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ABSTRACT

This paper presents a generic framework to tackle the crucial class mismatch prob-
lem in unsupervised domain adaptation (UDA) for multi-class distributions. Pre-
vious adversarial learning methods condition domain alignment only on pseudo
labels, but noisy and inaccurate pseudo labels may perturb the multi-class distribu-
tion embedded in probabilistic predictions, hence bringing insufficient alleviation
to the latent mismatch problem. Compared with pseudo labels, class prototypes
are more accurate and reliable since they summarize over all the instances and
are able to represent the inherent semantic distribution shared across domains.
Therefore, we propose a novel Prototype-Assisted Adversarial Learning (PAAL)
scheme, which incorporates instance probabilistic predictions and class prototypes
together to provide reliable indicators for adversarial domain alignment. With
the PAAL scheme, we align both the instance feature representations and class
prototype representations to alleviate the mismatch among semantically different
classes. Also, we exploit the class prototypes as proxy to minimize the within-
class variance in the target domain to mitigate the mismatch among semantically
similar classes. With these novelties, we constitute a Prototype-Assisted Condi-
tional Domain Adaptation (PACDA) framework which well tackles the class mis-
match problem. We demonstrate the good performance and generalization ability
of the PAAL scheme and also PACDA framework on two UDA tasks, i.e., ob-
ject recognition (Office-Home, ImageCLEF-DA, and Office) and synthetic-to-real
semantic segmentation (GTA5— Cityscapes and Synthia— Cityscapes).

1 INTRODUCTION

Unsupervised domain adaptation (UDA) aims to leverage the knowledge of a labeled data set (source
domain) to help train a predictive model for an unlabeled data set (target domain). Deep UDA meth-
ods bring noticeable performance gain to many tasks (Long et al., 2015; Saito et al., 2017; Richter
et al., 2016; Hoffman et al., 2016; Tsai et al., 2018) by exploiting supervision from heterogeneous
sources. Some methods exploit maximum mean discrepancy (MMD) (Gretton et al., 2008; Long
et al., 2015) or other distribution statistics like central moments (Sun & Saenko, 2016; Zellinger
et al., 2017; Koniusz et al., 2017) for domain adaptation. Recently, generative adversarial learn-
ing (Goodfellow et al., 2014) provides a promising alternative solution to UDA problem.

Since the labels of the target instances are not given in UDA, using the vanilla adversarial learn-
ing scheme may suffer from the cross-domain class mismatch problem, where the instances from a
target class A are potentially aligned with a source class B. This is a long-standing challenge espe-
cially for adversarial learning based UDA methods. Inspired by the pseudo-labeling strategy from
semi-supervised learning, previous methods either used the pseudo labels in the target domain to
perform joint distribution discrepancy minimization (Long et al., 2013; 2015) or developed condi-
tional adversarial learning methods that involve one high-dimensional domain discriminators (Long
et al., 2018) or multiple discriminators (Chen et al., 2017b; Pei et al., 2018). Though effective, these
conditional domain adversarial learning methods align different instances from different domains
relying only on their own predictions. Simple probabilistic predictions or pseudo labels may not
accurately represent the semantic information of input instances and introduce noise that misleads
the alignment. A toy example is given in Fig. 1(a). The pseudo label of the chosen instance z is
inclined to be class ‘square’ while the ground truth label is class ‘circle’. Only guided by the in-
stance prediction, the ‘circle’ class in the target domain and the ‘square’ class in the source domain
are easily confused, causing a class mismatch in the domain adversarial alignment.
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Figure 1: Illustration of two adversarial learning schemes. Different from class-agnostic adversarial
learning that pursues the marginal distribution alignment but ignores the semantic consistency, (a)
conditional adversarial learning relies heavily on the instance-level pseudo labels to perform con-
ditional distribution alignment, while (b) our prototype-assisted adversarial learning integrates the
instance-level pseudo labels and global class prototypes to make the conditional indicators more
reliable. Class information is denoted in different shapes with source in solid and target in hollow.

To address the class mismatch problem, we propose to exploit the class prototypes for adversarial
domain alignment, instead of using only the noisy and possibly inaccurate predictions. Class proto-
types are global feature representations of different classes and are relevant to the inherent semantic
distribution shared across domains. As shown in Fig. 1(b), class prototypes are expected to rem-
edy the negative effects of inaccurate probabilistic predictions. Motivated by this, we propose a
Prototype-Assisted Adversarial Learning (PAAL) scheme which complements instance predictions
with class prototypes to obtain more reliable conditional information for guiding the source-target
feature representation alignment.

