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ABSTRACT

Federated learning involves training statistical models in massive, heterogeneous
networks. Naively minimizing an aggregate loss function in such a network may
disproportionately advantage or disadvantage some of the devices. In this work,
we propose q-Fair Federated Learning (q-FFL), a novel optimization objective
inspired by fair resource allocation in wireless networks that encourages a more
fair (i.e., more uniform) accuracy distribution across devices in federated networks.
To solve q-FFL, we devise a communication-efficient method, q-FedAvg, that
is suited to federated networks. We validate both the effectiveness of q-FFL and
the efficiency of q-FedAvg on a suite of federated datasets with both convex and
non-convex models, and show that q-FFL (along with q-FedAvg) outperforms
existing baselines in terms of the resulting fairness, flexibility, and efficiency.

1 INTRODUCTION

Federated learning is an attractive paradigm for fitting a model to data generated by, and residing on,
a network of remote devices (McMahan et al., 2017). Unfortunately, naively minimizing an aggregate
loss in a large network may disproportionately advantage or disadvantage the model performance on
some of the devices. Indeed, although the accuracy may be high on average, there is no accuracy
guarantee for individual devices in the network. This is exacerbated by the fact that the data are often
heterogeneous in federated networks both in terms of size and distribution, and model performance
can thus vary widely. In this work, we therefore ask: Can we devise an efficient federated optimization
method to encourage a more fair (i.e., more uniform) distribution of the model performance across
devices in federated networks?

There has been tremendous recent interest in developing fair methods for machine learning (see, e.g.,
Cotter et al., 2019; Dwork et al., 2012). However, current approaches do not adequately address
concerns in the federated setting. For example, a common definition in the fairness literature is to
enforce accuracy parity between protected groups1 (Zafar et al., 2017a). For devices in massive
federated networks, however, it does not make sense for the accuracy to be identical on each device
given the significant variability of data in the network. Recent work has taken a step towards
addressing this by introducing good-intent fairness, in which the goal is instead to ensure that the
training procedure does not overfit a model to any one device at the expense of another (Mohri et al.,
2019). However, the proposed objective is rigid in the sense that it only maximizes the performance
of the worst performing device/group, and has only be tested in small networks (for 2-3 devices).
In realistic federated learning applications, it is natural to instead seek methods that can flexibly
trade-off between overall performance and fairness in the network, and can be implemented at scale
across hundreds to millions of devices.

In this work, we propose q-FFL, a novel optimization objective that addresses fairness issues in
federated learning. Inspired by work in fair resource allocation for wireless networks, q-FFL
minimizes an aggregate reweighted loss parameterized by q such that the devices with higher loss
are given higher relative weight. We show that this objective encourages a device-level definition
of fairness in the federated setting, which generalizes standard accuracy parity by measuring the

1While fairness is typically concerned with performance between “groups”, we define fairness in the federated
setting at a more granular scale in terms of the devices in the network. We note that devices may naturally
combine to form groups, and thus use these terms interchangeably in the context of prior work.
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degree of uniformity in performance across devices. Adaptively minimizing such a modified objective
results in a flexible framework in which the objective can be tuned depending on the desired amount
of fairness. In addition, we propose a lightweight and scalable distributed method, q-FedAvg, to
solve q-FFL in massive federated networks. Our distributed method carefully accounts for important
characteristics of the federated setting such as communication-efficiency and low participation of
devices (Bonawitz et al., 2019; McMahan et al., 2017). Through extensive experiments on federated
datasets with both convex and non-convex models, we demonstrate the fairness and flexibility of
q-FFL and the efficiency of q-FedAvg compared with existing baselines. In terms of fairness, q-FFL
is able to reduce the variance of accuracies across devices by 45% on average while maintaining the
same overall average accuracy. In terms of efficiency, our distributed method, q-FedAvg, is capable
of solving the proposed objective orders-of-magnitude more quickly than other baselines.

2 RELATED WORK

Fairness in Resource Allocation. Fair resource allocation has been extensively studied in fields such
as network management (Ee & Bajcsy, 2004; Hahne, 1991; Kelly et al., 1998; Neely et al., 2008) and
wireless communications (Eryilmaz & Srikant, 2006; Nandagopal et al., 2000; Sanjabi et al., 2014;
Shi et al., 2014). In these contexts, the problem is defined as allocating a scarce shared resource, e.g.,
communication time or power, among many users. In these cases, directly maximizing utilities such
as total throughput may lead to unfair allocations where some users receive poor service. As a service
provider, it is important to improve the quality of service for all users while maintaining overall
throughput. For this reason, several popular fairness measurements have been proposed to balance
between fairness and total throughput, including Jain’s index (Jain et al., 1984), entropy (Rényi et al.,
1961), max-min/min-max fairness (Radunovic & Le Boudec, 2007), and proportional fairness (Kelly,
1997). A unified framework is captured through α-fairness (Lan et al., 2010; Mo & Walrand, 2000),
in which the network manager can tune the emphasis on fairness by changing a single parameter, α.

To draw an analogy between federated learning and the problem of resource allocation, one can think
of the global model as a resource that is meant to serve the users (or devices). In this sense, it is
natural to ask similar questions about the fairness of the service that users receive and use similar
tools to promote fairness. Despite this, we are unaware of any works that use α-fairness from resource
allocation to modify objectives in machine learning. Inspired by the α-fairness metric, we propose a
similarly modified objective, q-Fair Federated Learning (q-FFL), to encourage a more fair accuracy
distribution across devices in the context of federated training. Similar to the α-fairness metric, our
q-FFL objective is flexible enough to enable trade-offs between fairness and other traditional metrics
such as accuracy by changing the parameter q. In Section 4, we show empirically that the use of
q-FFL as an objective in federated learning enables a more uniform accuracy distribution across
devices—significantly reducing variance while retaining the average accuracy.

Fairness in Machine Learning. Fairness is a broad topic that has received much attention in the
machine learning community, though the goals often differ from that described in this work. Indeed,
fairness in machine learning is typically defined as the protection of some specific attribute(s). Two
common approaches are to preprocess the data to remove information about the protected attribute, or
to post-process the model by adjusting the prediction threshold after classifiers are trained (Feldman,
2015; Hardt et al., 2016). Another set of works optimize an objective subject to some fairness
constraints during training time (Agarwal et al., 2018; Cotter et al., 2019; Hashimoto et al., 2018;
Woodworth et al., 2017; Zafar et al., 2017a;b; Dwork et al., 2012). Our work also enforces fairness
during training, although we define fairness as the uniformity of the accuracy distribution across
devices in federated learning (Section 3), as opposed to the protection of a specific attribute. Although
some works define accuracy parity to enforce equal error rates among specific groups as a notion of
fairness (Zafar et al., 2017a; Cotter et al., 2019), devices in federated networks may not be partitioned
by protected attributes, and our goal is not to optimize for identical accuracy across all devices. Cotter
et al. (2019) use a notion of ‘minimum accuracy’, which is conceptually similar to our goal. However,
it requires one optimization constraint for each device, which would result in hundreds to millions of
constraints in federated networks.

In federated settings, Mohri et al. (2019) recently proposed a minimax optimization scheme, Agnostic
Federated Learning (AFL), which optimizes for the performance of the single worst device. This
method has only been applied at small scales (for a handful of devices). Compared to AFL, our
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proposed objective is more flexible as it can be tuned based on the desired amount of fairness; AFL
can in fact be seen as a special case of our objective, q-FFL, with large enough q. In Section 4, we
demonstrate that the flexibility of our objective results in significantly better accuracy vs. fairness
trade-offs than AFL, and that q-FFL can also be solved at scale more efficiently.

Federated Optimization. Federated learning faces challenges such as expensive communication,
variability in systems environments in terms of hardware or network connection, and non-identically
distributed data across devices (Li et al., 2019). In order to reduce communication and tolerate het-
erogeneity, optimization methods must be developed to allow for local updating and low participation
among devices (McMahan et al., 2017; Smith et al., 2017). We incorporate these key ingredients
when designing methods to solve our q-FFL objective efficiently in the federated setting (Section 3.3).

3 FAIR FEDERATED LEARNING

In this section, we first formally define the classical federated learning objective and methods, and
introduce our proposed notion of fairness (Section 3.1). We then introduce q-FFL, a novel objective
that encourages a more fair (uniform) accuracy distribution across all devices (Section 3.2). Finally,
in Section 3.3, we describe q-FedAvg, an efficient distributed method to solve the q-FFL objective
in federated settings.

