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ABSTRACT

Previous work shows that adversarially robust generalization requires larger sample
complexity, and the same dataset, e.g., CIFAR-10, which enables good standard
accuracy may not suffice to train robust models. Since collecting new training
data could be costly, we focus on better utilizing the given data by inducing the
regions with high sample density in the feature space, which could lead to locally
sufficient samples for robust learning. We first formally show that the softmax
cross-entropy (SCE) loss and its variants convey inappropriate supervisory signals,
which encourage the learned feature points to spread over the space sparsely in
training. This inspires us to propose the Max-Mahalanobis center (MMC) loss to
explicitly induce dense feature regions in order to benefit robustness. Namely, the
MMC loss encourages the model to concentrate on learning ordered and compact
representations, which gather around the preset optimal centers for different classes.
We empirically demonstrate that applying the MMC loss can significantly im-
prove robustness even under strong adaptive attacks, while keeping state-of-the-art
accuracy on clean inputs with little extra computation compared to the SCE loss.

1 INTRODUCTION

The deep neural networks (DNNs) trained by the softmax cross-entropy (SCE) loss have achieved
state-of-the-art performance on various tasks (Goodfellow et al., 2016). However, in terms of
robustness, the SCE loss is not sufficient to lead to satisfactory performance of the trained models.
It has been widely recognized that the DNNs trained by the SCE loss are vulnerable to adversarial
attacks (Carlini & Wagner, 2017a; Goodfellow et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli
et al., 2016; Papernot et al., 2016), where human imperceptible perturbations can be crafted to fool a
high-performance network. To improve adversarial robustness of classifiers, various kinds of defenses
have been proposed, but many of them are quickly shown to be ineffective to the adaptive attacks,
which are adapted to the specific details of the proposed defenses (Athalye et al., 2018).

Besides, the methods on verification and training provably robust networks have been proposed (Dvi-
jotham et al., 2018a;b; Hein & Andriushchenko, 2017; Wong & Kolter, 2018). While these methods
are exciting, the verification process is often slow and not scalable. Among the previously proposed
defenses, the adversarial training (AT) methods can achieve state-of-the-art robustness under dif-
ferent adversarial settings (Madry et al., 2018; Zhang et al., 2019b). These methods either directly
impose the AT mechanism on the SCE loss or add additional regularizers. Although the AT methods
are relatively strong, they could sacrifice accuracy on clean inputs and are computationally expen-
sive (Xie et al., 2019). Due to the computational obstruction, many recent efforts have been devoted
to proposing faster verification methods (Wong et al., 2018; Xiao et al., 2019) and accelerating AT
procedures (Shafahi et al., 2019; Zhang et al., 2019a). However, the problem still remains.

Schmidt et al. (2018) show that the sample complexity of robust learning can be significantly larger
than that of standard learning. Given the difficulty of training robust classifiers in practice, they
further postulate that the difficulty could stem from the insufficiency of training samples in the
commonly used datasets, e.g., CIFAR-10 (Krizhevsky & Hinton, 2009). Recent work intends to
solve this problem by utilizing extra unlabeled data (Carmon et al., 2019; Stanforth et al., 2019),
while we focus on the complementary strategy to exploit the labeled data in hand more efficiently.
Note that although the samples in the input space are unchangeable, we could instead manipulate the
local sample distribution, i.e., sample density in the feature space via appropriate training objectives.
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Intuitively, by inducing high-density feature regions, there would be locally sufficient samples to
train robust classifiers and return reliable predictions (Schmidt et al., 2018).
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Figure 1: Intuitive illusion of how training data moves and how sample den-
sity varies in a two-dimensional feature space during the training procedure.

Similar to our attempt to induce high-density
regions in the feature space, previous work
has been proposed to improve intra-class
compactness. Contrastive loss (Sun et al.,
2014) and triplet loss (Schroff et al., 2015)
are two classical objectives for this purpose,
but the training iterations will dramatically
grow to construct image pairs or triplets,
which results in slow convergence and in-
stability. The center loss (Wen et al., 2016)
avoids the pair-wise or triplet-wise compu-
tation by minimizing the squared distance
between the features and the corresponding class centers. However, since the class centers are updated
w.r.t. the learned features during training, the center loss has to be jointly used with the SCE loss to
seek for a trade-off between inter-class dispersion and intra-class compactness. Therefore, the center
loss cannot concentrate on inducing strong intra-class compactness to construct high-density regions
and consequently could not lead to reliable robustness, as shown in our experiments.

