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ABSTRACT

Deep neural networks have had unprecedented success in computer vision, natural
language processing, and speech largely due to the ability to search for suitable
task algorithms via differentiable programming. In this paper, we borrow ideas
from Kolmogorov complexity theory and normalizing flows to explore the possi-
bilities of finding arbitrary algorithms that represent data. In particular, algorithms
which encode sequences of video image frames. Ultimately, we demonstrate neu-
ral video encoded using convolutional neural networks to transform autoregressive
noise processes and show that this method has surprising cryptographic analogs
for information security.

In algorithmic information theory, the Kolmogorov complexity of an object is the length of the short-
est computer program that, without additional input, produces the object as output (Ming & Paul,
2008). For example, a long sequence of ones contains very little information because a short pro-
gram

for i← 0, n do print 1

can output the data. Similarly, the transcendental number π = 3.1415 . . . is an infinite sequence
of seemingly random decimal digits but contains only a small amount of information since there
exists a very short program that produces the consecutive digits of π forever (Bailey et al., 1997).
While this idea of exchanging data with computation is theoretically intriguing, from a practical
point of view, explicit specification of instructions to obtain some target representation is generally
an intractable approach for arbitrary data.

Recently, however, artificial intelligence had broad success in computer vision, natural language
processing, and speech largely due to the ability to search for suitable task algorithms using differ-
entiable programming together with large datasets to obtain abstract computations in the form of
neural networks. In this paper, we turn the process around and leverage this same differentiable pro-
gramming approach to find abstract computations which represent data. That is, we seek algorithms
which encode arbitrary information for storage and retrieval. In particular, we demonstrate methods
for the encoding of sequential video data within the weights of convolutional neural networks.

In the simplest formulation, video data, X , is treated as an finite ordered sequence of image frames

X = {x0, x1, . . . , xN} (1)

and we seek an autoregressive computation of the form

yi+1 = fθ(yi) (2)

where y0 ← x0 and f is some convolutional neural network parametrized by weights θ such that
yi ≈ xi . It is possible that f can be trained using a self-supervised learning approach where
consecutive image frames form training examples and the sum-of-squares, ‖yi−xi‖2, is minimized.
That is, during training, f learns a mapping from xi to xi+1, or rather, learns to advance the current
frame by one step. The idea is somewhat similar to conventional autoencoders (Hinton & Zemel,
1993), but there, f is trained with the identity mapping, from xi on to xi. The catch here is that after
training, during recall, f does not receive xi as input but instead yi from the previous evaluation.
Since yi only approximates xi, reconstruction error accumulates at each iteration of eq. 2 until
sequence reproduction fails1.

The natural inclination at this point is to extend the approach to train over the full sequence by
evaluating eq. 2 N times to produce {y1, . . . , yN} and minimizing the mean squared error over the

1This problem is associated with teacher forcing. See, e.g., Goodfellow et al. (2016).
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entire sequence at each training iteration. This way, how the network is trained and how the sequence
is recalled post-training are congruent. Unfortunately, for sequences beyond a few elements, this is
not tractable as long unrolled gradients readily vanish or explode and there is no opportunity for
batching which significantly limits training performance and scalability.

The situation can be salvaged by adopting a curriculum learning strategy (Bengio et al., 2009)
whereby the training sequence length is slowly increased after achieving some nominal loss objec-
tive over shorter intervals. It is important to note that, because CNNs have no recurrent hidden state,
this approach can be successfully batched during training over random subsequences of X . There-
fore, modulating the training subsequence length to one yields the aforementioned self-supervised
learning approach whereas a training sequence length equal to the number of frame elements yields
the full sequence loss. While this batched curriculum learning strategy does mitigate challenges
associated with teacher forcing, gradients can still be temperamental for larger training sequence
lengths necessitating the use of gradient clipping and learning rate scaling (You et al., 2017; 2019).

An interesting situation occurs when xi = xj but f(xi) 6= f(xj). That is, there exists a non-
unique mapping or sequence ambiguity which is not resolvable from a purely supervised learning
point of view since a unique input evaluates to multiple output. It is perhaps surprising to some
readers that eq. 2 above is capable of handling this situation successfully, despite CNNs having no
recurrent hidden state. Due to the lack of teacher forcing and high dimensionality of the data, the
network learns to encode (and decode) state information within the pixels thus willfully incurring a
local reconstruction penalty in order to facilitate sequence completion. The success of the batched
sequence learning strategy depends on the nature of the ambiguity.