Specifically, we summarize the class prototypes from all instances according to their predictions.
In this way, on one hand, we lower the dependence of class prototypes on instance predictions
which may be inaccurate, and on the other hand, we encourage the instances with greater certainty
to contribute more to their corresponding class prototypes. The prototypes are updated dynami-
cally through a moving average strategy to make them more accurate and reliable. Then by broad-
casting class prototypes to each instance according to its probability prediction, the inaccurate and
noisy semantic distribution depicted by instance predictions can be strengthened. Based on reli-
able prototype-based conditional information, we align both the instance feature representations and
the prototype feature representations through the proposed PAAL scheme to relieve the mismatch
among semantically dissimilar classes. However, such a conditional domain alignment may pro-
mote the confusion among semantically similar classes across domains to some degree. To further
alleviate it, we introduce a within-class objective in the target domain to pursue the class compact-
ness. Built on the proposed PAAL scheme and this within-class compactness objective, we develop
a Prototype-Assisted Conditional Domain Adaptation (PACDA) framework for solving UDA prob-
lems. Extensive experimental evaluations on both object recognition and semantic segmentation
tasks clearly demonstrate the advantages of our approaches over previous state-of-the-arts (Long
etal., 2018; Xu et al., 2019; Luo et al., 2019; Tsai et al., 2019).

The contributions of this work can be summarized into three folds: 1) To the best of our knowledge,
we are the first to leverage the class prototypes in conditional adversarial learning to address the
class mismatch problem in UDA; 2) We propose a simple yet effective domain adversarial learning
framework PACDA to tackle the mismatch problem among semantically similar classes as well as
semantically dissimilar classes; 3) The proposed PAAL scheme and PACDA framework are generic,
and our framework achieves the state-of-the-art results on several unsupervised domain adaptation
tasks including object recognition and semantic segmentation.

2 RELATED WORK

Unsupervised Domain Adaptation. UDA is first modeled as the covariate shift problem (Shi-
modaira, 2000) where marginal distributions of different domains are different but their conditional
distributions are the same. To address it, (Dudik et al., 2006; Huang et al., 2007) exploited a non-
parametric instance re-weighting scheme. Another prevailing paradigm (Pan et al., 2010; Long et al.,
2013; Herath et al., 2017) aims to learn feature transformation with some popular cross-domain met-
rics, e.g., the empirical maximum mean discrepancy (MMD) statistics. Recently, a large number of
deep UDA works (Long et al., 2015; Haeusser et al., 2017; Saito et al., 2018; Tsai et al., 2018) have
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been developed and boosted the performance of various vision tasks. Generally, they can be divided
into discrepancy-based and adversarial-based methods. Discrepancy-based methods (Tzeng et al.,
2014; Long et al., 2017) address the dataset shift by mitigating specific discrepancies defined on
different layers of a shared model between domains, e.g. resembling shallow feature transforma-
tion by matching higher moment statistics of features from different domains (Zellinger et al., 2017,
Koniusz et al., 2017). Recently, adversarial learning has become a dominantly popular solution to
domain adaptation problems. It leverages an extra domain discriminator to promote domain confu-
sion. (Ganin & Lempitsky, 2015) designs a gradient reversal layer inside the classification network
and (Tzeng et al., 2017) utilizes an inverted label GAN loss to fool the discriminator.

Pseudo-labeling. UDA can be regarded as a semi-supervised learning (SSL) task where unlabeled
data are replaced by the target instances. Therefore, some popular SSL strategies, e.g., entropy mini-
mization, mean-teacher, and virtual adversarial training, have been successfully applied to UDA (Vu
etal., 2019; French et al., 2018; Shu et al., 2018). Pseudo-labeling is favored by most UDA methods
due to its convenience. For example, (Saito et al., 2017; Li et al., 2019) exploit the intermediate
pseudo-labels with tri-training and self-training, respectively. Recently, curriculum learning (Choi
et al., 2019), self-paced learning (Zou et al., 2018) and re-weighting schemes (Long et al., 2018) are
further leveraged to tackle possible false pseudo-labels.

