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ABSTRACT

Imitation learning from human-expert demonstrations has been shown to be greatly
helpful for challenging reinforcement learning problems with sparse environment
rewards. However, it is very difficult to achieve similar success without relying
on expert demonstrations. Recent works on self-imitation learning showed that
imitating the agent’s own past good experience could indirectly drive exploration
in some environments, but these methods often lead to sub-optimal and myopic
behavior. To address this issue, we argue that exploration in diverse directions by
imitating diverse trajectories, instead of focusing on limited good trajectories, is
more desirable for the hard-exploration tasks. We propose a new method of learning
a trajectory-conditioned policy to imitate diverse trajectories from the agent’s own
past experiences and show that such self-imitation helps avoid myopic behavior
and increases the chance of finding a globally optimal solution for hard-exploration
tasks, especially when there are misleading rewards. Our method significantly
outperforms existing self-imitation learning and count-based exploration methods
on various hard-exploration tasks with local optima. In particular, we report a
state-of-the-art score of more than 20,000 points on Montezumas Revenge without
using expert demonstrations or resetting to arbitrary states.

1 INTRODUCTION

Hard-exploration tasks, particularly characterized by sparse environment rewards, are traditionally
challenging in reinforcement learning (RL), because the agent must carefully balance the exploration
and exploitation when taking a long sequence of actions to receive infrequent non-zero rewards.
Demonstration data has been shown to be helpful for tackling hard-exploration problems (Subrama-
nian et al., 2016); many existing methods (Hester et al., 2018}, |[Pohlen et al., 2018} |Aytar et al., 2018
Salimans & Chenl 2018)) provide the guidance for exploration based on imitation learning of expert
demonstrations and achieve strong performances on hard-exploration tasks. However, the reliance on
human demonstrations largely limits the general applicability of such approaches.

The agent’s own past good trajectories with high total rewards
are easily accessible (though imperfect) alternatives for the
human-expert demonstrations. Recent works (Oh et al.| 2018}
Gangwani et al.| [2018)) verify that imitation learning from
the agent’s previous good trajectories could indirectly drive
exploration in certain environments. However, imitation of
good experiences within limited directions might hurt ex-
ploration in some cases. Specifically, in environments with
misleading rewards which may trap the agent in local optima, Figure 1: Map of Apple-Gold domain,
simply imitating ‘good’ trajectories that would accumulate where the reward for getting an apple, get-
misleading positive rewards may guide the agent to a myopic ting the gold and taking a step in the rock
behavior and hinder it from reaching a higher return in the is 1, 10, -0.05 respectively. The time limit
longer term. Therefore, imitating diverse trajectories would ~for one episode is 45 steps.

be more desirable to encourage exploration in diverse directions and avoid being distracted by the
misleading rewards. For example, as illustrated in Figure |1} the agent starts in the bottom left
corner where it can easily collect apples near its initial location by random exploration and achieve a
small positive reward. If the agent imitates the trajectories around the orange path, it would receive
the nearby positive rewards quickly but it is unlikely to collect the gold within a given time limit.
Therefore, in order to find the optimal path (purple), it is better to exploit the past experiences in
diverse directions (gray paths), instead of focusing only on the trajectories with the myopic behavior.

optimal

This paper investigates how imitation of diverse past trajectories leads a further exploration and helps
avoid getting stuck at a sub-optimal behavior. Our main contributions are summarized as follows:
(1) We propose a novel architecture for a trajectory-conditioned policy that can imitate diverse
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demonstrations. (2) We show the importance of imitating diverse past experiences to indirectly drive
exploration to different regions of the environment, by comparing to existing approaches on various
sparse-reward reinforcement learning tasks with discrete and continuous action space. (3) We achieve
a performance comparable with the state-of-the-art on hard-exploration Atari game of Montezuma’s
Revenge and Pitfall without using expert demonstrations or resetting to arbitrary states.

2 RELATED WORK

Imitation Learning The goal of imitation learning is to train a policy to mimic a given demonstra-
tion. Many previous works achieve good results on hard-exploration Atari games by imitating human
demonstrations. DQfD (Hester et al., 2018)) combines the temporal difference updates in Q-learning
with the supervised classification of the demonstrators’ actions. Ape-X DQfD (Pohlen et al., 2018)
extends DQfD with the transformed Bellman operator and temporal consistency loss to improve the
efficiency of exploration. |Aytar et al.| (2018) learn embeddings from a variety of demonstrations
videos and proposes the one-shot imitation learning reward, which inspires the design of reward in our
method. All these successful attempts rely on the availability of human demonstrations. In contrast,
our method treats the agent’s past trajectories as demonstrations. Imitation learning is more difficult
when the environment becomes more stochastic because the demonstrations could not account for
all possible situations. Our method allows for some flexibility to follow the demonstrations in a
soft-order and thus could perform well in the environment with a moderate degree of stochasticity. As
discussed in Appendix [C.T| we can easily extend our method to handle a more challenging scenario
(e.g., where the location of objects could be random). Yet, imitation learning in extremely stochastic
environments is still an open problem (Ghosh et al., 2017} |Paine et al.,[2019).

Self-Imitation Learning a good policy by imitating past experiences has been discussed where the
agent is trained to imitate only the high-reward trajectories with the SIL (Oh et al.| 2018]) or GAIL
objective (Gangwani et al.,[2018). In contrast, we store the past trajectories ending with diverse states
in the buffer, because trajectories with low reward in the short term might lead to high reward in
the long term, and thus following a diverse set of trajectories could be beneficial for discovering
optimal solutions. Furthermore, our method focuses on explicit trajectory-level imitation while
existing methods use sampled state-action pairs from the buffer to update the policy. (Gangwani et al.
(2018)) proposed to learn multiple diverse policies in a SIL framework using the Stein Variational
Policy Gradient. Empirically, their exploration can be limited by the number of policies learned
simultaneously and the exploration performance of every single policy, as shown in Appendix [

