500

Iteration

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hu
be

r L
os

s

Flop Loss of Deep Counterfactual Network
Training Sample
Validation Sample

(b) Flop loss of CFV Network

0 200 400 600 800 1000 1200

Iteration

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Hu
be

r L
os

s

Turn Loss of Deep Counterfactual Network
Training Sample
Validation Sample

(c) Turn loss of CFV Network

Figure 9: Huber loss of three counterfactual value network in our implemented DeepStack. (a) Huber loss
of auxiliary network on preflop subgame, the training loss is 0.0000789 and the validation loss is 0.0000776
while they are 0.000053 and 0.000055 in original DeepStack. (b) Huber loss of deep counterfactual value
network on flop subgame, the training sample is 0.008 and the validation sample is 0.019 while they
are 0.008 and 0.034 in original DeepStack. (c) Huber loss of deep counterfactual value network on turn
subgame (contains last two rounds of HUNL), the training sample is 0.016 and the validation sample is
0.035 while they are 0.016 and 0.026 in original DeepStack. Specifically, the learning rate is decayed
in 200th iteration(iteration is equal to epoch here), therefore the huber loss in (b) and (c) decreased. To
balance the performance of both training and validation samples, we finally select the checkpoints that
have the lowest validation loss.

The game size of imperfect information HUNL is compared with Go (Silver et al., 2016) and her partial
observable property makes it very difficult. The article (Burch, 2017) gives a detailed analysis of this
problem from the perspective of both computational time and space complexity. To evaluate the proposed
method, we reimplement DeepStack (Moravcik et al., 2017), which is an expert-level artificial intelligence
in Heads-up No-Limit Texas Hold’em. DeepStack defeated professional poker players. The decision points
of Heads-up No-Limit Texas Hold’em exceed 10161 (Johanson, 2013). We provide the game rules of Texas
holdem in Appendix A.3.

In this section, we provided some details about our implementation, compared our agent with the original
DeepStack to guarantee the correctness of the implementation, and applied our double neural method on
the subgame of DeepStack.

G.1 DETAILS ABOUT ABS-CFR

ABS-CFR agent is an enhanced version of HITSZ LMW 2pn, whose previous version won the third prize
of the 2018 Annual Computer Poker Competition (ACPC) and has 2×1010 information sets. The ideas
of ABS-CFR agent is first abstract the full HUNL into the smaller abstract game and using CFR to solve
the abstracted game. The ABS-CFR using two kind-of abstractions: the first one is action abstraction
and the second is card abstraction. The action abstraction is using discretized betting model (Gilpin et al.,
2008), which can do fold, call, 0.5× pot raise, 1× pot raise, 2× pot raise, and 4× pot raise and all-in in
each decision node. The card abstraction is using domain knowledge that strategically similar states are
collapsed into a single state. In preflop we use lossless abstraction which has 169 buckets. In flop and turn,
we use potential-aware imperfect-recall abstraction with earth mover distance (Ganzfried & Sandholm,
2014), which has 10000 and 50000 buckets respectively. In the river, we use opponent cluster hand strength
abstraction (Johanson et al., 2013), which has 5000 buckets.

G.2 DETAILS ABOUT OUR IMPLEMENTATION OF DEEPSTACK

Because Alberta university didn’t release the source code of DeepStack for No-Limit Texas Hold’em, we
implemented this algorithm according to the original article (Moravcik et al., 2017). It should be noted
that the released example code 3 on Leduc Hold’em cannot directly be used on Heads-up No-Limit Texas
3 https://github.com/lifrordi/DeepStack-Leduc

25

Under review as a conference paper at ICLR 2020

Hold’em for at least three reasons: (1) The tony game Leduc Hold’em only has 2 rounds, 6 cards with
default stack size 5, which is running on a single desktop, while HUNL has four rounds, 52 cards and stack
size 20000 according to ACPC game rules. (2) Specifically, there are 55,627,620,048,000 possible public
and private card combinations for two players on HUNL (Johanson, 2013) and the whole game contains
about 10161 infosets, which makes the program should be implemented and run on a large-scale distributed
computing cluster. (3) The example code doesn’t contain the necessary acceleration techniques and parallel
algorithm for Texas Hold’em.