Conditional Domain Adaptation. Apart from the explicit integration with the last classifier layer,
pseudo-labels can also be incorporated into adversarial learning to enhance the feature-level domain
alignment. Concerning shallow methods (Long et al., 2013; Zhang et al., 2017), pseudo-labels can
help mitigate the joint distribution discrepancy via minimizing multiple class-wise MMD measures.
(Long et al., 2017) proposed to align the joint distributions of multiple domain-specific layers across
domains based on a joint maximum mean discrepancy criterion. Recently, (Chen et al., 2017b; Pei
et al., 2018) leverages the probabilities with multiple domain discriminators to enable fine-grained
alignment of different data distributions in an end-to-end manner. In contrast, (Long et al., 2018)
conditioned the adversarial domain adaptation on discriminative information via the outer product
of feature representation and classifier prediction. Motivated by the semantically-consistent GAN,
(Cicek & Soatto, 2019) imposed a multi-way adversarial loss instead of a binary one on the domain
alignment. However, these methods all highly rely on the localized pseudo-labels to align label-
conditional feature distributions and ignore the global class-level semantics. As far as we know,
we are the first to exploit class prototypes to guide the domain adversarial learning. Compared
with (Pei et al., 2018; Long et al., 2018), our PACDA framework complements the original feature
representations with reliable semantic features and merely involves two low-dimensional domain
discriminators, making the domain alignment process simple, conditional, and reliable.

3 METHOD

In this section, we first begin with the basic settings of UDA and then give detailed descriptions on
the proposed PAAL scheme and the PACDA framework. Though proposed for image classification,
they can also be easily applied to semantic segmentation.

3.1 PROBLEM SETTINGS

In a vanilla UDA task, we are given label-rich source domain data {(x%,y)}"s; sampled from
the joint distribution Ps (x5, y,) and unlabeled target domain data {x}}!'*; sampled from the joint
distribution Q;(x¢, y;), where :Bi € Xs and yz € )s denote an image and its corresponding label
from the source domain dataset, ; € X7 denotes an image from the target domain dataset and
P, # Q. The goal of UDA is to learn a discriminative model from Xg, Vg, and X to predict
labels for unlabeled target samples X'r.

As described in (Ganin et al., 2016), a vanilla domain adversarial learning framework consists of
a feature extractor network G, a classifier network F', and a discriminator network D. Given an
image x, we denote the feature representation vector extracted by G as f = G(x) € R and the
probability prediction obtained by F' as p = F'(f) € R¢ where d means the feature dimension and
c means the number of classes. The vanilla domain adversarial learning method in (Ganin et al.,
2016) can be formulated as optimizing the following minimax optimization problem:

min max Ly(G, F) = AadvLadn(G, D), (D



Under review as a conference paper at ICLR 2020

Feature + . * + % Shared
—> Extractor(G) > fs ——+>  Classifier (F) ——> Ps —1» Ly
MTp
l s Pg Feature Vector
T =
s Me maPs s
. B iR Prediction Vector
Feature Prototype
Discriminator —> | £ . Discriminator —» | L£P
(D) adv (D) adv Prototype Vector
___________ P

el a ® -
@ ft Mngc.,pf, — Concat

fi
fa T Mipd e
t Pt Loss Function
Feature *

Extractor (G) ft Classifier (F) Pt Ly

L — | Indicator

?

Figure 2: Overview of the proposed PACDA framework which consists of a shared feature extractor
G, a shared classifier F', and two domain discriminators (D, D). M, represents the global class
prototype matrix while M, ; is computed by source or target instances within current batch.

Laao(G, D) = ~Eqgiup, log[D(f1)] = E,i._q, logll = D(£])], )
il i i i
Ly(G,F)==E@: yi)~p, Yy log(py), ps = F(G(z})), 3)

where the binary domain classifier D : R? — [0, 1] predicts the domain assignment probability over
the input features, £, (G, F') is the cross-entropy loss of source domain data as for the classification
task, and \.q4, is the trade-off parameter.