Exploration Many exploration methods (Schmidhuber;, [1991}; |Auer, [2002; (Chentanez et al., 2005}
Strehl & Littmanl [2008)) in RL tend to award a bonus to encourage an agent to visit novel states.
Recently this idea was scaled up to large state spaces (Tang et al., |2017; |Bellemare et al., [2016;
Ostrovski et al.,[2017; |Burda et al., [2018). We propose that instead of directly taking a quantification
of novelty as an intrinsic reward, one can encourage exploration by rewarding the agent when it
successfully imitates demonstrations that would lead to novel states and gain the advantages in
exploitation, as discussed in Appendix [l Go-Explore (Ecoffet et al.| 2019) also shows the benefit of
exploration by returning to promising states. Our method can be viewed in general as an extension of
Go-Explore, though we do not need to explicitly divide learning into two phases of exploration and
robustification. Go-Explore relies on the assumption that the environment is resettable. Resetting to
an arbitrary state can result in over two orders of magnitude reduction in sample complexity and thus
give an unfair advantage. More importantly, such resetting is often infeasible in real environments.
When using a perfect goal-conditioned policy instead of a direct ‘reset’ function, this variant of
Go-Explore may not explore as efficiently as our method, as discussed in Appendix [H] Previous works
attempted reaching a goal state by learning a set of sub-policies (Liu et al.,[2019) or a goal-conditioned
policy in pixel observation space (Dong et al.l 2019)). |Gregor et al|(2016); Eysenbach et al.| (2018);
Pong et al.|(2019) seek a diversity of exploration by maximizing the entropy of mixture skill policies
or generated goal states. However, these methods do not show experimental results performing well
on sparse-reward environments with a rich observation space like Atari games.

Goal-Conditioned Policy |Andrychowicz et al.|(2017); Nair et al.| (2017); |Schaul et al.| (2015a);
Pathak et al.|(2018) studied learning a goal-conditioned policy. Similarly to hindsight experience re-
play (Andrychowicz et al.l 2017), our approach samples goal states from past experiences. Compared
to conditioning on a single goal state, the state trajectory can lead the agent to follow a demonstration
to reach the goal state even far away from the current state. Our method shares the same motivation
asDuan et al.|(2017) which uses an attention model over the demonstration but mainly focuses on
the block stacking task. However, our architecture is simpler since it does not use an attention model
over the current observation and our method is evaluated on various environments.
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Algorithm 1 Diverse Self-Imitation Learning with Trajectory-Conditioned Policy

Initialize parameter 6 for the trajectory-conditioned policy 7o (a¢|e<¢, 0¢, g)
Initialize the trajectory buffer D < () # Store diverse past trajectories
Initialize set of transitions in the current episode € < () # Store current episode trajectory
Initialize set of on-policy samples F < @ # Store data for on-policy PPO update
Initialize demonstration trajectory g < ()
for each iteration ¢ from 1 to I do
for each step ¢ do
Observe s; = {o¢, e+ } and choose an action a; ~ 79 (at|e<t, 0¢, g)
Execute action a; in the environment to get 7¢, 0¢+1, €¢+1
Store transition £ <— £ U {(o¢, e¢, as,r¢)}
# Positive reward if agent follows demonstration g
# No reward after agent completes g and then takes random exploration
Determine rP > by comparing e<¢+1 wWith g (Eq.
Store on-policy sample F < F U {(ot, e, at, g,m0 ") }
end for
if s¢41 is terminal then
D + UpdateBuffer(D, £) (Alg.
Clear current episode trajectory £ < ()
g <+ SampleDemo(D, i, I) (Alg.
end if
0« 0 — nV o LX" # Perform PPO update using on-policy samples (Eq.
Clear on-policy samples F < ()
0« 0 — nVo LY # Perform supervised learning updates using samples from D for J times (Eq.
end for

3 METHOD

The main idea of our method is to maintain a buffer of diverse trajectories collected during training
and to train a trajectory-conditioned policy by leveraging reinforcement learning and supervised
learning to roughly follow demonstrations sampled from the trajectory buffer. The demonstration
trajectories cover diverse possible directions in the environment. Therefore, the agent is encouraged
to explore beyond various visited states in the environment and gradually push its exploration frontier
further. In the meantime, we can train the policy to imitate the best trajectories collected to exploit
the past good experiences. We put more weights on exploration in the early stage of training, and
then increases the probability of imitating the best trajectories (i.e., exploitation) as training goes on.
We name our method as Diverse Trajectory-conditioned Self-Imitation Learning (DTSIL).

3.1 BACKGROUND AND NOTATION

In the standard reinforcement learning setting, at each time step ¢, an agent observes a state s;, selects
an action a; € A, and receives a reward r; when transitioning to a next state s;11 € S, where S is a
set of all states and A is a set of all actions, The goal is to find a pohcy mg(a|s) parameterized by 6
that maximizes the expected return E, [Zf o V'], where y € (0,1] is a discount factor.

In our work, we assume a state s; includes the agent’s observation o; (e.g., raw pixel image) and a
high-level abstract state embedding e; (e.g., the agent’s location in the abstract space). The embedding
e¢ may be learnable from o<; (e.g., ADM (Choi et al.,[2018) could localize the agent in Atari games),
but in this work, we consider a setting where high-level embedding is provided as a part of s;|'| A
trajectory-conditioned policy mp(at|e<t, o4, g) (which we refer to as 7y (+|g) in shorthand notation)
takes a sequence of state embeddings g = {ef, €3, -, elggl} as input for a demonstration, where |g| is
the length of the trajectory g. A sequence of the agent’s past state embeddings e<; = {e1, eq, -+ ,e;}
is provided to determine which part of the demonstration has been followed by the agent. Together
with the current observation o, it helps to determine the correct action a; to accurately imitate the
demonstration. Our goal here is to find a set of optimal state embeddmg sequence(s) g* and the
policy m; (-|g) to maximize the return: g*, 6* £ argmaxg g Er,(.|g) [Zt o 7'7¢]. For robustness we

'In many important application domains (e.g. the robotics domain), such handcrafted representation is
available. Also, learning a good state representation itself is an important open question and extremely challeng-
ing especially for hard-exploration and sparse-reward environments, which is not the main focus of this work.
Therefore, we assume the availability of the high-level representations as many previous works (Florensa et al.,
2017; Liu et al.| [2019} |[Ecoffet et al.| 2019} |Plappert et al., |2018)
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may want to find multiple near-optimal embedding sequences with similar returns and a trajectory-
conditioned policy for executing them. In our implementation, we train the trajectory-conditioned
policy to imitate the best trajectories. Alternatively, an unconditional stochastic policy could also be
trained to imitate the best trajectories, which may further improve generalization and robustness (see
Appendix for more discussion and experiments).