3.1 PRELIMINARIES: FEDERATED LEARNING, FEDAVG , AND FAIRNESS

Federated learning algorithms involve hundreds to millions of remote devices learning locally on
their device-generated data and communicating with a central server periodically to reach a global
consensus. In particular, the goal is typically to minimize:

min
w
f(w) =

m∑
k=1

pkFk(w) , (1)

where m is the total number of devices, pk ≥ 0, and
∑
k pk = 1. The local objective Fk’s can be

defined by empirical risks over local data, i.e., Fk(w) = 1
nk

∑nk

jk=1 ljk(w), where nk is the number
of samples available locally. We can set pk to be nk

n , where n =
∑
k nk is the total number of

samples to fit a traditional empirical risk minimization-type objective over the entire dataset.

Most prior work solves (1) by sampling a subset of devices with probabilities pk at each round,
and then running an optimizer such as stochastic gradient descent (SGD) for a variable number
of iterations locally on each device. These local updating methods enable flexible and efficient
communication compared to traditional mini-batch methods, which would simply calculate a sub-
set of the gradients (Stich, 2019; Wang & Joshi, 2018; Woodworth et al., 2018; Yu et al., 2019).
FedAvg (McMahan et al., 2017), summarized in Algorithm 2 in Appendix D.1, is one of the leading
methods to solve (1) in non-convex settings. The method runs simply by having each selected device
apply E epochs of SGD locally and then averaging the resulting local models.

Unfortunately, solving problem (1) in this manner can implicitly introduce highly variable perfor-
mance between different devices. For instance, the learned model may be biased towards devices
with larger numbers of data points, or (if weighting devices equally), to commonly occurring devices.
More formally, we define our desired fairness criteria for federated learning below.

Definition 1 (Fairness of performance distribution). For trained models w and w̃, we informally say
that model w provides a more fair solution to the federated learning objective (1) than model w̃ if the
performance of model w on the m devices, {a1, . . . am}, is more uniform than the performance of
model w̃ on the m devices.

In this work, we take ‘performance’, ak, to be the testing accuracy of applying the trained model w
on the test data for device k. There are many ways to mathematically evaluate the uniformity of the
performance. In this work, we mainly use the variance of the performance distribution as a measure
of uniformity. However, we also explore other uniformity metrics, both empirically and theoretically,
in Appendix A.1. We note that a tension exists between the fairness/uniformity of the final testing
accuracy and the average testing accuracy across devices. In general, our goal is to impose more
fairness/uniformity while maintaining the same (or similar) average accuracy.

3



Under review as a conference paper at ICLR 2020

Remark 2 (Connections to other fairness definitions). Definition 1 targets device-level fairness,
which has finer granularity than the classical attribute-level fairness such as accuracy parity (Zafar
et al., 2017a). We note that in certain cases where devices can be naturally clustered into groups
with specific attributes, our definition can be seen as a relaxed version of accuracy parity, in that we
optimize for similar but not necessarily identical performance across devices.

3.2 THE OBJECTIVE: q-FAIR FEDERATED LEARNING (q-FFL)

A natural idea to achieve fairness as defined in (1) would be to reweight the objective—assigning
higher weights to devices with poor performance, so that the distribution of accuracies in the
network shifts towards more uniformity. Note that this reweighting must be done dynamically, as the
performance of the devices depends on the model being trained, which cannot be evaluated a priori.
Drawing inspiration from α-fairness, a utility function used in fair resource allocation in wireless
networks, we propose the following objective. For given local non-negative cost functions Fk and
parameter q > 0, we define the q-Fair Federated Learning (q-FFL) objective as:

min
w

fq(w) =

m∑
k=1

pk
q + 1

F q+1
k (w) , (2)

where F q+1
k (·) denotes Fk(·) to the power of (q+1). Here, q is a parameter that tunes the amount of

fairness we wish to impose. Setting q = 0 does not encourage fairness beyond the classical federated
learning objective (1). A larger q means that we emphasize devices with higher local empirical
losses, Fk(w), thus imposing more uniformity to the training accuracy distribution and potentially
inducing fairness in accordance with Definition 1. Setting fq(w) with a large enough q reduces to
classical max-min fairness (Mohri et al., 2019), as the device with the worst performance (largest
loss) will dominate the objective. We note that while the (q+1) term in the denominator in (2) may
be absorbed in pk, we include it as it is standard in the α-fairness literature and helps to ease notation.
For completeness, we provide additional background on α-fairness in Appendix C.

As mentioned previously, q-FFL generalizes prior work in fair federated learning (AFL) (Mohri et al.,
2019), allowing for a flexible trade-off between fairness and accuracy as parameterized by q. In our
theoretical analysis (Appendix A), we provide generalization bounds of q-FFL that generalize the
learning bounds of the AFL objective. Moreover, based on our fairness definition (Definition 1), we
theoretically explore how q-FFL results in more uniform accuracy distributions with increasing q.
Our results suggest that q-FFL is able to impose ‘uniformity’ of the test accuracy distribution in
terms of various metrics such as variance and other geometric and information-theoretic measures.

In our experiments (Section 4.2), on both convex and non-convex models, we show that using the
q-FFL objective, we can obtain fairer/more uniform solutions for federated datasets in terms of both
the training and testing accuracy distributions.

3.3 THE SOLVER: FEDAVG-STYLE q-FAIR FEDERATED LEARNING (q-FEDAVG)

In developing a functional approach for fair federated learning, it is critical to consider not only what
objective to solve but also how to solve such an objective efficiently in a massive distributed network.
In this section, we provide methods to solve q-FFL. We start with a simpler method, q-FedSGD,
to illustrate our main techniques. We then provide a more efficient counterpart, q-FedAvg, by
considering local updating schemes. Our proposed methods closely mirror traditional distributed
optimization methods—mini-batch SGD and federated averaging (FedAvg)—but with step-sizes
and subproblems carefully chosen in accordance with the q-FFL problem (2).

Achieving variable levels of fairness: tuning q. In devising a method to solve q-FFL (2), we begin
by noting that it is crucial to first determine how to set q. In practice, q can be tuned based on the
desired amount of fairness (with larger q inducing more fairness). As we describe in our experiments
(Section 4.2), it is therefore common to train a family of objectives for different q values so that a
practitioner can explore the trade-off between accuracy and fairness for the application at hand.

One concern with solving such a family of objectives is that it requires step-size tuning for every
value of q. In particular, in gradient-based methods, the step-size inversely depends on the Lipschitz
constant of the function’s gradient, which will change as we change q. This can quickly cause the
search space to explode. To overcome this issue, we propose estimating the local Lipschitz constant
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Algorithm 1 q-FedAvg

1: Input: K, E, T , q, 1/L, η, w0, pk, k = 1, · · · ,m
2: for t = 0, · · · , T − 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with prob. pk)
4: Server sends wt to all selected devices
5: Each selected device k updates wt for E epochs of SGD on Fk with step-size η to obtain w̄t+1

k
6: Each selected device k computes:

∆wtk = wt − w̄t+1
k

∆t
k = F qk (wt)∆wtk

htk = qF q−1
k (wt)‖∆wtk‖2 + LF qk (wt)

7: Each selected device k sends ∆t
k and htk back to the server

8: Server updates wt+1 as:

wt+1 = wt −
∑
k∈St

∆t
k∑

k∈St
htk

9: end for

for the family of q-FFL objectives by using the Lipschitz constant we infer via grid search on just
one q (e.g., q = 0). Formally, if a non-negative function f(·) has a Lipschitz gradient with constant
L, then for any q ≥ 0 and at any point w, Lq(w) = Lf(w)q + qf(w)q−1‖∇f(w)‖2 is upper-bound
for the Lipschitz constant of the gradient of 1

q+1f
q+1(·) at point w. We prove this in Lemma 12,

Appendix B. We can use the step-size 1/Lq(w) for any q > 0 after we estimate L once on q = 0, as
described below.

A first approach: q-FedSGD. Our first fair federated learning method, q-FedSGD, is an extension
of the well-known federated mini-batch SGD (FedSGD) method (McMahan et al., 2017). q-FedSGD
uses a dynamic step-size instead of the normal fixed step-size of FedSGD. Based on Lemma 12,
for each local device k, the upper-bound of the local Lipschitz constant would be LFk(w)q +
qFk(w)q−1‖∇Fk(w)‖2. In each step of q-FedSGD, ∇Fk and Fk on each selected device k are
computed at the current iterate and communicated to the central node. This information is used
to compute the step-sizes (weights) for combining the updates from each device. The details are
summarized in Algorithm 3, Appendix D.2. It is important to note that to run q-FedSGD with
different values of q, we only need to estimate L once by tuning the step-size (e.g., on q = 0) and can
then reuse it for all values of q > 0.