Just as the state of a dynamical system is not well defined by a single observation, often encoding is
facilitated by sequence dilation of the learned mapping which more uniquely defines the trajectory of
sequence evolution. A single frame mapping from xi to xi+1 exhibits a dilation of d = 1 and can be
naturally extended to d = 2 by channel concatenation to learn a computation of the form [yi; yi+1] =
f([yi−1; yi]) with dimension (2C) × H ×W ; and so on.2 This helps to individuate samples and
thereby allay the need for contextual sequence information to achieve recall. For example, the
alternating sequence ambiguity in {A,B,A,C,A,D} is easily resolved by dilation d = 2 since all
training examples, f(AB)→ BA, f(BA)→ AC and so on, are unique.

The KTH (Schüldt et al., 2004) and DAVIS17 (Pont-Tuset et al., 2017) datasets are used to inves-
tigate the methods described above. KTH data provide a simple initial investigative platform with
monochromatic videos featuring simple repetitious actions performed by humans (clapping, hand
waving, punching, etc) against a static background while the DAVIS17 data features multi-channel
RGB capture of generic action scenes across a variety of dynamic environments (surfing, breakdanc-
ing, paragliding, etc). See Figure 1 and Figure 2 for encoding examples using a simple autoencoder
style network defined in (1) and applied according to eq. (2). Although compression and fidelity are
peripheral considerations (see Wu et al. (2018) for full treatment), the examples presented generally
yield faithful reproductions according to a multi-scale similarly measure (Wang et al., 2003) and
achieve respectable compression ratios of 10x - 15x simply by modulating the number of convolu-
tional layers in the CNN. Compression ratios can be further improved by applying mixed precision
training techniques (Micikevicius et al., 2017).

A variety of practical engineering considerations arise during implementation. For example, it is
possible to analyze sequence loss during post-production and inject a ground truth frame at a par-
ticular deterioration threshold to renew the recall process; analogous to the use of key-frames in
standard compression algorithms. It is also possible to train additional networks which upscale the
base reproduction. This upscaling approach has advantages in controlling network parameter growth
(and hence the compression ratio) as two convolution layers each with 32 filters have only half the
parameters compared to a single layer of 64 filters. In this way, eq. 2 is written as the composition
of two functions

yi+1 = fθ(yi)

y∗i = fθ∗(yi)
(3)

where fθ advances the sequence and the subsequent application of fθ∗ bolsters fidelity. From this
point of view, fθ∗ performs the role of denoising autoencoder (Vincent et al., 2008) which strives to

2In some ways, dilation is akin to the order of an autoregressive model

2



Under review as a conference paper at ICLR 2020

Figure 1: Video encoding reproductions at 128x128 pixel resolution from the KTH dataset. (A) A
reproduction of person15 handclapping d4 using 128 convolutional filters per layer which, although
not parameter efficient, achieve high fidelity after 99800 training epochs at full FP32 precision. (B)
A reproduction of person15 handwaving d4 using only 32 convolutional filters per layer and dilation
d = 2 after 363947 training epochs with mixed FP16 precision. This encoding achieves a compres-
sion ratio of 27x but at the cost of some fidelity. (C) Finally, a reproduction of person25 boxing d1
using 32 convolution filters per layer and dilation d = 2 after 473701 training epochs with FP16
precision.
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Figure 2: Video encoding reproductions from the DAVIS’17 dataset. (A) Rhino scene reproduction
at 3x128x128 pixel resolution with 128 convolutional filters per layer and 200000 training epochs.
(B) Miami surf scene recalled at 3x128x128 pixel resolution using 128 filters per layer and 77000
training epochs. (C) Recalled frames at 3x128x128 pixel resolution from the Rollerblade scene
using 128 convolutional filters per layer and 250000 training steps. (D) Breakdance reproduction
at 120p with pixel resolution 3x120x213 using 48 convolutional filters per layer at 85000 training
epochs.
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Algorithm 1 Pseudo definition of the autoencoder style network used throughout this work and
applied as defined in eq. (2). All layers define nconv convolutional filter channels of size 3 × 3.
The first and final layers takes C × d number of input and output channels respectively where C is
the number of image channels and d is the sequence dilation. Where necessary, stride and padding
are used to maintain dimensional equality of input and output tensors.