3.2 ORGANIZING TRAJECTORY BUFFER

We maintain a trajectory buffer D = {(e™,7(1) n(1)) (e 7(2) 1)) ...} of diverse past trajec-
tories. For each embedding-trajectory-count tuple (e(, 7 n(9)), 7() is the best trajectory ending
with a state with the high-level representation e(*), and n(*) is the number of times the cluster repre-
sented by this state embedding e*) has been visited during training. To maintain a compact buffer,
similar state embeddings within the tolerance threshold ¢/ can be clustered together, and the existing
entry is replaced if an improved trajectory 7(*) ending with a near-identical state is found.

When given a new episode & = {(oo, €9, ag,r0), - , (or, er,ar,rr)}, all of the state embeddings
et(1 <t < T)in this episode & are considered as follows (similarly to [Ecoffet et al.[{(2019)), because
the buffer should maintain all of the possible paths available for future exploration to avoid missing any
possibility to find an optimal solution. If the Euclidean distance between e; and any state embedding
e() in the buffer is larger than th (i.e e; does not belong to any existing cluster in the buffer),
(e, T<t, 1) is directly pushed into the buffer, where 7<; = {(00, €0, a0, 70), - - , (01, €, s, 7¢) } is
the agent’s partial episode ending with e. If there exists e(*) similar to e, (i.e., e(*) and e, belong
to the same cluster within threshold th) and the partial episode 7<; is better (i.e., higher return or
shorter trajectory) than the stored trajectory 7(*), 7(%) is replaced by the current trajectory T<t, and

e(*) is replaced by e, to represent this cluster of state embeddings. The full algorithm in pseudo-code
is described in Appendix

3.3 SAMPLING DEMONSTRATIONS

When learning a trajectory-conditioned policy 7, demonstration trajectories are sampled from the
buffer D. We record the count n(*) of how many times the cluster represented by this state embedding
e(? is visited. In the exploration mode, we set the probability of sampling each trajectory as 1/v/n(®).
This is inspired by the count-based exploration bonus (Strehl & Littman, 2008} Bellemare et al.,2016)
and the idea of rank-based prioritization (Schaul et al., |2015b; [Ecoffet et al., 2019): we prioritize a
trajectory that ends with a less frequently visited state because this leads the agent to reach rarely
visited regions in the state space and is more promising for discovering novel states.

On the other hand, in the imitation mode, we sample the best trajectories stored in the buffer for
imitation learning. These trajectories are used to train the policy to converge to a high-reward behavior
(Aytar et al., 2018} [Ecoffet et al.|[2019)). To balance between exploration and exploitation, we decrease
the probability of taking the exploration mode and exploit the best experiences more as training goes
on. The algorithm is described in Appendix

3.4 LEARNING TRAJECTORY-CONDITIONED POLICY
Imitation Reward Given a demonstration trajectory g = {e, e, - - ,e‘gg‘ }, we provide reward
signals for imitating g. At the beginning of an episode, the index u of the last visited state embedding
in the demonstration is initialized as u = —1. At each step ¢, if the agent’s new state s;4; has an
embedding e; ;1 and it is the similar enough to any of the next At state embeddings starting from the
last visited state embedding e, in the demonstration (i.e., [|e;11 — e, || < th where u < v’ < u+At),
then it receives a positive imitation reward '™, and the index of the last visited state embedding in
the demonstration is updated as u < u’. This encourages the agent to visit the state embeddings in
the demonstration in a soft-order so that the agent could explore around the demonstration and the
demonstration plays a role to guide the agent to the region of interest in the state embedding space.
To summarize, the agent receives a reward P8I defined as

prsi [ f(re) + 7™ if 3/, u < o' < w4+ At, such that [[ed, — e,y || < th 0

R otherwise,

where f(-) is a monotonically increasing function (e.g., clipping (Mnih et al. [2015)). Figure
illustrates the updates of u during an episode when the agent visits a state whose embedding is close
to state embeddings in the demonstration g.

Policy Architecture For imitation learning with diverse demonstrations, we design a trajectory-
conditioned policy mg(as|e<t, 0, g) that should imitate any given trajectory g. Inspired by neural
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Figure 2: An example showing the updates of u, given At =
4. At each step t, we check the state embedding e;41 to find
similar state embedding e?, satisfying e;11 ~ €7, (i.e. |lery1 — Agent's Trajectory Observation
e?,|| < th) and to determine the reward according to Equation
After completing the demonstration, the agent performs random
exploration with reward 0 (e5 ~ e7).

Figure 3: Architecture of the trajectory-
conditioned policy (see Appendix .

machine translation methods (Sutskever et al., [2014;Bahdanau et al.,|2014)), one can view the demon-
stration as the source sequence and view the incomplete trajectory of the agent’s state representations
as the target sequence. We apply a recurrent neural network (RNN) and an attention mechanism to
the sequence data to predict actions that would make the agent follow the demonstration.

As illustrated in Figure RNN computes the hidden features hY for each state embedding e/ (0 <
1 < |g|) in the demonstration and derives the hidden features h; for the agent’s state representation
e;. Then the attention weight o, is computed by comparing the current agent’s hidden features h;
with the demonstration’s hidden features 1Y
as an attention-weighted summation of the demonstration’s hidden features to capture the relevant
information in the demonstration trajectory and to predict the action a;. The more details of policy
architecture are described in Appendix

Reinforcement Learning Objective With the reward defined as P! (Equation|[l}), the trajectory-
conditioned policy 7y can be trained with a policy gradient algorithm (Sutton et al., |2000):

[LRL E.,[—log ma(atle<t, o4, g)ﬁtL

where A; =Y 4Pl + 4" Vi(e<tin, 0r4n, 9) — Vale<t, 01, 9), )

where the expectation [E, indicates the empirical average over a finite batch of on-policy samples and
n denotes the number of rollout steps taken in each iteration. We use Proximal Policy Optimization
(PPO) (Schulman et al.l 2017) as an actor-critic policy gradient algorithm for our experiments.