Improving communication-efficiency: q-FedAvg. In federated settings, communication-efficient
schemes using local stochastic solvers (such as FedAvg), while heuristic in nature, have been
shown to significantly improve convergence speed (McMahan et al., 2017). Unfortunately, it is not
straightforward to simply apply FedAvg to problem (2) when q > 0, as the F q+1

k term prevents the
use of local SGD. To address this, we propose instead optimizing Fk locally, as minimizing Fk is
equivalent to minimizing F q+1

k . We then combine the local updates using the weights 1/Lq(w) for
device k, similar to q-FedSGD. In particular, we replace the gradient of the local functions, ∇Fk, in
the q-FedSGD steps with the local update vectors that are obtained by running SGD locally on device
k. This allows us to extend the local updating technique of FedAvg to the q-FFL objective (2). We
provide additional details on q-FedAvg in Algorithm 1. As we will see empirically, q-FedAvg can
solve q-FFL objective much more efficiently than q-FedSGD due to the local updating heuristic.

4 EVALUATION

We now present empirical results of the proposed objective, q-FFL, and proposed methods, q-
FedAvg and q-FedSGD. We describe our experimental setup in Section 4.1. We then demonstrate
the improved fairness of q-FFL in Section 4.2, and compare q-FFL with several baseline fairness
objectives in Section 4.3. Finally, we show the efficiency of q-FedAvg compared with q-FedSGD in
Section 4.4. We provide an anonymized version of our code for easy reproducibility.
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Figure 1: q-FFL leads to fairer test accuracy distributions. While the average accuracy remains
almost identical (see Table 1), by setting q > 0, the distributions shift towards the center as low
accuracies increase at the cost of potentially decreasing high accuracies on some devices. Setting
q = 0 corresponds to the original objective (1). The selected q values for q > 0 on the four datasets,
as well as distribution statistics, are also shown in Table 1.

Table 1: Statistics of the test accuracy distribution for q-FFL. By setting q > 0, the accuracy of the
worst 10% devices is increased at the cost of possibly decreasing the accuracy of the best 10% devices.
While the average accuracy remains similar, the variance of the final accuracy distribution decreases
significantly. We provide full results of other uniformity measurements (including variance) in Table
4, Appendix F.1, and show that q-FFL encourages more uniform distributions under all metrics.

Dataset Objective Average Worst 10% Best 10% Variance
(%) (%) (%)

Synthetic q = 0 80.8 ± .9 18.8 ± 5.0 100.0 ± 0.0 724 ± 72

q = 1 79.0 ± 1.2 31.1 ± 1.8 100.0 ± 0.0 472 ± 14

Vehicle q = 0 87.3 ± .5 43.0 ± 1.0 95.7 ± 1.0 291 ± 18

q = 5 87.7 ± .7 69.9 ± .6 94.0 ± .9 48 ± 5

Sent140 q = 0 65.1 ± 4.8 15.9 ± 4.9 100.0 ± 0.0 697 ± 132

q = 1 66.5 ± .2 23.0 ± 1.4 100.0 ± 0.0 509 ± 30

Shakespeare q = 0 51.1 ± .3 39.7 ± 2.8 72.9 ± 6.7 82 ± 41

q = .001 52.1 ± .3 42.1 ± 2.1 69.0 ± 4.4 54 ± 27

4.1 EXPERIMENTAL SETUP

Federated Datasets. We explore a suite of federated datasets using both convex and non-convex
models in our experiments. The datasets are curated from prior work in federated learning (McMahan
et al., 2017; Smith et al., 2017; Li et al., 2018; Mohri et al., 2019) as well as recent federated learning
benchmarks (Caldas et al., 2018). In particular, we study: (1) a synthetic dataset using a linear
regression classifier, (2) a vehicle dataset collected from a distributed sensor network (Duarte & Hu,
2004) with a linear SVM for binary classification, (3) tweets data curated from Sentiment140 (Go
et al., 2009) (Sent140) with an LSTM classifier for text sentiment analysis, and (4) text data built
from The Complete Works of William Shakespeare (McMahan et al., 2017) and an RNN to predict
the next character. When comparing with AFL, we use the two small benchmark datasets (Fashion
MNIST and Adult) studied in Mohri et al. (2019). Full dataset details are given in Appendix E.1.

Implementation. We implement all code in Tensorflow (Abadi et al., 2016), simulating a federated
network with one server and m devices, where m is determined by the number of partitions in the
dataset (Appendix E.1). We provide full details (including all hyperparameter values) in Appendix E.2.

4.2 FAIRNESS OF q-FFL

In our first experiments, we verify that the proposed objective q-FFL leads to more fair solutions
(Definition 1) for federated data. In Figure 1, we compare the final testing accuracy distributions of
two objectives (q = 0 and a tuned value of q > 0) averaged across 5 random shuffles of each dataset.
We observe that while the average testing accuracy remains fairly consistent, the objectives with q > 0
result in more centered (i.e., fair) testing accuracy distributions with lower variance. In particular,
while maintaining roughly the same average accuracy, q-FFL reduces the variance of accuracies
across all devices by 45% on average. We further report the worst and best 10% testing accuracies
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and the variance of the final accuracy distributions in Table 1. Comparing q = 0 and q > 0, we
see that the average testing accuracy remains almost unchanged with the proposed objective despite
significant reductions in variance. We report full results on all uniformity measurements (including
variance) in Table 4 in the appendix, and show that q-FFL encourages more uniform accuracies under
other metrics as well. We observe similar results on training accuracy distributions in Figure 4 and
Table 5, Appendix F. In Table 1, the average accuracy is with respect to all data points, not all devices;
however, we observe similar results with respect to devices, as shown in Table 6, Appendix F.

Choosing q. As discussed in Section 3.3, a natural question is to determine how q should be tuned in
the q-FFL objective. Our framework is flexible in that it allows one to choose q to tradeoff between
fairness/uniformity and average accuracy. We empirically show that there are a family of q’s that can
result in variable levels of fairness (and accuracy) on synthetic data in Table 9, Appendix F. In general,
this value can be tuned based on the data/application at hand and the desired amount of fairness.
Another reasonable approach in practice would be to run Algorithm 1 with multiple q’s in parallel
to obtain multiple final global models, and then select amongst these based on performance (e.g.,
accuracy) on the validation data. Rather than using just one optimal q for all devices, for example,
each device could pick a device-specific model based on their validation data. We show additional
performance improvements with this device-specific strategy in Table 10 in Appendix F. Finally, we
note that one potential issue is that increasing the value of q may slow the speed of convergence.
However, for values of q that result in more fair results on our datasets, we do not observe significant
convergence slowdown, as shown in Figure 7, Appendix F.

4.3 COMPARISON WITH OTHER OBJECTIVES

Next, we compare q-FFL with other objectives that are likely to impose fairness in federated networks.
One heuristic is to weight each data point equally, which reduces to the original objective in (1) (i.e.,
q-FFL with q = 0) and has been investigated in Section 4.2. We additionally compare with two
alternatives: weighting devices equally when sampling devices, and weighting devices adversarially,
namely, optimizing for the worst-performing device, as proposed in Mohri et al. (2019).

Weighting devices equally. We compare q-FFL with uniform sampling schemes and report testing
accuracy in Figure 2. A table with the final accuracies and three fairness metrics is given in the
appendix in Table 8. While the ‘weighting each device equally’ heuristic tends to outperform our
method in training accuracy distributions (Figure 5 and Table 7 in Appendix F), we see that our
method produces more fair solutions in terms of testing accuracies. One explanation for this is that
uniform sampling is a static method and can easily overfit to devices with very few data points,
whereas q-FFL has better generalization properties due to its dynamic nature.

Figure 2: q-FFL (q > 0) compared with uniform sampling. In terms of testing accuracy, our objective
produces more fair solutions than uniform sampling. Distribution statistics are provided in Table 8 in
the appendix. q-FFL achieves similar average accuracies and more fair solutions.

Weighting devices adversarially. We further compare with AFL (Mohri et al., 2019), which is
the only work we are aware of that aims to address fairness issues in federated learning. We
implement a non-stochastic version of AFL where all devices are selected and updated each round,
and perform grid search on the AFL hyperparameters, γw and γλ. Full details of the implementation
and hyperparameters (e.g., values of q1 and q2) are provided in Appendix E.2.3. In order to devise a
setup that is as favorable to AFL as possible, we modify Algorithm 1 by sampling all devices and
letting each of them run gradient descent at each round, and use the same small datasets (Adult
and Fashion MNIST) as in Mohri et al. (2019). We note that, as opposed to AFL, q-FFL is flexible
depending on the amount of fairness desired, with larger q leading to more accuracy uniformity. As
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Table 2: Our objective compared with weighing devices adversarially (AFL (Mohri et al., 2019)). In
order to be favorable to AFL, we use the two small, well-behaved datasets studied in (Mohri et al.,
2019). q-FFL (q > 0) outperforms AFL on the worst testing accuracy of both datasets. The tunable
parameter q controls how much fairness we would like to achieve—larger q induces less variance.
Each accuracy is averaged across 5 runs with different random initializations.