function NETWORK(nconv)
x = relu(Conv2d(x))
x = relu(Conv2d(x))
x = relu(Conv2d(x))

. upsample
x = relu(Conv2d(x))
x = relu(ConvTranspose2d(x))

. upsample
x = relu(Conv2d(x))
x = ConvTranspose2d(x)
return x

Figure 3: Video encoding reproduction of the DAVIS’17 Parkour scene at 120p using the upscaling
approach described by eq. 3 with M = 1. (A) Frames, yi, produced by the base network fθ, with 32
convolution filters per layer, which advances the sequence at each application. (B) Upscaled frames,
y∗i , produced by denosing autoencoder, fθ∗ , with 32 convolution filters per layer. (C) Associated
ground truth frames, xi.

form a ’repaired’ output from ’corrupted’ input. This allows computational demands during recall
to be modulated on a frame-by-frame basis according to platform limitations, real-time constraints,
and so on. This application of upscaling is shown in Figure 3.

From here, we can generalize further and leverage the recent advancements in normalizing flows
whereby a simple initial density is transformed into a more complex one by applying a sequence of
transformations until a desired level of complexity is attained (Tabak & Turner, 2013; Dinh et al.,
2014; Jimenez Rezende & Mohamed, 2015; Kingma et al., 2016). The density qK(z) obtained by
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successively transforming a random variable z0 with distribution q0 through a chain of K transfor-
mations fk is:

zK = fK ◦ . . . ◦ f2 ◦ f1(z0) (4)
where eq. (4) is shorthand for the composition fM (fM−1(. . . f1(z

0))). In this way, the initial den-
sity is said to ’flow’ through the sequence of mappings. For our purposes, the original sequence X
defined in (1) can be seen as just an arbitrary random noise process in some high-dimensional space.
Rather than model the process X directly, instead, it can be approximated, to some acceptable level
of fidelity, through a chain of transformations over some known latent process, Z = {z0, . . . , zN}.
That is, given a random process, Z, defined by g, we have

zi+1 = g(zi)

zji = fj ◦ . . . ◦ f2 ◦ f1(zi)
(5)

where zji ≈ xi represents j consecutive transformations applied to zi, and where each fj is a
deep neural network defined by Algorithm 1. These transformations are simply a series of bijective
mappings (under the given restricted domain and range) and therefore alleviate the aforementioned
sequence training challenges associated with realizing computations of the form defined by eq. (2).
The question then becomes, what is g?

The choice of g must be some random but deterministic high dimensional process with the require-
ment that ∀zi, zj ∈ Z, zi 6= zj . That is, the elements of Z are unique such that the process is
noncyclic in order to support a bijective mapping. A key insight is that given some g defined by Al-
gorithm 1 and applied according to eq. (5), the process Z is completely defined by the starting point,
z0. Therefore, from the point of view of Kolmogorov complexity, {z0, g} is a random computation
for the production of the sequence, Z, and normalizing flows with differential programming provide

the framework to transform this computation: X
f←− {z00 , g}. From a compiler point of view, zj is

simply an abstract intermediate representation (IR).

A simple recipe for realizing g is to choose any two random points z0, z′ ∈ RC×H×W and learn
parameters, φ, such that N recursive applications of gφ starting with z0 yields z′. Although, in
practice, after sufficient number of training iterations of gφ, it does not matter if zN computed
according to eq. (5) does not equal z′ rather it is only required that gφ satisfy the noncyclic random
walk properties described above. This recipe for g is described in Algorithm 2 and demonstrated
in Figure 4. The full workflow of transforming random process, Z, generated by g into the target
sequence X according to eq. (5) is shown in Figure 5.