Supervised Learning Objective To improve trajectory-conditioned imitation learning and to better
leverage the past trajectories, we propose a supervised learning objective. We sample a trajectory
7 = {(00, €0, a0,70), (01, €1,a1,71) - - } € D, formulate the demonstration g = {eg, e1,--- , €4}
and assume the agent’s incomplete trajectory is the partial trajectory g<; = e<; = {eg, €1, - , €}
forany 1 <t < |g|. Then a; is the ‘correct’ action at step ¢ for the agent to imitate the demonstration.
Our supervised learning objective is to maximize the log probability of taking such actions:

‘CSL = _logﬂ'Q(at|6§t70t’g)’ Whereg = {607617 e 76\9‘}' 3)

4 EXPERIMENTS

In the experiments, we aim to answer the following questions: (1) How well does the trajectory-
conditioned policy imitate the diverse demonstration trajectories? (2) Does imitation of the past
diverse experience enable the agent to further explore more diverse directions and guide the explo-
ration to find the trajectory with a near-optimal total reward? (3) Can our proposed method aid in
avoiding myopic behaviors and converge to near-optimal solutions?

4.1 IMPLEMENTATION DETAILS

Our algorithm begins with an empty buffer D. We initialize the demonstration as a list of zero vectors,
and the agent performs random exploration to collect trajectories to fill the buffer D. In practice,
the sampled demonstration trajectory g = {e,ef,--- } could be lengthy. We present a part
of the demonstration as the input into the pohcy, s1m11arly to translating a paragraph sentence by
sentence. Specifically, we first input {eJ, e{, -+ ,e9 } (m < |g|) into the policy. When the index of
the agent’s last visited state embedding in the demonstration u belongs to {m — At,--- ,m}, we
think that the agent has accomplished this part of the demonstration, and switch to the next part
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Figure 4: Learning curves on Apple-Gold domain averaged over 5 runs, where the curves in dark colors are
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Figure 5: Visualization of trajectories stored in the buffer for PPO+SIL and DTSIL (ours) over time. The agent
(gray), apple (red) and gold (yellow) are shown as squares for simplicity. The rocky region is in light blue.

PPO+SIL

DTSIL

{eg,ef 1, - el ..} Werepeat this process until the last part of the demonstration. If the last part
{eg,ed 1o, efgl} is less than m 4 1 steps long, we pad the sequence with zero vectors.

A reward function f(r;) = 7 is used on the Apple-Gold, Deep Sea and MuJoco domain, and
f(ry) = 2 clip(r, 0,1) on other environments. ™ = 0.1 is the reward to encourage imitation.
More details about hyperparameters and the environments can be found in the Appendix

We compare our method with the following baselines: (1) PPO: Proximal Policy Optimization
(Schulman et al., [2017); (2) PPO+EXP: PPO with reward f(r;) + \/+/N(e;), where \/+/N(e;)
is the count-based exploration bonus, N(e) is the number of times the cluster which the state
representation e belongs to was visited during training and ) is the hyper-parameter controlling the
weight of exploration term; (3) PPO+SIL: PPO with Self-Imitation Learning (Oh et al.|[2018).

4.2 APPLE-GOLD DOMAIN

The Apple-Gold domain (shown in Figure[T) is a simple grid-world environment with misleading
rewards that can lead the agent to local optima. An observation consists of the agent’s location (x¢, y;)
and binary variables showing whether the agent has gotten the apple or the gold. A state is represented
as the agent’s location and the cumulative positive reward: e; = (¢, y¢, 22:1 max(r;,0)), indicating
the location of the agent and the collected objects.

As shown in Figure [da] PPO, PPO+SIL, and PPO+EXP agents are stuck with the sub-optimal policy
of collecting the two apples. In Figure bl PPO+EXP agent could occasionally explore further and
gather the gold with total reward 8.5. However, the agent does not replicate the good trajectory due
to the negative reward along the optimal path and network forgetting about the good experiences.
DTSIL marches forward on the right side of the maze and achieves the highest total reward 8.5 within
the time limit. Figure [4c|shows the number of different state embeddings found during training.

In Figure [dd] we show the average success ratio of the imitation during training. It is defined as
follows: for a given demonstration g = {ef, e{,- -~ , €]} }, let u be the index of the last visited state
embedding in g when the agent’s current episode terminates, then the success ratio of imitating g
is ﬁ (i.e., the portion of trajectory imitated). Ideally, we want the success ratio to be 1.0, which
indicates that the trajectory-conditioned policy could successfully follow any given demonstration
from the buffer. At SM steps, the trajectories with the optimal total reward 8.5 are found, and our
trajectory-conditioned policy eventually imitates them well with a success ratio around 1.0.
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Figure 6: Learning curves of the average episode reward, the best episode reward, and the number of different
rooms found on Montezuma’s Revenge and Pitfall, averaged over 3 runs. On Montezuma’s Revenge, DT-
SIL+EXP discovers around 40 rooms on average while PPO+EXP never finds a path to pass through all 24
rooms at the first level and then proceed to the next level.

Figure [3] visualizes a learning process. PPO+SIL fails on this task because the agent quickly
exploits good experiences of collecting the apples and the buffer is filled with the trajectories in the
nearby region. On the contrary, DTSIL maintains a buffer of diverse trajectories which are used as
demonstrations to guide the agent to explore different regions and discover an optimal behavior.

4.3 ATARI MONTEZUMA’S REVENGE AND PITFALL

We evaluate our method on the hard-exploration game Montezuma’s Revenge and Pitfall in the Arcade
Learning Environment (ALE) (Bellemare et al., 2013} Machado et al., 2017)). The environment setting
is the same as Mnih et al.| (2015). There is a random initial delay resulting in stochasticity in
the environment. The observation is a frame of raw pixel images, and the state representation
et = (roomy, Ty, Ys, Zle max(r;,0)) consists of the agent’s ground truth location (obtained from
RAM) and the accumulated positive environment reward, which implicitly indicates the objects
the agent has collecte It is worth noting that even with the ground-truth location of the agent,
on these two infamously difficult games, it is highly non-trivial to explore efficiently and avoid
local optima without relying on expert demonstrations or being able to reset to arbitrary states. In
addition to the agent’s location information, many complicated elements such as moving entities,
traps, and the agent’s inventory are included in the state. Therefore, these Atari games with agent’s
location information are still much more challenging than the grid world environments. Empirically,
as summarized in Table [T} the previous SOTA baselines using the agent’s ground truth location
information even fails to achieve high scores.