3.2 PROTOTYPE-ASSISTED ADVERSARIAL LEARNING (PAAL) SCHEME

The mismatch among classes is a troublesome problem in UDA of multi-class distributions, which
challenges the popular vanilla adversarial learning. In previous works (Long et al., 2017; Pei et al.,
2018; Long et al., 2018), target domain data are conditioned only on corresponding pseudo labels
predicted by the model for adversarial domain alignment. The general optimization process of
these methods is the same as aforementioned vanilla domain adversarial learning, except that feature
representations jointly with predictions are considered by the discriminator D:

LERYG, D) = —Eqyop, log[D(f1,94)] = Egy o, log[l — D(f7, 7)), (4)

is the conditional adversarial loss that leverages the classification predictions ps and p;. A classic
previous work (Long et al., 2018) implicitly conditions the feature representation on the prediction
through the outer product f ® p, and uses one shared discriminator to align the conditioned feature
representations. (Long et al., 2018) further proves that using the outer product can perform much
better than simple concatenation f & p. Different from (Long et al., 2018), (Chen et al., 2017b;
Pei et al., 2018) explicitly utilize multiple class-wise domain discriminators to align the feature
representations relying on the corresponding predictions.

However, the pseudo labels may be noisy and inaccurate and possibly disturb the multi-class dis-
tribution. Therefore, only conditioning the alignment on pseudo labels can not well address the
mismatch problem. Compared with the pseudo labels, the class prototypes are more robust and reli-
able in terms of representing the distribution of different semantic classes. To acquire more reliable
and accurate conditional information for domain adversarial learning, we propose to complement
instance predictions with class prototypes and reformulate the adversarial loss to:

ﬁpaal(G7 D) = 7]Ew.i~P5 1Og[D( ;a MeTma ng)] - Em{NQt 1Og[1 - D(ff, MT p{)] (5

adv ema

Here M., € R*? denotes the global class prototype matrix in our prototype-assisted adversar-

ial learning loss £P%"'(G, D). In reality, the reliable conditional information is obtained through
broadcasting the global class prototypes to each independent instance according to its prediction p.

We propose to summarize feature representations of the instances within the same class as the corre-
sponding prototype. Then the probability prediction is leveraged to obtain accurate class prototypes.
Using predictions as weights can adaptively control the contributions of typical and non-typical in-
stances to the class prototype, making class prototypes more reliable. Specifically, we first gather
the feature representation of each instance relying on its prediction to generate the batch-level class
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prototypes. Then the global class prototypes can be obtained by virtue of an averaging strategy such
as exponential moving average (ema) on the batch ones. This process can be formulated as

. T L
Msma = /\emaMema + (1 - )‘ema)M7 where M = [ml» Tt amc]» my = 27 Pk'lfl /27 p’”. (6)

Here n means the batch size, p*'? represents the probability of the i-th instance belonging to the
k-th semantic class, Aemq is an empirical weight, M € R*? is the batch-level class prototype
matrix and M, is the global one computed by certain source domain data and contributes to more
reliable conditional information exploited by discriminators. Similarly, batch-level class prototypes

are broadcast to each instance in this batch through M aT Po Which can be denoted as ﬂ, a € {s,t}.
3.3 PROTOTYPE-ASSISTED CONDITIONAL DOMAIN ADAPTATION (PACDA) FRAMEWORK

With our prototype-based conditional information, we further propose a Prototype-Assisted Con-
ditional Domain Adaptation (PACDA) framework. This framework aligns both instance-level and
prototype-level feature representations through PAAL and promotes the within-class compactness
in target domain such that the mismatch problem can be substantially alleviated even though no
supervision is available in the target domain. Its overall architecture is shown in Fig. 2.

Besides the backbone feature extractor G and the task classifier ', there are two discriminators in our
framework PACDA, i.e., the instance-level feature discriminator D s and the prototype-level feature

discriminator D,,. We can formulate our general objective function as (w.l.o.g., Laay < L aaly

adv
‘C(Xs>y5'7 XT) = Ey - )‘Zdvﬁgdv - )\zdvﬂgdv + Atﬁt’ (7)

where A denotes balance factors among different loss functions, £, is the supervised classification

loss on source domain data described by Eq. (3), ﬁ({ v 18 the adversarial loss to align instance feature
representations across domains, £, is the adversarial loss to align class prototype representations
across domains, and L, is the loss to promote the within-class compactness in target domain.