Adult Fashion MNIST

Objectives average PhD non-PhD average shirt pullover T-shirt
(%) (%) (%) (%) (%) (%) (%)

q-FFL, q=0 83.2 ± .1 69.9 ± .4 83.3 ± .1 78.8 ± .2 66.0 ± .7 84.5 ± .8 85.9 ± .7

AFL 82.5 ± .5 73.0 ± 2.2 82.6 ± .5 77.8 ± 1.2 71.4 ± 4.2 81.0 ± 3.6 82.1 ± 3.9

q-FFL, q1>0 82.6 ± .1 74.1 ± .6 82.7 ± .1 77.8 ± .2 74.2 ± .3 78.9 ± .4 80.4 ± .6

q-FFL, q2>q1 82.3 ± .1 74.4 ± .9 82.4 ± .1 77.1 ± .4 74.7 ± .9 77.9 ± .4 78.7 ± .6

discussed, q-FFL generalizes AFL in this regard, as AFL is equivalent to q-FFL with a large enough q.
In Table 2, we observe that q-FFL can in fact achieve higher testing accuracy than AFL on the device
with the worst performance (i.e., the problem that the AFL was designed to solve) with appropriate
q. This also indicates that q-FFL obtains the most fair solutions in certain cases. We also observe
that q-FFL converges faster in terms of communication rounds compared with AFL to obtain similar
performance (Appendix F), which we speculate is due to the non-smoothness of the AFL objective.

4.4 EFFICIENCY OF THE METHOD q-FEDAVG
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Figure 3: For a fixed objective (i.e., q-FFL with the
same q), the convergence of q-FedAvg (Alg.1), q-
FedSGD (Alg.3), and FedSGD. For q-FedAvg and
q-FedSGD, we tune a best step-size on q = 0 and
apply that step-size to solve q-FFL with q > 0. For
q-FedSGD, we tune the step-size directly. We observe
that (1) q-FedAvg converges faster in terms of com-
munication rounds; (2) our proposed q-FedSGD solver
with a dynamic step-size achieves similar convergence
behavior compared with a best-tuned FedSGD.

Finally, we show the efficiency of our
proposed distributed solver, q-FedAvg,
by comparing Algorithm 1 with its non-
local-updating baseline q-FedSGD (Algo-
rithm 3) to solve the same objective (same
q > 0 as in Table 1). At each com-
munication round, we have each method
perform the same amount of computation,
with q-FedAvg running one epoch of lo-
cal updates on each selected device while
q-FedSGD runs gradient descent with the
local training data. In Figure 3, q-FedAvg
achieves potentially orders-of-magnitude
faster convergence than q-FedSGD in
terms of communication rounds (Shake-
speare). To demonstrate the optimality of
our dynamic step-size strategy in terms
of solving q-FFL, we also compare our
solver q-FedSGD with FedSGD with a
best-tuned step-size. For q-FedSGD, we
tune a step-size on q = 0 and apply that

step-size to solve q-FFL with q > 0. q-FedSGD has similar performance with FedSGD, which
indicates that (the inverse of) our estimated Lipschitz constant on q > 0 is as good as a best tuned
fixed step-size. We can reuse this estimation for different q’s instead of manually re-tuning it when q
changes. We show the full results on other datasets in Appendix F. We note that both proposed meth-
ods q-FedAvg and q-FedSGD can be easily integrated into existing implementations of federated
learning algorithms such as TensorFlow Federated (TFF).

5 CONCLUSION

In this work, we propose q-FFL, a novel optimization objective inspired by fair resource allocation
in wireless networks that encourages fairer (more uniform) accuracy distributions across devices
in federated learning. We devise a scalable method, q-FedAvg, to solve this objective in massive
networks. Our empirical evaluation on a suite of federated datasets demonstrates the resulting fairness
and flexibility of q-FFL, as well as the efficiency of q-FedAvg compared with existing baselines.
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A THEORETICAL ANALYSIS OF THE PROPOSED OBJECTIVE q-FFL

A.1 UNIFORMITY INDUCED BY q-FFL

In this section, we theoretically justify that the q-FFL objective can impose more uniformity of
the performance/accuracy distribution. As discussed in Section 3.2, q-FFL can encourage more
fair solutions in terms of (1) the variance of accuracy distribution (smaller variance), (2) the angle
between the accuracy distribution and the all-ones vector 1 (smaller angle), and (3) the entropy of the
accuracy distribution (larger entropy). We begin by formally defining these fairness notions.

Definition 3 (Uniformity 1: Variance of the performance distribution). We say that the performance
distribution of m devices {F1(w), . . . , Fm(w)} is more uniform under solution w than w′ if

Var(F1(w), . . . , Fm(w)) < Var(F1(w′), . . . , Fm(w′)). (3)

Definition 4 (Uniformity 2: Angle between the performance distribution and 1). We say that the per-
formance distribution of m devices {F1(w), . . . , Fm(w)} is more uniform under solution w than w′
if the angle between {F1(w), . . . , Fm(w)} and 1 is smaller than that between {F1(w′), . . . , Fm(w′)}
and 1, i.e.,

1
m

∑m
k=1 Fk(w)√

1
m

∑m
k=1 F

2
k (w)

≥
1
m

∑m
k=1 Fk(w′)√

1
m

∑m
k=1 F

2
k (w′)

. (4)

Definition 5 (Uniformity 3: Entropy of performance distribution). We say that the performance
distribution of m devices {F1(w), . . . , Fm(w)} is more uniform under solution w than w′ if

H(F (w)) ≥ H(F (w′)), (5)

where H(F (w)) is the entropy of {F1(w), . . . , Fm(w)} defined as

−
m∑
k=1

Fk(w)∑m
k=1 Fk(w)

log

(
Fk(w)∑m
k=1 Fk(w)

)
.

To enforce uniformity/fairness (defined in Definition 3, 4, and 5), we propose the q-FFL objective to
impose more weights on the devices with worse performance. Throughout the proof, we consider a
similar, unweighted objective:

min
w
fq(w) =

(
1

m

m∑
k=1

F q+1
k (w)

) 1
q+1

,

and we denote w∗q as the global optimal solution of minw fq(w).

We first investigate the special case of q = 1 and show that q = 1 results in more fair solutions than
q = 0 based on Definition 3 and Definition 4.

Lemma 6. q = 1 leads to a more fair solution (smaller variance of the model performance distribu-
tion) than q = 0, i.e., Var(F1(w∗1), . . . , Fm(w∗1)) < Var(F1(w∗0), . . . , Fm(w∗0)).

Proof. Use the fact that w∗1 is the optimal solution of minw f1(w), and w∗0 is the optimal solution of
minw f0(w), we get∑m

k=1 F
2
k (w∗1)

m
−

(
1

m

m∑
i=1

Fk(w∗1)

)2

≤
∑m
k=1 F

2
k (w∗0)

m
−

(
1

m

m∑
i=1

Fk(w∗1)

)2

≤
∑m
k=1 F

2
k (w∗0)

m
−

(
1

m

m∑
i=1

Fk(w∗0)

)2

. (6)
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Lemma 7. q = 1 leads to a more fair solution (smaller angle between the performance distribution
and 1) than q = 0, i.e.,

1
m

∑m
k=1 Fk(w∗1)√
1
mF

2
k (w∗1)

≥
1
m

∑m
k=1 Fk(w∗0)√
1
mF

2
k (w∗0)

.

Proof. As 1
m

∑m
k=1 Fk(w∗1) ≥ 1

m

∑m
k=1 Fk(w∗0) and 1

m

∑m
k=1 F

2
k (w∗1) ≥ 1

m

∑m
k=1 F

2
k (w∗0), it

directly follows that
1
m

∑m
k=1 Fk(w∗1)√
1
mF

2
k (w∗1)

≥
1
m

∑m
k=1 Fk(w∗0)√
1
mF

2
k (w∗0)

.

We next provide results based on Definition 5. It states that for arbitrary q ≥ 0, by increasing q for a
small amount, we can get more uniform performance distributions defined over higher-orders of the
performance.
Lemma 8. Let F (w) be twice differentiable inw with∇2F (w) > 0 (positive definite). The derivative
of H(F q(w∗p)) with respect to the variable p evaluated at the point p = q is non-negative, i.e.,

∂

∂p
H(F q(w∗p))

∣∣∣∣
p=q

≥ 0,

where H(F q(w∗p)) is defined over the probability distribution of 1∑
k F

q
k (w∗

p)
(F q1 (w∗p), . . . , F qm(w∗p)).

Proof.