Our implementation follows the key ideas presented in the original DeepStack article by using the same
hyperparameters and training samples. To optimize the counterfactual value network on turn subgame
(this subgame looks ahead two rounds and contains both turn and river), we generate nine million samples.
Because each sample is generated by traversing 1000 iterations using CFR+ algorithm based on a random
reach probability, these huge samples are computation-expensive and cost 1500 nodes cluster (each node
contains 32 CPU cores and 60GB memory) more than 60 days. To optimize the counterfactual value
network on flop subgame (this subgame only looks ahead one round), we generate two million samples,
which costs about one week by using the similar computation resource. The auxiliary network on preflop
subgame is optimized based on ten million samples and costs 2 days. The whole implementation of
DeepStack costs us several months and hundreds of thousands of lines of codes.

G.3 VERIFY THE CORRECTNESS OF OUR IMPLEMENTATION

The overall DeepStack algorithm contains three ingredients: (1) computing strategy for the current public
state, (2) depth-limited Lookahead to the end of subgame rather than the end of the full game and using
counterfactual value network to inference the value of the leaf node in the subgame, (3) using action
abstraction technique to reduce the size of game tree.

To evaluate the strategy of imperfect information game, exploitability is usually used as the metric to
evaluate the distance between the strategy and Nash equilibrium in two-player zero-sum game. However,
in the large game, such as Heads-Up No-Limit Texas Holdem, computation of exploitability is expensive
because of its 10161 searching space.

We verified the correctness of our implementation from three different aspects: First, the logs of DeepStack
against professional poker players are released on the official website, which contains more than 40000
hand histories. From these logs, we counted the frequency of each action taken by DeepStack under
different private cards and used the normalized frequency as the estimated strategy of DeepStack. We
compared this estimated strategy with our reimplemented DeepStack. Figure 10 in Appendix G provided
the comparison results and demonstrated that our implementation leads to policies very close to what the
original DeepStack does. Second, we compared the huber loss of three deep counterfactual value networks.
Clearly, our implementation achieved a loss similar to the original paper. Third, our agent also played
against an enhanced version of HITSZ LMW 2pn, whose previous version won the third prize of the
2018 Annual Computer Poker Competition (ACPC). Our implementation can win HITSZ LMW 2pn 120
mbb/g.

26

Under review as a conference paper at ICLR 2020

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Alberta DeepStack Take Fold Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Our Agent Take Fold Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Alberta DeepStack Take Call Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Our Agent Take Call Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Alberta DeepStack Take Half Pot Raise Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Our Agent Take Half Pot Raise Probability

0.0

0.1

0.2

0.3

0.4

0.5

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Alberta DeepStack Take One Pot Raise Probability

0.0

0.2

0.4

0.6

0.8

1.0

A K Q J T 9 8 7 6 5 4 3 2

A
K

Q
J

T
9

8
7

6
5

4
3

2

Our Agent Take One Pot Raise Probability

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Comparison of action probability between Alberta’s DeepStack (Moravcik et al., 2017) (the left
column) and our reimplemented DeepStack (the right column).

27

	Introduction
	Background
	Double Neural Counterfactual Regret Minimization
	Modeling
	Recurrent Neural Network Representation with Attention
	Optimization Method
	Optimizing Current Strategy
	Optimizing Average Strategy

	Continual Improvement
	Overall Algorithm

	Efficient Training
	Robust Sampling Technique
	Mini-batch Technique

	Experiment
	Settings and Metric
	Ablation Studies
	Comparison and Space-Time Trade-Off
	Heads-up No-Limit Texas Hold'em

	Related Works and Discussion
	Conclusions
	Game Rules
	One-Card Poker
	Leduc Hold'em
	Heads-Up No-Limit Texas Hold'em

	Definition of Extensive-Form Games
	Detailed Definitions and Notations
	Explanation by Example
	Detailed Definition about Strategy and Nash Equilibrium

	Additional Experiment Results
	Theoretical Analysis
	Reach Probability and Posterior Probability
	Robust Sampling, Outcome Sampling and External Sampling
	Unbiased Mini-Batch MCCFR

	Sequential Representation and Recurrent Neural Network with Attention
	Optimizing Neural Representation and Implementation
	Code for DNCFR Framework
	Code for Neural Networks
	Code for Mini-Batch Robust Sampling MCCFR
	Hyperparameters

	ABS-CFR, DeepStack, Double Neural CFR and HUNL
	Details about ABS-CFR
	Details about Our Implementation of DeepStack
	Verify the Correctness of Our Implementation