Instance-Level Alignment Conditioning the instance feature representation on our prototype-based
conditional information, we seek to align feature representations across domains at the instance-
level through discriminator D¢. With the assistance of the inherent semantic distribution of class
prototypes, mismatch among semantically dissimilar classes can be effectively alleviated. We can
define the instance-level adversarial loss Eadvf as

[’f (G, F, Df) = _EmQNPS IOg[Df(f: @Me];napi)] _]Em,{NQt log[l _Df(ftj @Meq;napg)}' (8)

adv

Prototype-Level Alignment Although prototype-based conditional information tells more about
accurate multi-class semantic structures, instance-level alignment only implicitly aligns the global
multi-class structures shared by domains. Besides, since in practice global class prototypes are
collected from only source domain data, multi-class structures in the target domain may not be rep-
resented precisely. Taking into account these two causes, we perform the prototype-level alignment
with discriminator D), to explicitly align the class prototype representations across domains. The

specific loss function ﬁ({ v 18 defined as

L8, (G, F,Dy) = ~Eqi..p, log[D,(Fi0 M, pL)]~E,y o, log[l— Dy(fl 9 ML, p)]. 9)

adv

Within-Class Compactness Although adversarial alignment based on PAAL can relieve the mis-
match among obviously different classes, it cannot well handle the mismatch among semantically
similar classes. Specifically, incorporating class prototypes into instance predictions would confuse
semantically similar classes during domain alignment and result in the mismatch among them. To
solve this problem, our framework further promotes the within-class compactness in the target do-
main to enlarge the margin between similar classes. Taking the prototypes as proxy, we minimize
the following loss for target domain samples to encourage the within-class compactness:

. —~ 2
Li(G,F)=Egy ol — £l (10)
Thus, the complete minimax optimization problem of our PACDA framework can be formulated as

min max £, (G, F) - N oLl (G F, D) = N, LF, (G F,Dy) + MLo(G ). (1)
With only two low-dimensional (2 x d) discriminators added, we effectively address the mismatch
problem for domain adversarial learning in a simple manner. Some theoretical insights with the help
of domain adaptation theory (Ben-David et al., 2010) is discussed in the Appendix.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We conduct experiments to verify the effectiveness and generalization ability of our methods, i.e.,
PACDA (full) in Eq. (11) and PAAL ()\Z g = M = 0) on two different UDA tasks, including
cross-domain object recognition on ImageCLEF-DA', Office31 (Saenko et al., 2010) and Office-
Home (Venkateswara et al., 2017), and synthetic-to-real semantic segmentation for GTAS5 (Richter

et al., 2016)— Cityscapes (Cordts et al., 2016) and Synthia (Ros et al., 2016)— Cityscapes.

Datasets. Office-Home is a new challenging dataset that consists of 65 different object categories
found typically in 4 different Office and Home settings, i.e., Artistic (Ar) images, Clip Art (Ca),
Product images (Pr), and Real-World (Re) images. ImageCLEF-DA is a standard dataset built for
the ‘ImageCLEF2014:domain-adaptation’ competition. We follow (Long et al., 2015) to select 3
subsets, i.e., C, I, and P, which share 12 common classes. Office31 is a popular dataset that includes
31 object categories taken from 3 domains, i.e., Amazon (A), DSLR (D), and Webcam (W).

Cityscapes is a realistic dataset of pixel-level annotated urban street scenes. We use its original
training split and validation split as the training target data and testing target data respectively. GTAS
consists of 24,966 densely labeled synthetic road scenes annotated with the same 19 classes as
Cityscapes. For Synthia, we take the SYNTHIA-RAND-CITYSCAPES set as the source domain,
which is composed of 9,400 synthetic images compatible with annotated classes of Cityscapes.

Implementation Details. For object recognition, we follow the standard protocol (Ganin & Lem-
pitsky, 2015), i.e. using all the labeled source instances and all the unlabeled target instances for
UDA, and report the average accuracy based on three random trials for fair comparisons. Following
(Long et al., 2018; Xu et al., 2019), we experiment with ResNet-50 model pretrained on ImageNet.
Specifically, we follow (Long et al., 2018) to choose the network parameters, and all convolutional

layers and the classifier layer are trained through backpropagation, where >\£ aw=¢e-3, )\5 g and X2
increase from O to 1 with the same strategy as (Ganin & Lempitsky, 2015). Regarding the domain
discriminator, we design a simple two-layer classifier (256—1024—1) for both D and D,,. Empir-

ically, we fix the batch size to 36 with the initial learning rate being le-4.