Using the state representation e;, we introduce a variant ‘DTSIL+EXP’ that adds a count-based
exploration bonus ;" = 1/,/N(e;) to Eq for faster exploratio As shown in Figure@ and in
the early stage, the average episode reward of DTSIL+EXP is worse than PPO+EXP because our
policy is trained to imitate diverse demonstrations rather than directly maximize the environment
reward. Contrary to PPO+EXP, DTSIL+EXP agent is not eager to myopically follow the high-reward
path since the path with a relatively low score in the short term might lead to higher rewards in the
long term. On Montezuma’s Revenge, for example, with two keys in hand, PPO+EXP agent often
opens a nearby door and loses the chance of opening the last two doors of the first leveﬂ As training
continues, DTSIL+EXP successfully discovers trajectories to pass the first level with a total reward
of more than 20,000, as shown in Figure[6b] While gradually increasing the probability of imitating

2We can also use the number of keys as an element in the state embedding as in (Ecoffet et al.,[2019) to
reduce the size of the state embedding space and improve the performance, as shown in Appendix@

3Note that the existing exploration methods listed in Tablealready take advantage of count-based exploration
bonus (e.g., A2C+CoEX+RAM, SmartHash, DeepCS, and Abstract-HRL). Therefore, combination of DTSIL
and the count-based exploration bonus does not introduce unfair advantages over other baselines.

“Demo videos of the learned policies for both PPO+EXP and DTSIL+EXP are available at https: //
sites.google.com/view/diverse-sil. In comparison to DTSIL+EXP, we could see the PPO+EXP
agent does not explore enough to make best use of the tools (e.g. sword, key) collected in the game. A map of
this level is shown in Figure@]in Appendix.
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Method ‘ DTSIL A2C+CoEX+RAM SmartHash DeepCS ‘ Abstract-HRL ‘ A2C+SIL PPO+CoEX RND
MontezumaRevenge | 20,187 6,600 5,661 3,500 11,000 2,500 11,618 10,070
Pitfall 6,546 - - -186 10,000 - - -3

Table 1: Comparison with the state-of-the-art results on Montezuma’s Revenge and Pitfall. Abstract—HRL
assumes more high-level state information, including the agent’s location, inventory and invetory
history, etc. DTSIL, A2C+CoEX+RAM (Choi et al [2018), SmartHash (Tang et al.l 2017), and DeepCS
only make use of agent’s location information from RAM, while A2C+SIL [2018),
PPO+CoEX [2018), and RND do not use RAM information. The score is

averaged over multiple runs, gathered from each paper.
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Figure 7: The reward for getting the key, opening the door, and collecting the treasure (yellow block) is 1, 2, and
6 respectively. The learning curve of the episode reward is averaged over 3 independent runs.

the best trajectories in the buffer by sampling them as demonstrations, the average episode reward
could increase to surpass 20,000 in Figure @ On Pitfall, the positive reward is much sparser and
most of the actions yield small negative rewards that would discourage getting a high total reward in
the long term. However, our method still stores the trajectories with negative rewards, encourages the
agent to visit these novel regions and then discovers good paths with positive rewards as illustrated
in Figure [6f] Therefore we are able to eventually reach average episode reward over 0 in Figure
without expert demonstrations.

Table[T]compares our proposed method with previous works without using any expert demonstration
or resetting to an arbitrary state, where our approach significantly outperforms the other approaches
which make use of the same information from RAM about the agent’s location. In the Appendix, we
present more experimental results on other interesting environments with discrete action space such

as Deep Sea (Osband et al.} 2019).

4.4 MuJoco

We evaluate DTSIL on continuous control tasks. We adapt the maze environment introduced in
to construct a set of challenging tasks, which require the point mass agent to collect the
key, open the door with the same color and finally reach the treasure to get a high score. One key
cannot be re-used once it was used before to open a door with the same color, which makes the agent
to be easily trapped. A visualization of these environments is shown in Figure[/| The observation
is the agent’s location and range sensor reading about nearby objects. The state representation is
€t = (xtayt,zzzl Ti)-

As shown in the first maze of Figure[7] the agent can easily get the blue key near its initial location
and open the blue door in the upper part. However, the optimal path is to bring the key to open the
blue door in the bottom and obtain the treasure, reaching an episode reward of 9. In the second maze,
the agent should bring the blue key and pick up the green key while avoiding opening the blue door
in the upper part. Then, the green and blue key can open the two doors at the bottom of the maze,
which results in the total reward of 12. The learning curves in Figure [/|show that PPO, PPO+EXP,
and PPO+SIL may get stuck at a sub-optimal behavior, whereas our policy eventually converges to
the behavior achieving the high episode reward.

5 CONCLUSION

This paper proposes to learn diverse policies by imitating diverse trajectory-level demonstrations
through count-based exploration over these trajectories. Imitation of diverse past trajectories can
guide the agent to rarely visited states and encourages further exploration of novel states. We show
that in a variety of environments with local optima, our method significantly improves self-imitation
learning (SIL). It avoids prematurely converging to a myopic solution and learns a near-optimal
behavior to achieve a high total reward.
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Appendix

A DETAILED DESCRIPTION OF ALGORITHMS

A.1 ALGORITHM OF TRAJECTORY BUFFER UPDATE

In Algorithm 2] we summarize how to process the collected episode and store the diverse trajectories
in the trajectory buffer.

Algorithm 2 Update Trajectory Buffer

Input: the trajectory buffer D = {(e(®, 7(1) M) () 7(2) n2)y ...}
Input: the current episode & = {(0g, €9, ap, 7o), (01,€1,01,71), - , (o, er,ar,r7)}
Input: the threshold ¢h for high level state embedding

# Consider all the states in £
for each step t do
# Consider state s, and partial episode T<, = {(00, €9, G0, 70), - , (01, €1, a1, 7))}
if there exists (e(®), 7(®) n(*)) € D where ||e*) — ¢;|| < th then
# Compare partial episode <. with stored trajectory 7(k)
if 7<; has higher total reward or reaches the same total reward with less steps then
) T<t = {(00,€0,a0,70), (01,€1,0a1,71), -+ , (04, €, a1,7¢) }
e(k) — €
end if
n®) — n) 41
else
D < DU (e, 7<t, 1) where 7<; = {(00, €0, a0, 70), (01, €1,a1,71), -, (01, ¢, az, 7¢) }
end if
end for
return D

A.2 ALGORITHM OF SAMPLING DEMONSTRATIONS

In Algorithm 3] we summarize how to sample the demonstrations from the trajectory buffer for
exploration or imitation. Considering the current iteration 4 and the total number of iterations I, the
probability of sampling demonstration for imitation to learn good behavior is 7 and the probability of

sampling demonstration from exploration is 1 — %

Algorithm 3 Sample Demonstration Trajectories

Input: the trajectory buffer D = {e(1), 7)) n(1)) () 7(2) n(2)) ...}
Input: current iteration ¢, total number of iterations I.