∂

∂p
H(F q(w∗p))

∣∣∣∣
p=q

= − ∂

∂p

∑
k

F qk (w∗p)∑
κ F

q
κ(w∗p)

ln

(
F qk (w∗p)∑
κ F

q
κ(w∗p)

)∣∣∣∣∣
p=q

(7)

= − ∂

∂p

∑
k

F qk (w∗p)∑
κ F

q
κ(w∗p)

ln
(
F qk (w∗p)

)∣∣∣∣∣
p=q

+
∂

∂p
ln
∑
κ

F qκ(w∗p)

∣∣∣∣∣
p=q

(8)

= −
∑
k

(
∂
∂pw

∗
p

∣∣∣
p=q

)>
∇wF qk (w∗q )∑

κ F
q
κ(w∗q )

ln
(
F qk (w∗q )

)

−
∑
k

F qk (w∗q )∑
κ F

q
κ(w∗q )

(
∂
∂pw

∗
p

∣∣∣
p=q

)>
∇wF qk (w∗q )

F qk (w∗q )
(9)

= −
∑
k

(
∂
∂pw

∗
p

∣∣∣
p=q

)>
∇wF qk (w∗q )∑

κ F
q
κ(w∗q )

(
ln
(
F qk (w∗q )

)
+ 1
)
. (10)

Now, let us examine ∂
∂pw

∗
p

∣∣∣
p=q

. We know that
∑
k∇wF

p
k (w∗p) = 0 by definition. Taking the

derivative with respect to p, we have∑
k

∇2
wF

p
k (w∗p)

∂

∂p
w∗p +

∑
k

(
lnF pk (w∗p) + 1

)
∇wF pk (w∗p) = 0. (11)

Invoking implicit function theorem,

∂

∂p
w∗p = −

(∑
k

∇2
wF

p
k (w∗p)

)−1∑
k

(
lnF pk (w∗p) + 1

)
∇wF pk (w∗p). (12)
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Plugging ∂
∂pw

∗
p

∣∣∣
p=q

into (10), we get that ∂
∂pH(F q(w∗p))

∣∣∣
p=q
≥ 0 completing the proof.

Lemma 8 states that for any p, the performance distribution of {F p1 (w∗p+ε), . . . , F
p
m(w∗p+ε)} is

guaranteed to be more uniform based on Definition 5 than that of {F p1 (w∗p), . . . , F pm(w∗p)} for a small
enough ε. Ideally, we would like to prove that the distribution {F q1 (w∗p+ε), . . . , F

q
m(w∗p+ε)} is more

uniform than {F q1 (w∗p), . . . , F qm(w∗p)} for any p, q and small enough ε. Next, we formalize this goal
under the generalized version of Definition 5 and show its equivalence with a generalized version of
Definition 4.

Lemma 9 (Equivalence between generalized Definition 4 and Definition 5). q-FFL encourages more
uniform performance distributions under Definition 4 if any only if it encourages more uniform
performance distributions under Definition 5, i.e., (a) holds if and only if (b) holds where
(a) for any p, q ∈ R, the derivative of H(F q(w∗p)) with respect to p is non-negative,

(b) for any 0 ≤ t ≤ r, 0 ≤ v ≤ u, ft(w
∗
u)

fr(w∗
u) ≥

ft(w
∗
v)

fr(w∗
v) .

Proof. Definition 5 is a special case of H(F q(w∗p)) with q = 1. If H(F q(w∗p)) increases with p
for any p, q, then we are guaranteed to get more fair solutions based on Definition 5. Similarly,
Definition 4 is a special case of ft(w

∗
u)

fr(w∗
u) with t = 0, r = 1. If ft(w

∗
u)

fr(w∗
u) increases with u for any t ≤ r,

q-FFL can also obtain more fair solutions under Definition 4.

Next, we show that (a) and (b) are equivalent measures of fairness.

For any r ≥ t ≥ 0, and any u ≥ v ≥ 0,

ft(w
∗
u)

fr(w∗u)
≥ ft(w

∗
v)

fr(w∗v)
⇐⇒ ln

ft(w
∗
u)

fr(w∗u)
− ln

ft(w
∗
v)

fr(w∗v)
≥ 0 (13)

⇐⇒
∫ u

v

∂

∂τ
ln
ft(w

∗
τ )

fr(w∗τ )
dτ ≥ 0 (14)

⇐⇒ ∂

∂p
ln
ft(w

∗
p)

fr(w∗p)
≥ 0, for any p ≥ 0 (15)

⇐⇒ ∂

∂p
ln fr(w

∗
p)− ∂

∂p
ln ft(w

∗
p) ≤ 0, for any p ≥ 0 (16)

⇐⇒
∫ r

t

∂2

∂p∂q
ln fq(w

∗
p)dq ≤ 0 for any p, q ≥ 0 (17)

⇐⇒ ∂2

∂p∂q
ln fq(w

∗
p) ≤ 0, for any p, q ≥ 0 (18)

⇐⇒ ∂

∂p
H(F q(w∗p)) ≥ 0, for any p, q ≥ 0. (19)

The last inequality is obtained using the fact that by taking the derivative of ln fq(w
∗
p) with respect to

q, we get −H(F q(w∗p)).

Discussions. We give geometric (Definition 4) and information-theoretic (Definition 5) interpretations
of our uniformity/fairness notion and provide uniformity guarantees under the q-FFL objective in
some cases (Lemma 6, Lemma 7, and Lemma 8). We reveal interesting relations between the
geometric and information-theoretic interpretations in Lemma 9. Future work would be to gain
further understandings for more general cases indicated in Lemma 9.

A.2 GENERALIZATION BOUNDS

In this section, we first describe the setup we consider in more detail, and then provide generalization
bounds of q-FFL. One benefit of q-FFL is that it allows for a flexible trade-off between fairness and
accuracy, which generalizes AFL (a special case of q-FFL with q →∞). We also provide learning
bounds that generalize the bounds of the AFL objective, as described below.

14



Under review as a conference paper at ICLR 2020

Suppose the service provider is interested in minimizing the loss over a distributed network of devices,
with possibly unknown weights on each device:

Lλ(h) =

m∑
k=1

λkE(x,y)∼Dk
[l(h(x), y)], (20)

where λ is in a probability simplex Λ,m is the total number of devices,Dk is the local data distribution
for device k, h is the hypothesis function, and l is the loss. We use L̂λ(h) to denote the empirical
loss:

L̂λ(h) =

m∑
k=1

λk
nk

nk∑
j=1

l(h(xk,j), yk,j), (21)

where nk is the number of local samples on device k and (xk,j , yk,j) ∼ Dk.

We consider a slightly different, unweighted version of q-FFL:

min
w

fq(w) =
1

m

m∑
k=1

F q+1
k (w) , (22)

which is equivalent to minimizing the empirical loss

L̃q(h) = max
ν,‖ν‖p≤1

m∑
k=1

νi
nk

nk∑
j=1

l(h(xk,j), yk,j), (23)

where 1
p + 1

q+1 = 1 (p ≥ 1, q ≥ 0).

Lemma 10 (Generalization bounds of q-FFL for a specific λ). Assume that the loss l is bounded by
M > 0 and the numbers of local samples are (n1, · · · , nm). Then, for any δ > 0, with probability at
least 1− δ, the following holds for any λ ∈ Λ, h ∈ H:

Lλ(h) ≤ Aq(λ)L̃q(h) + E
[
max
h∈H

Lλ(h)− L̂λ(h)

]
+M

√√√√ m∑
k=1

λ2
k

2nk
log

1

δ
, (24)

where Aq(λ) = ‖λ‖p, and 1/p+ 1/(q + 1) = 1.

Proof. Similar to the proof in Mohri et al. (2019), for any δ > 0, the following inequality holds with
probability at least 1− δ for any λ ∈ Λ, h ∈ H:

Lλ(h) ≤ L̂λ(h) + E
[
max
h∈H

Lλ(h)− L̂λ(h)

]
+M

√√√√ m∑
k=1

λ2
k

2nk
log

1

δ
. (25)

Denote the empirical loss on device k 1
nk

∑nk

j=1 l(h(xk,j), yk,j) as Fk. From Hölder’s inequality, we
have

L̂λ(h) =

m∑
k=1

λkFk ≤

(
m∑
k=1

λpk

) 1
p
(

m∑
k=1

F q+1
k

) 1
q+1

= Aq(λ)L̃q(h),
1

p
+

1

q + 1
= 1.

Plugging L̂λ(h) ≤ Aq(λ)L̃q(h) into (25) yields the results.

Theorem 11 (Generalization bounds of q-FFL for any λ). Assume that the loss l is bounded by
M > 0 and the number of local samples is (n1, · · · , nm). Then, for any δ > 0, with probability at
least 1− δ, the following holds for any λ ∈ Λ, h ∈ H:

Lλ(h) ≤ max
λ∈Λ

(Aq(λ)) L̃q(h) + max
λ∈Λ

E
[
max
h∈H

Lλ(h)− L̂λ(h)

]
+M

√√√√ m∑
k=1

λ2
k

2nk
log

1

δ

 , (26)

where Aq(λ) = ‖λ‖p, and 1/p+ 1/(q + 1) = 1.