For semantic segmentation, we adopt DeepLab-V2 (Chen et al., 2017a) based on ResNet-101 (He
et al., 2016) as done in (Tsai et al., 2018; Vu et al., 2019; Luo et al., 2019; Tsai et al., 2019). Follow-
ing DCGAN (Radford et al., 2015), the discriminator network consists of three 4 x 4 convolutional
layers with stride 2 and channel numbers {256, 512, 1}. In training, we use SGD (Bottou, 2010) to
optimize the network with momentum (0.9), weight decay (5e-4), and initial learning rate (2.5e-4).
We use the same learning rate policy as in (Chen et al., 2017a). Discriminators are optimized by
Adam (Kingma & Ba, 2015) with momentum (5; = 0.9, 82 = 0.99), initial learning rate (le-4)
along with the same decreasing strategy as above. For GTA5— Cityscapes, )\f: w=1e-3, AL, =le-3,
and \!, =le-5. For Synthia— Cityscapes, \| | =1e-3, AP, =le-4, and A%, =1e-4. All experiments
are implemented via PyTorch on a single Titan X GPU. The total iteration number is set as 10k for
object recognition and 100k for semantic segmentation, \.,,, is empirically set as 0.5, and data aug-
mentation skills like random scale or random flip and ten-crop ensemble evaluation are not adopted.

4.2 COMPARISON RESULTS

Cross-Domain Object Recognition. The comparison results between our methods (i.e., PAAL and
PACDA) and state-of-the-art (SOTA) approaches (Xu et al., 2019; Long et al., 2018; Zhang et al.,
2018) on Office-Home, Office31, and ImageCLEF-DA are shown in Tables 1 and 2, respectively.
As indicated in these tables, PACDA improves previous approaches in the average accuracy for all
three benchmarks (e.g., 67.3%—68.5% for Office-Home, 88.1%—88.8% for ImageCLEF-DA, and
87.7%—89.1% for Office31). Generally, PACDA performs the best for most transfer tasks. Taking
a careful look at PAAL, we find that it always beats CDAN and achieves competitive performance
with SOTA methods like CAT (Deng et al., 2019).

Synthetic-to-real Semantic Segmentation. We compare PAAL and PACDA with SOTA meth-
ods (Tsai et al., 2018; Vu et al., 2019; Luo et al., 2019; Tsai et al., 2019) on synthetic-to-real
semantic segmentation. Following (Chen et al., 2017b), we evaluate models on all 19 classes for

1https ://www.imageclef.org/2014/adaptation
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Table 1: Accuracy (%) on Office-Home for UDA under ResNet-50. Red: Best, Blue: Second best.

Methods Ar—Cl Ar—Pr Ar—Re Cl—Ar Cl—Pr Cl—-Re Pr—Ar Pr—Cl Pr—+Re Re—Ar Re—Cl Re—Pr Avg.
ResNet-50 (He et al., 2016) 349 500 580 374 419 462 385 312 604 539 412 599 46.1
DANN (Ganin & Lempitsky, 2015) 456 593  70.1 470 585 609 461 437 685 632 518 768 576
CDAN (Long et al., 2018) 490 693 745 544 660 684 556 483 759 684 554 805 63.8
CDAN+E (Long et al., 2018) 50.7 706 760 576 700 70.0 574 509 773 709 567 81.6 658
DWT-MEC (Roy et al., 2019) 503 721 77.0 596 693 702 583 481 773 693 536 820 65.6
SAFN (Xu et al., 2019) 520 733 719 652 715 732 63.6 526 782 723 571 815 673
PAAL 507 687 731 579 664 68.1 564 481 743 684 553 793 639
+02 402 402 £05 +£02 +£07 05 £09 £05 407 £05 £03
PACDA 533 736 7719 642 730 744 634 510 796 734 563 822 685

+03 +02 +01 +£06 +04 £06 +02 £06 +05 £04 £02 0.1

Table 2: Accuracy (%) on ImageCLEF-DA and Office31 for UDA under ResNet-50.