# With probability %, run the imitation mode; with probability 1 — %, run the exploration mode

if random number ~ U0, 1] is smaller than £ then
# sample the top-K trajectories reaching near-optimal score in the buffer

g < {eo,e1, -+ e} forall (o, e, ae, 1) € T
else
Calculate probability distribution p + | ;(1) ) 71(2) o]
P
b Ej pj
Sample (e, 7,n) ~ Categorical(D, p)
g < {eo,e1, - ,eq ) forall (o, e, ar,7) €T
end if
return g
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B DETAILS OF NETWORK ARCHITECTURE

In the trajectory-conditioned policy (Figure , we first embed the input state e; (or e) with a
fully-connected layer with 64 units. Next, RNN with gated recurrent units (GRU) computes the
feature h; (or hY) with 128 units. The attention weight o is calculated based on the Bahdanau
attention mechanism (Bahdanau et al., [2014). The concatenation of the attention readout ¢;, the
hidden feature of agent’s current state h;, and convolutional features from the observation are used to
predict 7(a¢|e<y, 04, g) with a linear layer.

For experiments on the Apple-Key domain, Toy Montezuma’s Revenge, and Mujoco, the features
from o, are not required for the policy. However, on the Atari games such as Montezuma’s Revenge,
it is necessary to take the raw observation o; as input into policy because the location information
in e<; solely could not let the agent to take temporal context into account (e.g. avoiding moving
skulls and passing laser gates). With the raw observation o; with shape 84 x 84 x 4 as input, three
convolutional layers are used to encode o; and then the convolutional feature is flattened.

| Attention oz m(ay | egmomg)

Ve<t,01,9)

9 g g
Lt ] [et] [l
Demonstration Trajectory g ~ D
Conv
o[ 5
L] L[] [=] [
Agent’s Trajectory QObservation

Figure 8: Architecture of the trajectory-conditioned policy (Repeating Figure .
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C ADDITIONAL EXPERIMENTS

C.1 GENERALIZATION AND ROBUSTNESS IN STOCHASTIC ENVIRONMENTS

We evaluate our method on environments with different levels of stochasticity. For Apple-Gold
domain, in the environments with random initial location of the agent (Figure[9), or with sticky action
(Figure [I0), our DTSIL still outperforms the baselines.
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Figure 9: Learning curves on Apple-Gold domain with random location of the agent in the lower left corner,
where the curves in dark colors are average over 5 curves in light colors. The x-axis and y-axis correspond to the
number of steps and statistics about the performance, respectively. The average reward and average imitation
success ratio are the mean values over 40 recent episodes.
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In a more challenging scenario when the location of the objects can be random, previous works
using expert demonstrations (e.g. |Aytar et al.|(2018)) would also struggle. Our method can be easily
extended to handle this difficulty by ditilling the behavior of good trajectories we collected to train
an unconditional policy robust to the stochasticity. For example, on the Apple-Gold domain with
pixel observation (Figure [TT)), the location of the gold could be random in the upper middle part of
the maze. We first explore for a sufficiently large number of timesteps (e.g. 10M timesteps) with the
trajectory-conditioned policy to collect good trajectories and then train an unconditional policy by
distilling the behavior, as shown in Figure [ T] to always collect the gold. We could see DTSIL with
unconditional policy training is able to generalize in the stochastic environment.
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Figure 11: Learning curves on Apple-Gold domain with stochastic location of the gold in the upper middle part
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C.2 EXPERIMENTS ON TOY MONTEZUMAREVENGE

We evaluate our method on a more challenging domain, Toy Montezuma’s Revenge (Roderick et al.,
2018)), which requires a more sophisticated strategy to explore the environment. As shown in Figure
there are 24 rooms similar to the layout of the first level of Atari Montezuma’s Revenge, with a
discrete grid for each room. The agent should navigate the labyrinth to locate the keys, unlock the
doors and reach the goal (the treasure room). The observation is represented by the agent’s location
and cumulative episode reward. The state representation e; = (roomy, x4, Yt, 22:1 r;) is the same
as the observation.

The learning curve of the averaged episode reward in Figure |13|shows that PPO, PPO+SIL, and
PPO+EXP could not learn a policy to reach the goal. The PPO+EXP agent occasionally finds
a trajectory with the total reward of 11,200 reaching the treasure room, but fails to exploit this
experience. On the other hand, our method learns a good behavior of not only reaching the goal room,
but also collecting all of the keys to achieve an optimal total reward of 11,600.

12000 12000
— PPO

100001 = PPO+Exp 10000
—— PPO+SIL

ours 8000

6000

4000

2000 ! 2000
e —

045 0
OM 40M 80M 120M 160M 200M OM 40M 80M 120M 160M 200M
Steps Steps

Average Reward
2 o o
& 3 8
g 8 8
8 8 8
Best Reward

o
o

6000

20004 M

Figure 12: Map of Toy Montezuma’s Revenge, where . / .

we show the agent (gray), key(blue), door(green), and oM 40M 8OM 120M 160M 200M oM 40M  80M_ 120M 160M 200M

treasure (yellow) as squares. The rewards are 100, 300, _. e e s
) . . . Figure 13: Learning curves on Toy Montezuma’s

and 10000, respectively. An optimal path with the high- R d 5

est total reward of 11,600 is shown as a red line. evenge averaged over - runs.

o
®

s
S
3
S
o
Y

o
=

Number of Found State

o

2

Average Imitation Success Ratio

)

15



Under review as a conference paper at ICLR 2020

C.3 EXPERIMENTS ON DEEP SEA

As introduced in|Osband et al.|(2019)), the deep sea problem is implemented as an N x N grid with
a one-hot encoding for state. The agent begins each episode in the top left corner of the grid and
descends one row per timestep. Each episode terminates after N steps, when the agent reaches the
bottom row. In each state there is a random but fixed mapping between actions A = {0, 1} and the
transitions ‘left” and ‘right’. At each timestep there is a small cost = —0.01/N of moving right, and
r = 0 for moving left. However, should the agent transition right at every timestep of the episode it
will be rewarded with an additional reward of +1. This presents a particularly challenging exploration
problem for two reasons. First, following the ‘gradient’ of small intermediate rewards leads the agent
away from the optimal policy. Second, a policy that explores with actions uniformly at random has
probability 2~V of reaching the rewarding state in any episode.