Proof. This directly follows from Lemma 10, by taking the maximum over all possible λ’s in Λ.
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B RELATIONS BETWEEN LIPSCHITZ CONSTANTS FOR q = 0 AND q > 0

Lemma 12. If the non-negative function f(·) has a Lipschitz gradient with constant L, then for any
q ≥ 0 and at any point w,

Lq(w) = Lf(w)q + qf(w)q−1‖∇f(w)‖2 (27)

is an upper-bound for the local Lipschitz constant of the gradient of 1
q+1f

q+1(·) at point w.

Proof. At any point w, we can compute the Hessian∇2
(

1
q+1f

q+1(w)
)

as:

∇2

(
1

q + 1
fq+1(w)

)
= qfq−1(w)∇f(w)∇T f(w)︸ ︷︷ ︸

�‖∇f(w)‖2×I

+fq(w)∇2f(w)︸ ︷︷ ︸
�L×I

. (28)

As a result, ‖∇2 1
q+1f

q+1(w)‖2 ≤ Lq(w) = Lf(w)q + qf(w)q−1‖∇f(w)‖2.

C α-FAIRNESS AND q-FFL

As discussed in Section 2, while it is natural to consider the α-fairness framework for machine
learning, we are unaware of any work that uses α-fairness to modify machine learning training
objectives. We provide additional details on the framework below; for further background on α-
fairness and fairness in resource allocation more generally, we defer the reader to Shi et al. (2014);
Mo & Walrand (2000).

α-fairness (Lan et al., 2010; Mo & Walrand, 2000) is a popular fairness metric widely-used in
resource allocation problems. The framework defines a family of overall utility functions that can be
derived by summing up the following function of the individual utilities of the users in the network:

Uα(x) =

{
ln(x), if α = 1

1
1−αx

1−α, if α ≥ 0, α 6= 1 .

Here Uα(x) represents the individual utility of some specific user given x allocated resources
(e.g., bandwidth). The goal is to find a resource allocation strategy to maximize the sum of the
individual utilities. This family of functions includes a wide range of popular fair resource allocation
strategies. In particular, the above function represents zero fairness with α = 0, proportional
fairness (Kelly, 1997) with α = 1, harmonic mean fairness (Dashti et al., 2013) with α = 2, and
max-min fairness (Radunovic & Le Boudec, 2007) with α = +∞.

Note that in federated learning, we are dealing with costs and not utilities. Thus, max-min in
resource allocation corresponds to min-max in our setting. With this analogy, it is clear that in our
proposed objective q-FFL (2), the case where q = +∞ corresponds to min-max fairness since it is
optimizing for the worst-performing device, similar to what was proposed in Mohri et al. (2019).
Also, q = 0 corresponds to zero fairness, which reduces to the original FedAvg objective (1). In
resource allocation problems, α can be tuned for trade-offs between fairness and system efficiency.
In federated settings, q can be tuned based on the desired level of fairness (e.g., desired variance of
accuracy distributions) and other performance metrics such as the overall accuracy. For instance,
in Table 2 in Section 4.3, we demonstrate on two datasets that as q increases, the overall average
accuracy decreases slightly while the worst accuracies are increased significantly and the variance of
the accuracy distribution decreases.
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D PSEUDO-CODE OF ALGORITHMS

D.1 THE FEDAVG ALGORITHM

Algorithm 2 Federated Averaging McMahan et al. (2017) (FedAvg)

Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server randomly chooses a subset St of K devices (each device k is chosen with probability pk)
Server sends wt to all chosen devices
Each device k updates wt for E epochs of SGD on Fk with step-size η to obtain wt+1

k

Each chosen device k sends wt+1
k back to the server

Server aggregates the w’s as wt+1 = 1
K

∑
k∈St

wt+1
k

end for

D.2 THE q-FEDSGD ALGORITHM

Algorithm 3 q-FedSGD

1: Input: K, T , q, 1/L, w0, pk, k = 1, · · · ,m
2: for t = 0, · · · , T − 1 do
3: Server selects a subset St of K devices at random (each device k is chosen with prob. pk)
4: Server sends wt to all selected devices
5: Each selected device k computes:

∆t
k = F qk (wt)∇Fk(wt)

htk = qF q−1
k (wt)‖∇Fk(wt)‖2 + LF qk (wt)

6: Each selected device k sends ∆t
k and htk back to the server

7: Server updates wt+1 as:
wt+1 = wt −

∑
k∈St

∆t
k∑

k∈St
htk

8: end for
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E EXPERIMENTAL DETAILS

E.1 DATASETS AND MODELS

We provide full details on the datasets and models used in our experiments. The statistics of four
federated datasets are summarized in Table 3. We report the total number of devices, the total number
of samples, and mean and deviation in the sizes of total data points on each device. Additional details
on the datasets and models are described below.

• Synthetic: We follow a similar set up as that in Shamir et al. (2014) and impose additional
heterogeneity. The model is y = argmax(softmax(Wx+b)), x ∈ R60,W ∈ R10×60, b ∈ R10, and
the goal is to learn a global W and b. Samples (Xk, Yk) and local models on each device k satisfies
Wk ∼ N (uk, 1), bk ∼ N (uk, 1), uk ∼ N (0, 1); xk ∼ N (vk,Σ), where the covariance matrix Σ
is diagonal with Σj,j = j−1.2. Each element in vk is drawn from N (Bk, 1), Bk ∼ N(0, 1). There
are 100 devices in total and the number of samples on each devices follows a power law.

• Vehicle2: We use the same Vehicle Sensor (Vehicle) dataset as Smith et al. (2017), modelling each
sensor as a device. This dataset consists of acoustic, seismic, and infrared sensor data collected
from a distributed network of 23 sensors Duarte & Hu (2004). Each sample has a 100-dimension
feature and a binary label. We train a linear SVM to predict between AAV-type and DW-type
vehicles. We tune the hyperparameters in SVM and report the best configuration.

• Sent140: This dataset is a collection of tweets curated from 1,101 accounts from Senti-
ment140 (Go et al., 2009) (Sent140) where each Twitter account corresponds to a device. The
task is text sentiment analysis which we model as a binary classification problem. The model
takes as input a 25-word sequence, embeds each word into a 300-dimensional space using pre-
trained Glove (Pennington et al., 2014), and outputs a binary label after two LSTM layers and one
densely-connected layer.

• Shakespeare: This dataset is built from The Complete Works of William Shakespeare (McMahan
et al., 2017). Each speaking role in the plays is associated with a device. We subsample 31 speaking
roles to train a deep language model for next character prediction. The model takes as input an
80-character sequence, embeds each character into a learnt 8-dimensional space, and outputs one
character after two LSTM layers and one densely-connected layer.

Table 3: Statistics of federated datasets

Dataset Devices Samples Samples/device
mean stdev

Synthetic 100 12,697 127 73
Vehicle 23 43,695 1,899 349
Sent140 1,101 58,170 53 32
Shakespeare 31 116,214 3,749 6,912

E.2 IMPLEMENTATION DETAILS

E.2.1 MACHINES

We simulate the federated setting (one server and m devices) on a server with 2 Intel R© Xeon R©

E5-2650 v4 CPUs and 8 NVidia R© 1080Ti GPUs.

E.2.2 SOFTWARE

We implement all code in TensorFlow (Abadi et al., 2016) Version 1.10.1. Please see our anonymzied
code submission for more details.

2http://www.ecs.umass.edu/~mduarte/Software.html
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E.2.3 HYPERPARAMETERS

We randomly split data on each local device into 80% training set, 10% testing set, and 10% validation
set. We tune a best q from {0.001, 0.01, 0.1, 1, 2, 5, 10, 15} on the validation set and report accuracy
distributions on the testing set. We pick up the q value where the variance decreases the most, while
the overall average accuracy change (compared with the q = 0 case) is within 1%. For each dataset,
we repeat this process for five randomly selected train/test/validation splits, and report the mean and
standard deviation across these five runs where applicable. For Synthetic, Vehicle, Sent140, and
Shakespeare, optimal q values are 1, 5, 1, and 0.001, respectively. For all datasets, we randomly
sample 10 devices each round. We tune the learning rate and batch size on FedAvg and use the
same learning rate and batch size for all q-FedAvg experiments of that dataset. The learning rates
for Synthetic, Vehicle, Sent140, and Shakespeare are 0.1, 0.01, 0.03, and 0.8, respectively. The batch
sizes for Synthetic, Vehicle, Sent140, and Shakespeare are 10, 64, 32, and 10.