Algorithm 2 Simple recipe for realizing a high-dimensional autoregressive noise process.
function FORWARD(g,z,n) . defined according to eq. (5)

for i← 0, n do
z ← g(z)

return z

N ←length(X)
z0 = uniform(C ×H ×W ) . samples from a uniform distribution over the interval [0, 1)
z′ = uniform(C ×H ×W )
gφ ← NETWORK(nconv) . described in Algorithm 1

. determine φ that minimizes the ‖z − z′‖2
for i← 0, T do

z ← FORWARD(gφ, z0, N )
l← ‖z − z′‖2
δ← ∂l

∂φ

φ← step(φ,δ)

CRYPTOGRAPHIC CONSIDERATIONS

The neural video encoding process shares many analogs with symmetric cryptographic algorithms.
In general, cryptography is the body of techniques for secure communications focused on the con-

6



Under review as a conference paper at ICLR 2020

Figure 4: Visualizing the training of a high-dimensional autoregressive noise process. The compu-
tation, g, as defined is a simple convolutional neural network according to Algorithm 1 and trained
as defined by Algorithm 2. In this instance, gφ was initialized with nconv = 8. To help visualize
the learning process, distance matrices are calculated over the elements of Z at various stages of
training. After 17000 epochs of training, the distance matrix confirms that the elements generated
by gφ are sufficient to support bijective transformation.

struction of protocols that prevent third parties or the public from reading private information. A
protocol defines a system of information exchange which includes rules, syntax, semantics and syn-
chronization of communication. Moreover, a cryptographic protocol usually focuses on various
aspects of information security such as confidentiality, data integrity and authentication. Cryptogra-
phy is often synonymous with encryption which is the conversion or encoding of information from
a coherent readable state to an incoherent state of apparent randomness and the reverse process of
decryption. A cipher is defined by a pair of algorithms specifying an encryption and decryption
process controlled by the use of an auxiliary private key which is required to decrypt the associated
data. A key must be selected before using a cipher to encrypt data and without the key, it should
be extremely difficult or impossible to decrypt the contents. When the same key is used for both
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Figure 5: Neural video encoding via normalizing flows of the DAVIS’17 Breakdance scene at 120p.
(A) Visualizations of the variables {z030, z062, z081} from some random autoregressive noise process,
gφ, having nconv = 8 and procured according to Algorithm 2 having 10000 training epochs. (B)
The variables {z130, z162, z181} as computed by eq.(5) where z1i = fθ1(z

0
i ) = fθ1 ◦ gφ(z0i−1) and

fθ1 is configured with nconv = 32 having been trained for 30000 epochs. (C) The variables
{z230, z262, z281} computed as z2i = fθ2(z

1
i ) = fθ2 ◦ fθ1(z0i ) with fθ2 again having nconv = 32

and trained for 30000 epochs. (D) Ground truth sequence elements {x30, x62, x81} from the unen-
coded data, X

encryption and decryption, the cipher defines a symmetric key algorithm.3 Symmetric cryptography
deals with the efficient construction of pseudo random functions which form the building blocks of
symmetric algorithms and have the form x = h(z) with the following properties (Ramkumar, 2014)