We compare DTSIL and baselines on deep sea environments with 10 x 10 grid and and 30 x 30 grid.
The state embedding we use here is exactly the observation. The result is shown in Figure[T4] On the
first environment, it is easy for all of the methods to converge to the optimal behavior. The second
one is much more challenging to find the optimal trajectory maximizing total reward. Therefore, PPO
and PPO+SIL fails at such environment due to the hard exploration. PPO+EXP could not always
explore to find the good behavior and exploit it efficiently within 12M timesteps. DTSIL successfully
discovers the right way and imitate to converge to the optimal behavior.
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Figure 14: Experiment on Deep Sea. The learning curves shows the average episode reward, best episode reward,
the number of found state representations, and the average success ratio of imitating the demonstrations in order.
The curves are averaged over 5 independent runs.

16



Under review as a conference paper at ICLR 2020

D HYPERPARAMETERS

The hyper-parameters for our proposed method used in each experiment are listed in Table[2] On
Mujoco environment, RL loss alone worked well so we did not include SL loss for behavior cloning.
On the other environments when action prediction in behavior cloning is poor, we set a large J
for quickly learning to imitate demonstrations. When action prediction is accurate enough, we
de-emphasize behavior cloning to enhance exploration around the demonstration. At influences
how flexibly the demonstration should be followed. In our experiment, we have At < m due to
the limit of the length m of the input demonstration part. When the demonstration is longer and
harder to follow, we would want larger At to generously provide imitation reward. On Atari games,
there are much more different trajectories stored in the buffer, so we sample top-100 trajectories
as demonstration for imitation of best experiences. On the other environments, the total number of
trajectories is much smaller, so we only take top-10 or top-1.

Environment Apple-Gold \Toy MontezumaRevenge \ Atari Deep Sea Mujoco
Learning Rate n 2.5e-4 2.5e-4 2.5¢e-4 2.5e-4 le-4
At 2 4 8 2 8
Length of demonstration 10 10 10 10 10
input part m
Number of supervised 10 deqreases t(? l. 10 degreases tg 1‘ 10 degreases tg 1. 10 degreases tg 1.
leamning updates J when action prediction| when action prediction |when action prediction | when action prediction 0
accuracy > 0.75 accuracy > 0.75 accuracy > 0.75 accuracy > 0.75
Threshold th for
. 1 1 1 1 1
state embedding
Top-K trajectories 1 10 100 1 10
imitation
Weight of exploration 10 ! ! 0.2 !
X in PPO+EXP (best one among (best one among (best one among (best one among (best one among
5, 10, 20, 50) 0.5,1,2,4) 0.5,1,2,4) 0.1,0.2,0.5,1) 0.5,1,2,4)
Discounting factor ~y 0.99 0.99 0.99 0.99 0.99

Table 2: Hyper-parameters on various environments for our experiments.
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E ENVIRONMENT SETTING

For each experiment we conducted, we list the detailed environment setting in Table[3] There is
stochasticity in the environments of Apple-Gold domain, Toy MontezumaRevenge, Atari, and Mujoco.
On Atari games, we use setting of the random initial delay introduced in (Mnih et al., 2015). On
Mujoco domain, the agent’s initial location is randomly sampled from a Gaussian distribution, as in
standard MuJoco tasks in OpenAl Gym (Brockman et al., 2016).

Environment |

Apple-Gold

| Toy MontezumaRevenge |

Atari

Deep Sea

Mujoco

Observation

agent’s location (X, y)
in 17x13 grid and
binary variables
indicating whether
apple or gold
is collected

agent’s location
(room, X, y)
in 24x11x11 grid and
accumulated reward

stacked most recent
4 gray observations
with shape 84x84x4

one-hot encoding
of state in 10x10
or 30x30 grid

agent’s location (X,y)
in 22x22 space
and range sensor
reading about
nearby objects

State

(xt: Yt, 25:1 max(ri, 0))

(roomy, T4, Yo, > iy Ti)

(roomtaxﬁyt?

Zle max(r;,0))

same as observation

(xta Y, 25:1 Ti)

Representation where (2¢, y¢) in
9 x 9 grid
5 discrete actions: 5 discrete actions: 18 discrete actions: . L (dz,dy) in
: 2 discrete actions: . .
Action up, down, left, up, down, left, noop, fire, left, . continuous action
. . left, right
right, noop right, noop e space
0 if going left
_o.0f .~ 0.01
rock -0.05 key +100 mostly zero, iflo ine }31? key +1
Reward gold +10 door +300 sparse positive rewards glo t%h & door +2
apple +1 treasure +10000 when collecting objects atthe treasure +6
last step if
always going right
Time limit 45 steps 1000 steps 4500 steps 10 or 30 steps 1000 steps
{MontezumaRevenge,
deterministic or Pitfall }-
take 3 random take 5 random NoFrameskip-v4; take random normal
Stochasticity steps before the steps before the take a random number deterministic noise from the

episode starts
or sticky action

episode starts

between 0 and 30
of noop actions
before the episode starts

agent’s initial position

Table 3: The setting on various environments for our experiments.
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F COMPARISON WITH LEARNING DIVERSE POLICIES BY SVPG

While the code for the Stein variational policy gradient (SVPG) in|Gangwani et al.|(2018]) has not
yet been released, we replicate the method in|Gangwani et al.| (2018)) to learn diverse policies. Their
experiments focus on continuous control tasks with relatively simple observation spaces with limited
local optimal branches in the state space. We learn 8 diverse policies in parallel following their
method on our Apple-Gold domain with discrete action space. Figure[I3|shows a visualization of
the learning progress: the 8 policies learn to cover different regions of the environment. The method
explores better than PPO+SIL, but the exploration of each individual agent is not strong enough to
find the optimal path to achieve the highest episode reward.
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Figure 15: Visualization of the trajectories stored in the buffer for PPO+SIL, SVPG diverse |Gangwani et al.
(2018) and our method as training continues. In the second row, we show the trajectories for a total of 8
policies learned simultaneously with the SVPG method proposed in|Gangwani et al.| (2018)), where each color
corresponds to the trajectories collected by each policy.
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G MAP OF ATARI MONTEZUMA’S REVENGE AT THE FIRST LEVEL

On Montezuma’s Revenge, there are multiple levels and each level consists of 24 rooms. A map of
Atari Montezuma’s Revenge at the first level is shown in Figure[T6] It is challenging to bring two
keys to open the two doors in room 17 behind the treasure in room 15, where the agent can pass to
the next level.