In comparing q-FedAvg’s efficiency with q-FedSGD, we also tune a best learning rate for q-FedSGD
methods on q=0. For each comparison, we fix devices selected and mini-batch orders across all runs.
We stop training when the training loss F (w) does not decrease for 10 rounds. When running AFL
methods, we search for a best γw and γλ such that AFL achieves the highest testing accuracy on
the device with the highest loss within a fixed number of rounds. For Adult, we use γw = 0.1 and
γλ = 0.1; for Fashion MNIST, we use γw = 0.001 and γλ = 0.01. We use the same γw as step-sizes
for q-FedAvg on Adult and Fashion MNIST. In Table 2, q1 = 0.01, q2 = 2 for q-FFL on Adult and
q1 = 5, q2 = 15 for q-FFL on Fashion MNIST. The number of local epochs is fixed to 1 whenever
we perform local updates.
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F FULL EXPERIMENTS

F.1 FULL RESULTS OF PREVIOUS EXPERIMENTS

Fairness of q-FFL under all uniformity metrics. We demonstrate the fairness of q-FFL in Table 1
in terms of variance. Here, we report similar results in terms of other uniformity measures (the last
two columns).

Table 4: Full statistics of the test accuracy distribution for q-FFL. q-FFL increases the accuracy of the
worst 10% devices without decreasing the average accuracies. We see that q-FFL encourages more
uniform distributions under all uniformity metrics defined in Appendix A.2: (1) the variance of the
accuracy distribution (Definition 3), (2) the geometric angle between the accuracy distribution and the
all-ones vector 1 (Definition 4), and (3) the KL-divergence between the normalized accuracy vector
a and the uniform distribution u, which can be directly translated to the entropy of a (Definition 5) .

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Synthetic q = 0 80.8 ± .9 18.8 ± 5.0 100.0 ± 0.0 724 ± 72 19.5 ± 1.1 .083 ± .013

q = 1 79.0 ± 1.2 31.1 ± 1.8 100.0 ± 0.0 472 ± 14 16.0 ± .5 .049 ± .003

Vehicle q = 0 87.3 ± .5 43.0 ± 1.0 95.7 ± 1.0 291 ± 18 11.3 ± .3 .031 ± .003

q = 5 87.7 ± .7 69.9 ± .6 94.0 ± .9 48 ± 5 4.6 ± .2 .003 ± .000

Sent140 q = 0 65.1 ± 4.8 15.9 ± 4.9 100.0 ± 0.0 697 ± 132 22.4 ± 3.3 .104 ± .034

q = 1 66.5 ± .2 23.0 ± 1.4 100.0 ± 0.0 509 ± 30 18.8 ± .5 .067 ± .006

Shakespeare q = 0 51.1 ± .3 39.7 ± 2.8 72.9 ± 6.7 82 ± 41 9.8 ± 2.7 .014 ± .006

q = .001 52.1 ± .3 42.1 ± 2.1 69.0 ± 4.4 54 ± 27 7.9 ± 2.3 .009 ± .05

Fairness of q-FFL with respect to training accuracy. The empirical results in Section 4 are with
respect to testing accuracy. As a sanity check, we show that q-FFL also results in more fair training
accuracy distributions in Figure 4 and Table 5.

Figure 4: q-FFL (q > 0) results in more centered (i.e., fair) training accuracy distributions across
devices without sacrificing the average accuracy.

Table 5: More statistics showing that q-FFL results in more fair training accuracy distributions. We see
that under the q-FFL (q > 0) objective, the worst 10% training accuracy increases, and the variance
of training accuracies is smaller. q-FFL is also more fair under other uniformity measurements—(a)
the angle between the accuracy distribution and the all-ones vector 1, and (b) the KL divergence
between the normalized accuracy a and uniform distribution u.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Synthetic q = 0 81.7 ± .3 23.6 ± 1.1 100.0 ± .0 597 ± 10 17.5 ± .3 .061 ± .002

q = 1 78.9 ± .2 41.8 ± 1.0 96.8 ± .5 292 ± 11 12.5 ± .2 .027 ± .001

Vehicle q = 0 87.5 ± .2 49.5 ± 10.2 94.9 ± .7 237 ± 97 10.2 ± 2.4 .025 ± .011

q = 5 87.8 ± .5 71.3 ± 2.2 93.1 ± 1.4 37 ± 12 4.0 ± .7 .003 ± .001

Sent140 q = 0 69.8 ± .8 36.9 ± 3.1 94.4 ± 1.1 278 ± 44 13.6 ± 1.1 .032 ± .006

q = 1 68.2 ± .6 46.0 ± .3 88.8 ± .8 143 ± 4 10.0 ± .1 .017 ± .000

Shakespeare q = 0 72.7 ± .8 46.4 ± 1.4 79.7 ± .9 116 ± 8 9.9 ± .3 .015 ± .001

q = .001 66.7 ± 1.2 48.0 ± .4 71.2 ± 1.9 56 ± 9 7.1 ± .5 .008 ± .001
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Average testing accuracy with respect to devices. In Section 4.2, we show that q-FFL leads to
more fair accuracy distributions while maintaining approximately the same testing accuracies. Note
that we report average testing accuracy with respect to all data points in Table 1. However, we
observe similar results on average accuracy with respect to all devices between q = 0 and q > 0
objectives, as shown in Table 6. This indicates that q-FFL can reduce the variance of the accuracy
distribution without sacrificing the average accuracy over devices or over data points.

Table 6: Average testing accuracy under q-FFL objectives. We show that the resulting solutions of
q = 0 and q > 0 objectives have approximately the same average accuracies both with respect to all
data points and with respect to all devices.

Dataset Objective Accuracy w.r.t. Data Points Accuracy w.r.t. Devices
(%) (%)

Synthetic q = 0 80.8 ± .9 77.3 ± .6

q = 1 79.0 ± 1.2 76.3 ± 1.7

Vehicle q = 0 87.3 ± .5 85.6 ± .4

q = 5 87.7 ± .7 86.5 ± .7

Sent140 q = 0 65.1 ± 4.8 64.6 ± 4.5

q = 1 66.5 ± .2 66.2 ± .2

Shakespeare q = 0 51.1 ± .3 61.4 ± 2.7

q = .001 52.1 ± .3 60.0 ± .5

Comparison with uniform sampling. In Figure 5 and Table 7, we show that in terms of training
accuracies, the uniform sampling heuristic may outperform q-FFL (as opposed to the testing accuracy
results in Section 4). We suspect that this is because the uniform sampling baseline is a static method
and is likely to overfit to those devices with few samples. In additional to Figure 2 in Section 4.3, we
also report the average testing accuracy with respect to data points, best 10%, worst 10% accuracies,
and the variance (along with two other uniformity measures) in Table 8.

Figure 5: q-FFL (q > 0) compared with uniform sampling in training accuracy. We see that on some
datasets uniform sampling has higher (and more fair) training accuracies due to the fact that it is
overfitting to devices with few samples.

Table 7: More statistics comparing the uniform sampling objective with q-FFL in terms of training
accuracies. We observe that uniform sampling could result in more fair training accuracy distributions
with smaller variance in some cases.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Synthetic uniform 83.5 ± .2 42.6 ± 1.4 100.0 ± .0 366 ± 17 13.4 ± .3 .031 ± .002

q = 1 78.9 ± .2 41.8 ± 1.0 96.8 ± .5 292 ± 11 12.5 ± .2 .027 ± .001

Vehicle uniform 87.3 ± .3 46.6 ± .8 94.8 ± .5 261 ± 10 10.7 ± .2 .027 ± .001

q = 5 87.8 ± .5 71.3 ± 2.2 93.1 ± 1.4 37 ± 12 4.0 ± .7 .003 ± .001

Sent140 uniform 69.1 ± .5 42.2 ± 1.1 91.0 ± 1.3 188 ± 19 11.3 ± .5 .022 ± .002

q = 1 68.2 ± .6 46.0 ± .3 88.8 ± .8 143 ± 4 10.0 ± .1 .017 ± .000

Shakespeare uniform 57.7 ± 1.5 54.1 ± 1.7 72.4 ± 3.2 32 ± 7 5.2 ± .5 .004 ± .001

q = .001 66.7 ± 1.2 48.0 ± .4 71.2 ± 1.9 56 ± 9 7.1 ± .5 .008 ± .001
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Table 8: More statistics showing more fair solutions induced by q-FFL compared with the uniform
sampling baseline in terms of test accuracies. Again, we observe that under q-FFL, the testing
accuracy of the worst 10% devices tends to increase compared with uniform sampling, and the
variance of the final testing accuracies is smaller. Similarly, q-FFL is also more fair than uniform
sampling in terms of other uniformity metrics.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Synthetic uniform 82.2 ± 1.1 30.0 ± .4 100.0 ± .0 525 ± 47 15.6 ± .8 .048 ± .007

q = 1 79.0 ± 1.2 31.1 ± 1.8 100.0 ± 0.0 472 ± 14 16.0 ± .5 .049 ± .003

Vehicle uniform 86.8 ± .3 45.4 ± .3 95.4 ± .7 267 ± 7 10.8 ± .1 .028 ± .001

q = 5 87.7 ± 0.7 69.9 ± .6 94.0 ± .9 48 ± 5 4.6 ± .2 .003 ± .000

Sent140 uniform 66.6 ± 2.6 21.1 ± 1.9 100.0 ± 0.0 560 ± 19 19.8 ± .7 .076 ± .006

q = 1 66.5 ± .2 23.0 ± 1.4 100.0 ± 0.0 509 ± 30 18.8 ± .5 .067 ± .006

Shakespeare uniform 50.9 ± .4 41.0 ± 3.7 70.6 ± 5.4 71 ± 38 9.1 ± 2.8 .012 ± .006