Datasets ImageCLEF-DA Office31

Avg. Avg.
Methods C—I C—P I-C I—=P P—=C P—I A—D A—W D—A D—-W W—A W—D
ResNet-50 (He et al., 2016) 78.0 655 91.5 748 912 839 80.7 689 684 625 967 607 99.3 76.1
DANN (Ganin & Lempitsky, 2015) 87.0 74.3 96.2 75.0 91.5 86.0 85.0 79.7 82.0 682 969 674 99.1 822
CDAN (Long et al., 2018) 90.5 745 97.0 76.7 93.5 90.6 87.1 89.8 93.1 70.1 982 68.0 100. 86.6
CDAN+E (Long et al., 2018) 91.3 742 97.7 777 943 90.7 87.7 929 941 710 986 693 100. 87.7
iCAN (Zhang et al., 2018) 89.9 78.5 947 79.5 92.0 89.7 874 90.1 925 721 988 699 100. 87.2
CAT (Deng et al., 2019) 91.3 753 955 772 936 91.0 87.3 90.8 944 722 980 70.2 100. 87.6
SAFN (Xu et al., 2019) 91.1 77.0 96.2 78.0 947 91.7 88.1 877 888 69.8° 984 69.7 99.8 857
PAAL 909 74.6 973 717 95.2 90.6 87.7 936 945 700 974 69.6 999 875
+0.6 +0.4 +0.0 £0.5 +£0.2 £0.5 +0.5 +£0.7 +03 +£0.2 +03 =£0.1
PACDA 92.3 76.0 97.2 779 96.7 92.8 88.8 949 953 714 981 75.0 999 89.1
+0.3 +0.6 +£0.5 £0.3 +£0.2 £0.3 +0.1 £0.5 £1.2 £0.2 +02 =£0.1

Table 3: Comparison results of synthetic-to-real semantic segmentation using the same architecture
with NonAdapt and AdaptSeg (Tsai et al., 2018), AdvEnt (Vu et al., 2019), CLAN (Luo et al., 2019)
and AdaptPatch (Tsai et al., 2019). Top: GTA5 — Cityscapes. Bottom: Synthia — Cityscapes.
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Methods

NonAdapt 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 259 6.5 25.3 36.0 36.6
AdaptSeg  86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
AdvEnt 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
CLAN 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdaptPatch 89.2 38.4 80.4 24.4 21.0 27.7 32.9 16.1 83.1 34.1 77.8 57.4 27.6 78.6 31.2 40.2 4.7 27.6 27.6 43.2

PAAL 89.4 27.6 82.1 27.1 24.4 29.3 35.5 22.5 83.8 37.9 78.2 60.0 28.8 83.7 33.2 44.8 6.4 24.6 29.2 44.7
PACDA  92.9 53.7 82.2 30.4 23.0 33.0 36.8 19.4 84.0 37.9 78.7 59.6 25.2 85.3 36.2 44.0 10.4 28.1 16.7 46.2

source: GTAS

< NonAdapt 55.6 238746 - - - 6.1 121748 - 79.055319.1396 - 233 - 13.725.038.6
£ AdaptSeg 792372788 - - - 99 105782 - 805535196670 - 295 - 21.6313459
£, AdvEnt 87.0 441797 - - - 48 72 801 - 83.656.4 237727 - 326 - 128 33.747.6
“ CLAN 813370801 - - - 161137782 - 815534212730 - 329 - 22.630.7 478
g AdaptPatch 82.2 394794 - - - 65 10877.8 - 820549 21.1 677 - 307 - 17.8322 463
2 PAAL 87.6 435801 - - - 82 94 790 - 82856.1 206820 - 353 - 168 31.6487

PACDA 868 43.881.0 - - - 98 10.880.3 - 84.247.0205826 - 361 - 19.037.749.2

GTA5— Cityscapes while on only 13 classes for Synthia— Cityscapes. As shown in Table 3, without
bells and whistles, our PAAL method outperforms all of those methods and our PACDA framework
further achieves new SOTA results on both tasks, i.e., 43.8%—46.2% for GTA5— Cityscapes and
47.8%—49.2% for Synthia— Cityscapes in terms of the mean IoU (mloU) value.

4.3 FURTHER ANALYSIS

Quantitative Analysis. To verify the effectiveness of each component in Eq. (11), we introduce a
variant named PAAL ¢ ,, that merely ignores the within-class objective (A = 0). The empirical con-
vergence curves about Ar—Cl in Fig. (3)(a) imply that all of our variants tend to converge after 10k
iterations, and the second term can help accelerate the convergence. As shown in Fig. 3(b), PAAL at
different levels obviously benefits UDA on both tasks. The within-class objective works well for ob-
ject recognition on Office-Home, yet hindering the adaptation performance for GTA5— Cityscapes.
This may be because the within-class objective ignores the spatial structure and equally considers
all pixels, making the formulation in Eq. (11) not suitable for semantic segmentation.
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Figure 3: Quantitative analysis of our methods.
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Figure 4: t-SNE (Maaten & Hinton, 2008) embedding visualization of UDA methods for C—I on
ImageCLEF-DA (class information is denoted by different colors with source in /A with target in ).