Figure 16: Map of Atari Montezuma’s Revenge at the first level with 24 rooms. On Montezuma’s Revenge, there
are multiple levels and each level consists of 24 rooms. At the first level, it is challenging to bring two keys to
open the two doors in room 17 behind the treasure in room 15, where the agent can pass to the next level.
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H STUDY OF EXPLORATION EFFICIENCY

To evaluate the efficiency of exploration, we compare our method with the “exploration phase” in the
Go-Explore algorithm (Ecoffet et al.| 2019). The idea behind Go-Explore is to reset the agent to any
interesting state sampled from the buffer of state embeddings, and then explore further using random
actions. To study the exploration efficiency of our method, we modify the Go-Explore code such that
we could not reset to any arbitrary states in the environment. Similarly to (Ecoffet et al.}[2019), we
use the state representation (levely, roomy, x4, y¢, ki) where k; is the number of keys the agent holds

and (2, y;) isina 9 x 9 grid division of the frame, and the sampling weight \/i(ﬁ to sample goal

states from the buffer (It worth to note that the state representation and goal-state sampling function
recommended in Go-Explore paper is more complicated than this setting).

In the Go-Explore method without using the direct ‘reset’ function and with a perfect goal-conditioned
policy to visit any state sampled from the buffer, the agent could precisely advance to the goal state
by following the stored trajectory. The total steps taken in the environment are counted by summing
the number of steps taken to follow the stored trajectories and the number of steps taken to explore.

Montezuma's Revenge Montezuma's Revenge

DTSIL+Exp
—— Go-Explore

o
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Figure 17: Learning curves of the number of rooms and the number of different state representations found on
Atari Montezuma’s Revenge, averaged over 5 runs. The curves in dark colors are the average of the 5 curves in
light colors. During training, the state representation used is (levely, roomy, o+, ye, k).
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Number of Found Room
Number of Found State

In Figure [I8 we show the average number of rooms found and the number of different state
representations found during training. Even if we assume that there is a perfect goal-conditioned
policy in Go-Explore to guide the agent to follow the stored trajectory exactly and visit the goal
state, the learning curves demonstrate that our method is more efficient for exploring diverse state
representations and consequently visits several rooms. This is because our method uses the count-
based exploration bonus to encourages the exploration around and beyond the stored trajectories and
the imitation reward allows the agent to follow the demonstrations in a soft-order.

Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge
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Figure 18: Learning curves of the average reward, the best episode reward, the number of rooms, the number
of different state representations found on Atari Montezuma’s Revenge, averaged over 5 runs. The curves in
dark colors are the average of the 5 curves in light colors. During training, the state representation used is
(levely, roomy, T, ye, ke ).

In addition, we notice that, comparing with the state embedding (roomy, ¢, yt, 22:1 7; ), the state em-
bedding (level;, roomy, x4, y4, k¢ ) makes the size of embedding space smaller so that the exploration
could be more efficient. Such state representation conflates similar states while not conflating states
that are meaningfully different. Therefore, our method could reach a higher average score around
29,817. Here, the baseline PPO+Exp is essentially the CoEX method introduced in|Choi et al.| (2018)
with state embedding extracted from RAM, therefore DTSIL performs better than PPO+CoEX+RAM

no matter the state embedding is (roomy, ¢, yy, 22:1 r;) or (levely, roomy, ¢, yy, k).

21



Under review as a conference paper at ICLR 2020

I STUDY OF ADVANTAGE IN EXPLOITATION

We compared our method DTSIL with PPO+EXP in the main text. PPO+EXP encourages exploration
to novel states by providing auxiliary rewards to the agent, while our method rewards the agent when
it successfully follow the demonstrations which leads to novel states. In order to understand more
about the difference between these two mechanism, we propose a variant of our method denoted
as “DTSIL-combine”. In this variant, we do not separate the exploration mode and imitation mode.

However, we always sample the top-K best trajectories with highest total reward Z,l;‘o( flry) +

m) The PPO+EXP baseline directly optimize the objective thio(f (re) + m) via the

reinforcement learning algorithm while this variant indirectly optimizes such objective by imitating

the best trajectories with highest value of Z‘T_l (f(re) + —2—). We investigate the different
t=0 N(er)
performance of these two methods on the Apple-Gold domain.
g — PPO+EXP - 80 .
DTSIL-combine Ign 50
T &
[ — 40 °
: g g6
i £ 30 H l_
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‘ Steps . (b) Curves of the average total reward Steps
(a) Curves of the average environment rewards Z*‘;;‘o Flre) + 10 of the agent’s (c) Curves of the best environment reward of the

thllo 7 of the agent’s recent episodes N(et) agent’s episodes found during training

recent episodes
Figure 19: Learning curves averaged over 5 runs. The curves in dark colors are the average of the 5 curves in
light colors.

With A = 10 which is the best hyper-parameter we found after searching A = 5,10, 20, 50 for
PPO+EXP on Apple-Gold domain, in Figure[T9¢| we could notice both PPO+EXP agent and DTSIL-
combine agent have 3 out of 5 runs finding the optimal trajectory with episode rewards 8.5 and the

other 2 runs get stuck at the sub-optimal behavior. However, in Figure [I9b] DTSIL-combine is better

at optimizing the objective ZLT_‘O (re) + \/% averaging over the agent’s recent episodes and
= -

therefore it achieves higher environment environment reward as training goes on. As shown in Figure
DTSIL-combine agent reproduce the good trajectories to collect the gold in 3 out of 5 runs
while PPO+EXP agent is trapped at the behavior collecting the apples. The main reason might be
that DTSIL-combine agent never forgets the good experience of collecting gold, and always select
such good trajectories as demonstrations to guide the agent, while PPO+EXP might forget the good
trajectories occasionally found or fails to exploit them before the exploration bonus vanishes. The
importance of exploitation of the good experience to help the agent reproduce high-reward trajectories
is also discussed in|Oh et al.[(2018)).
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