q = .001 52.1 ± .3 42.1 ± 2.1 69.0 ± 4.4 54 ± 27 7.9 ± 2.3 .009 ± .05

Efficiency of q-FedAvg on all datasets. We provide full results to demonstrate the efficiency of q-
FedAvg (Algorithm 1) relative to its non-local-updating baseline q-FedSGD (Algorithm 3). At each
communication round, q-FedAvg runs one epoch of local updates on each selected device, while
q-FedSGD runs gradient descent using the local training data. In Figure 3, q-FedAvg converges
faster than q-FedSGD in terms of communication rounds in most cases due to its local updating
scheme. The slower convergence of q-FedAvg compared with q-FedSGD on the synthetic dataset
may be due to the fact that when local data distributions are highly heterogeneous, local updating
schemes may allow local models to move too far away from the initial global model, potentially
hurting convergence; see Figure 9 for more details.
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Figure 6: For a fixed objective (i.e., the same q), the convergence of q-FedAvg (Alg.1), q-FedSGD
(Alg.3), and FedSGD on all datasets. For q-FedAvg and q-FedSGD, we tune a best step-size on
q = 0 and apply that step-size to solve q-FFL with any q > 0. For FedSGD, we tune the step-size
directly. We observe that (1) q-FedAvg converges faster in terms of communication rounds; (2) the
proposed q-FedSGD solver achieves similar performance compared with a best tuned FedSGD.
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F.2 ADDITIONAL EXPERIMENTS

A family of q’s results in variable levels of fairness. In Table 9, we show the accuracy distribution
statistics of using a family of q’s on synthetic data. Our objective and methods are not sensitive to
any particular q since all q > 0 values can lead to more fair solutions compared with q = 0. In our
experiments in Section 4, we report the results using the q values selected following the protocol
described in Appendix E.2.3.

Table 9: Test accuracy statistics of using a family of q’s on synthetic data. We show results with q’s
selected from our candidate set {0.001, 0.01, 0.1, 1, 2, 5, 10, 15}. q-FFL allows for a more flexible
trade-off between fairness and accuracy. A larger q results in more fairness (smaller variance),
but potentially lower accuracy. Similarly, a larger q imposes more uniformity in terms of other
metrics—(a) the angle between the accuracy distribution and the all-ones vector 1, and (b) the KL
divergence between the normalized accuracy a and a uniform distribution u.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Synthetic

q=0 80.8 ± .9 18.8 ± 5.0 100.0 ± 0.0 724 ± 72 19.5 ± 1.1 .083 ± .013

q= 0.1 81.1 ± 0.8 22.1 ± .8 100.0 ± 0.0 666 ± 56 18.4 ± .8 .070 ± .009

q=1 79.0 ± 1.2 31.1 ± 1.8 100.0 ± 0.0 472 ± 14 16.0 ± .5 .049 ± .003

q=2 74.7 ± 1.3 32.2 ± 2.1 99.9 ± .2 410 ± 23 15.6 ± 0.7 .044 ± .005

q=5 67.2 ± 0.9 30.0 ± 4.8 94.3 ± 1.4 369 ± 51 16.3 ± 1.2 .048 ± .010

Device-specific q. In these experiments, we explore a device-specific strategy for selecting q in
q-FFL. We solve q-FFL with q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10} in parallel. After training, each
device selects the best resulting model based on the validation data and tests the performance of
the model using the testing set. We report the results in terms of testing accuracy in Table 10.
Interestingly, using this device-specific strategy the average accuracy in fact increases while the
variance of accuracies is reduced, in comparison with q = 0. We note that this strategy does induce
more local computation and additional communication load at each round. However, it does not
increase the number of communication rounds if run in parallel.

Table 10: Effects of running q-FFL with several q’s in parallel. We train multiple global models
(corresponding to different q’s) independently in the network. After the training finishes, each
device picks up a best, device-specific model based on the performance (accuracy) on the validation
data. While this adds additional local computation and more communication load per round, the
device-specific strategy has the added benefit of increasing the accuracies of devices with the worst
10% accuracies and devices with the best 10% accuracies simultaneously. This strategy is built upon
the proposed primitive Algorithm 1, and in practice, people can develop other heuristics to improve
the performance (similar to what we explore here), based on the method of adaptively averaging
model updates proposed in Algorithm 1.

Dataset Objective Average Worst 10% Best 10% Variance Angle KL(a||u)
(%) (%) (%) (◦)

Vehicle
q=0 87.3 ± .5 43.0 ± 1.0 95.7 ± 1.0 291 ± 18 11.3 ± .3 .031 ± .003

q=5 87.7 ± .7 69.9 ± .6 94.0 ± .9 48 ± 5 4.6 ± .2 .003 ± .000

multiple q 88.5 ± .3 70.0 ± 2.0 95.8 ± .6 52 ± 7 4.7 ± .3 .004 ± .000

Shakespeare
q=0 51.1 ± .3 39.7 ± 2.8 72.9 ± 6.7 82 ± 41 ± 41 9.8 ± 2.7 .014 ± .006

q=.001 52.1 ± .3 42.1 ± 2.1 69.0 ± 4.4 54 ± 27 7.9 ± 2.3 .009 ± .05

multiple q 52.0 ± 1.5 41.0 ± 4.3 72.0 ± 4.8 72 ± 32 10.1 ± .7 .017 ± .000
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Convergence speed of q-FFL. Since q−FFL (q > 0) is more difficult to optimize, a natural
question one might ask is: will the q-FFL q > 0 objectives slow the convergence compared with
FedAvg? We empirically investigate this on the four datasets. We use q-FedAvg to solve q-FFL,
and compare it with FedAvg (i.e., solving q-FFL with q = 0). As demonstrated in Figure 7, the q
values that result in more fair solutions also do not significantly slow down convergence.

Figure 7: The convergence speed of q-FFL compared with FedAvg. We plot the distance to the
highest accuracy achieved versus communication rounds. Although q-FFL with q>0 is a more
difficult optimization problem, for the q values we choose that could lead to more fair results, the
convergence speed is comparable to that of q = 0.

Efficiency of q-FFL compared with AFL. One added benefit of q-FFL is that it leads to faster
convergence than AFL—even when we use non-local-updating methods for both objectives. In Figure
8, we show with respect to the final testing accuracy for the single worst device (i.e., the objective that
AFL is trying to optimize), q-FFL converges faster than AFL. As the number of devices increases
(from Fashion MNIST to Vehicle), the performance gap between AFL and q-FFL becomes larger
because AFL introduces larger variance.

q- q-

Figure 8: q-FFL is more efficient than AFL. With the worst device achieving the same final testing
accuracy, q-FFL converges faster than AFL. For Vehicle (with 23 devices) as opposed to Fashion
MNIST (with 3 devices), we see that the performance gap is larger. We run full gradient descent at
each round for both methods.
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Efficiency of q-FedAvg under different data heterogeneity. As mentioned in Appendix F.1, one
potential cause for the slower convergence of q-FedAvg on the synthetic dataset may be that local
updating schemes could hurt convergence when local data distributions are highly heterogeneous.
Although it has been shown that applying updates locally results in significantly faster convergence in
terms of communication rounds (McMahan et al., 2017; Smith et al., 2018), which is consistent with
our observation on most datasets, we note that when data is highly heterogeneous, local updating
may hurt convergence. We validate this by creating an IID synthetic dataset (Synthetic-IID) where
local data on each device follow the same global distribution. We call the synthetic dataset used
in Section 4 Synthetic-Non-IID. We also create a hybrid dataset (Synthetic-Hybrid) where half of
the total devices are assigned IID data from the same distribution, and half of the total devices are
assigned data from different distributions. We observe that if data is perfectly IID, q-FedAvg is
more efficient than q-FedSGD. As data become more heterogeneous, q-FedAvg converges more
slowly than q-FedSGD in terms of communication rounds. For all three synthetic datasets, we repeat
the process of tuning a best constant step-size for FedSGD and observe similar results as before
— our dynamic solver q-FedSGD behaves similarly (or sometimes outperforms) a best hand-tuned
FedSGD.
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Figure 9: Convergence of q-FedAvg compared with q-FedSGD under different data heterogeneity.
When data distributions are heterogeneous, it is possible that q-FedAvg converges more slowly than
q-FedSGD. Again, the proposed dynamic solver q-FedSGD performs similarly (or better) than a best
tuned fixed-step-size FedSGD.
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