As shown in Fig. (3)(c), we provide the proxy A-distances (Ganin et al., 2016) of different methods
for Ar—Cl and C—1I. The A-distance Dist 4=2(1—2¢) is a popular measure for domain discrepancy,
where € is the test error of a binary classifier trained on the learned features. All the UDA methods
have smaller distances than ‘source only’ by aligning different domains. Besides, our PACDA has
the minimum distance for both tasks, implying that it can learn better features to bridge the domain
gap between domains. To testify the sensitivity of our PACDA, in Fig. (3)(d) we report the accu-
racies of DANN, CDAN and PACDA for C—I on the ImageCLEF-DA with 3 different backbone
architectures, i.e., VGG-16, ResNet-18, and ResNet-50. Obviously, PACDA is the best-performing
method that shows desirable robustness when the network changing from VGG-16 to ResNet-18.

Qualitative Analysis. For object recognition, we study the t-SNE visualizations of aligned features
generated by different UDA methods in Fig. 4. As expected, conditional methods including CDAN
and PAAL can semantically align multi-class distributions much better than DANN. Besides, PAAL
learns slightly better features than CDAN due to less class mismatch effects. Once considering
the within-class structure, PACDA further enhances PAAL by pushing away semantically confusing
classes, which achieves the best adaptation performance. For semantic segmentation, we present
some qualitative results in Fig. 5. Evidently, PAAL effectively improves the adaptation performance
and PAAL , further alleviates the class mismatch problem. As explained before, without consid-
ering the spatial structure, the within-class objective in PACDA fails to bring more gains for the
semantic segmentation task.

---- V‘ 2

(a) Target image (b) Ground truth (c) Source only (d) PAAL (e) PAAL; , (f) PACDA
Figure 5: Qualitative results of synthetic-to-real semantic segmentation for GTA5— Cityscapes.

5 CONCLUSION

In this work, we developed the prototype-assisted adversarial learning scheme to solve the challeng-
ing multi-class mismatch problem for UDA tasks. Unlike previous conditional ones whose perfor-
mance is sensitive to inaccurate instance prediction, our proposed scheme leverages the reliable and
accurate class prototypes for aligning multi-class distributions across domains and is demonstrated
to be more effective in tackling the mismatch problem. Then we further augment this scheme by
imposing the within-class compactness with the prototypes as proxy. Extensive evaluations on both
object recognition and semantic segmentation tasks clearly justify the effectiveness and superiority
of our UDA methods over well-established baselines.
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A APPENDIX

A.1 THEORETICAL INSIGHTS

We try to explain why our PAAL works well for UDA according to the domain adaptation theory
proposed in (Ben-David et al., 2010). Denote by ep(F) = E(s,)ep[F(f) # y] the risk of a
classifier model ' € H w.r.t. the distribution P, and by ep(F1, o) = E(syep[F1(f) # Fa(f)]
the disagreement between hypotheses Fi, F» € H. Particularly, (Ben-David et al., 2010) gives a
well-known upper bound on the target risk e (F') of classifier F in the following,

GQ(F) <ep(F)+ [EP(F*) + EQ(F*)} + |€p(F, F*) — EQ(F, F*)|, (12)

where F™* is the ideal classifier induced from F* = argminpey [ep(F) + €g(F')], and the last term
is related to the classical H-divergence dyay (P, Q) = 28Upp px ey lep (F, F*) — eq(F, F™*)]. Be-
sides, according to (Ben-David et al., 2010), the empirical H-divergence calculated by m respective
samples from distributions P and ) converges uniformly to the true #-divergence for classifier
classes H of finite VC dimension d, which is expressed as

dyan(P, Q) < dyan(P,Q) + 4\/dlog(2m) ha 10g(2/5). (13)

m

The work (Ganin & Lempitsky, 2015) introduces a binary domain discriminator to minimize the
empirical H-divergence JHAH(P, @), which aligns the marginal distributions well. However, if
two multi-class distributions P and () are not semantically aligned, there may not be any classifier
with low risk in both domains, which means the second term of the upper bound in Eq. (12) is very
large. The proposed PAAL scheme leverages reliable conditional information in the adversarial
learning module so that semantically similar samples from different domains are implicitly aligned,
thus it has a high possibility of decreasing the second term. Compared with (Long et al., 2018), the
input to domain the adversarial learning module is much more compact (2 X d < ¢ X d), which
helps decrease the second term in Eq. (13).
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