1. Given x = h(z), small changes to z produce output x′ unrelated to x.

2. Given z, there is no way to make reliable predictions regarding any part of x.

3. Given x, the easiest way to find z′ that satisfies x = h(z′) is brute-force search.

4. The fastest way to determine preimages x and x′ satisfying h(x) = h(x′) is brute-force
search.

3See Paar & Pelzl (2010), Schneier (2015), and Ferguson et al. (2010) for additional discussion.
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From a high-level perspective, it is easy to identify latent variable Z and target sequence X as the
encrypted and unencrypted data respectively, while the variable, z00 performs the role of shared key.
The encryption algorithm is defined by the realization of a generator function, g, which consumes z00
to produce Z, and the decryption algorithm is defined by the application of learned transformations,
F = {fj}Mj=1, applied according to eq. (5). Together, the neural video components, {g, F}, form
a neural cipher and with shared use of key, z00 , define a symmetric cryptographic algorithm. An
informal analysis indicates the necessary alignment with the properties of pseudo random functions.
For a particular instance of gφ, changes to z00 yield unrelated sequences Z ′ and, by definition, the
random values of Z alone provide no information regarding X . Moreover, as black box functions,
given some target element xi, the only way to find z′ satisfying xi = F (z′) is indeed brute-force
search. It is natural to go further and consider the significantly more empowered situation in which
an adversary could perform differential calculations over F to optimize the search for z′ which
minimizes ‖xi − F (z′)‖. Effectively, this means the decryption algorithm and a portion of the un-
encrypted data have been compromised. Even so, without the associated generator, g, it remains
very difficult or impossible to resolve additional content since despite having obtained z′, it is not
possible to make reliable predictions regarding any part of x. Finally, an example of these properties
is provided in Figure 6 demonstrating a failed attempt to decrypt an encoded video with an imposter
key. In this situation, both the encryption and decryption algorithms have been compromised but the
adversary has no knowledge of Z or X . A robust cryptographic algorithm must remain secure even
if everything about the implementation, except the key, becomes available to an adversary.4 Indeed,
some work has suggested that CNNs retain accurate image information with different degrees of
geometric and photometric invariance(Mahendran & Vedaldi, 2014). However, the authors attempts
at extracting meaningful content using total variation based approaches were unsuccessful since
having the encryption and decryption algorithms alone provides little basis for the construction of
a loss function to minimize (see also Ulyanov et al. (2017)). This discussion is, of course, not in-
tended to provide a thorough cryptographic analysis of neural video encoding but rather to facilitate
understanding of various properties and highlight the potential for information security.

RELATED WORK

The storage of information in neural networks has a rich history (Kohonen & Lehtiö, 1989). Early
parallel models of associative memory were used in the investigation of long-term memory systems
in cognitive science probing questions of how information is represented in the brain and what kinds
of processes operate on it (Anderson & Hinton, 1989). Some of this early work was motivated by
holography as a mechanism for distributed associative recall (Willshaw, 1989) made possible by
Nobel prize wining advancements in the development of the holographic method by Gabor. Inter-
estingly, as highlighted by Hinton (1989) in the same body of work, Marr, Palm, and Poggio (Marr
et al., 1978) were particularly interested in equations of the form Cn+1 = σ(L(Cn)) where L is
a linear operator and σ a nonlinear function and stressed the importance of understanding their be-
havior. These associative memory models continue to garner some attention (Karbasi et al., 2013;
Mazumdar & Rawat, 2015)

Next frame prediction in moving imagery and video data shares similar motivations with neural
video encoding but differ in ultimate objective. See Lotter et al. (2017) for discussion and relevant
references. Although observed but not highlighted, video encoding networks trained on KTH data
for simple repetitious actions often exhibited the ability to generalize beyond encoded sequence for
short periods and so demonstrating a limited capacity for what could be argued as generalization
versus pure recall.

The application of neural networks to cryptographic problems is not new (Kanter et al., 2002;
Klimov et al., 2002; Abadi & Andersen, 2016) and the synergies between machine learning and
cryptography have been appreciated for some time (Rivest, 1993). Many applications of machine
learning to cryptography are realized through cryptanalysis tools and majority of neural network
applications have been orchestrated at the bit level and around anti-symmetric public protocols as
in (Kanter et al., 2002). Neural video encoding defines a simple symmetric protocol operating in
situ at the pixel and hence leverages the native advantages of distributed representation. Although,

4This is known as Kerckhoffs’s principle and (Claude) Shannon’s maxim
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Figure 6: An attempt to decrypt (i.e. recall) an encoded video using an imposter key. (A) Key z00 and
imposter key z′00 . (B) On the left, z00 and gφ applied to generate the appropriate keys {z030, z062, z081}
and decrypted through application of F . On the right, the imposter key, z′00 , with the same gφ yields
an invalid key stream {z′030, z′062, z′081} which decrypt to incoherent states under F .

visual cryptographic methods applied to images directly have existed for some time as well (Naor
& Shamir, 1995) (see also Punithavathi & Subbiah (2017) for recent survey).

CONCLUSION

This work demonstrates encoding methods for the storage and retrieval of video data with convolu-
tional neural networks. There remain many open considerations but ultimately the ability to realize
computations of arbitrary complexity which represent data is clear. Moreover, these computations
are abstract representations of data and therefore exhibit desirable synergies with cryptographic
systems underpinning confidentiality to facilitate information security. Recent advancements in all-
optical neural networks (Lin et al., 2018; Zuo et al., 2019) motivate the future exploration of com-
bining past holographic based associative memories efforts with the encoding methods presented
here to create potential new forms of optical memory and beyond.
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