In this paper, we first formally analyze the sample density distribution induced by the SCE loss and
its other variants (Pang et al., 2018; Wan et al., 2018) in Sec. 3.2, which demonstrates that these
previously proposed objectives convey unexpected supervisory signals on the training points, which
make the learned features tend to spread over the space sparsely. This undesirable behavior mainly
roots from applying the softmax function in training, which makes the loss function only depend on
the relative relation among logits and cannot directly supervise on the learned representations.

We further propose a novel training objective which can explicitly induce high-density regions in
the feature space and learn more structured representations. To achieve this, we propose the Max-
Mahalanobis center (MMC) loss (detailed in Eq. (8)) as the substitute of the SCE loss. Specifically,
in the MMC loss, we first preset untrainable class centers with optimal inter-class dispersion in the
feature space according to Pang et al. (2018), then we encourage the features to gather around the
centers by minimizing the squared distance similar with the center loss. The MMC loss can explicitly
control the inter-class dispersion by a single hyperparameter, and further concentrate on improving
intra-class compactness in the training procedure to induce high-density regions, as intuitively shown
in Fig. 1. Behind the simple formula, the MMC loss elegantly combines the favorable merits of the
previous methods, which leads to a considerable improvement on the adversarial robustness.

In experiments, we follow the suggestion by Carlini et al. (2019) that we test under different threat
models and attacks, including the adaptive attacks (Athalye et al., 2018) on MNIST, CIFAR-10,
and CIFAR-100 (Krizhevsky & Hinton, 2009; LeCun et al., 1998). The results demonstrate that our
method can lead to reliable robustness of the trained models with little extra computation, while
maintaining state-of-the-art clean accuracy with faster convergence rates compared to the SCE loss
and its variants. When combined with the existing defense mechanisms, e.g., the AT methods (Madry
et al., 2018), the trained models can be further enhanced under unseen attacks, i.e., the attacks
different from the one used to craft adversarial examples for training.

2 PRELIMINARIES

This section first provides the notations, then introduces the adversarial attacks and threat models.

2.1 NOTATIONS

In this paper, we use the lowercases to denote variables and the uppercases to denote mappings.
Let L be the number of classes, we define the softmax function softmax(h) : RL → RL as
softmax(h)i = exp(hi)/

∑L
l=1 exp(hl), i ∈ [L], where [L] := {1, · · · , L} and h is termed as logit.

A deep neural network (DNN) learns a non-linear mapping from the input x ∈ Rp to the feature
z = Z(x) ∈ Rd. One common training objective for DNNs is the softmax cross-entropy (SCE) loss:

LSCE(Z(x), y) = −1>y log [softmax(Wz + b)], (1)
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for a single input-label pair (x, y), where 1y is the one-hot encoding of y and the logarithm is defined
as element-wise. Here W and b are the weight matrix and bias vector of the SCE loss, respectively.

2.2 ADVERSARIAL ATTACKS AND THREAT MODELS

Previous work has shown that adversarial examples can be easily crafted to fool DNNs (Biggio et al.,
2013; Nguyen et al., 2015; Szegedy et al., 2014). A large amount of attacking methods on generating
adversarial examples have been introduced in recent years (Carlini & Wagner, 2017a; Chen et al.,
2017; Dong et al., 2018; Goodfellow et al., 2015; Ilyas et al., 2018; Kurakin et al., 2017; Madry et al.,
2018; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Uesato et al., 2018). Given the space
limit, we try to perform a comprehensive evaluation by considering five different threat models and
choosing representative attacks for each threat model following Carlini et al. (2019):

White-box l∞ distortion attack: We apply the projected gradient descent (PGD) (Madry et al.,
2018) method, which is efficient and widely studied in previous work (Pang et al., 2019).

White-box l2 distortion attack: We apply the C&W (Carlini & Wagner, 2017a) method, which has
a binary search mechanism on its parameters to find the minimal l2 distortion for a successful attack.

Black-box transfer-based attack: We use the momentum iterative method (MIM) (Dong et al.,
2018) that is effective on boosting adversarial transferability (Kurakin et al., 2018).

Black-box gradient-free attack: We choose SPSA (Uesato et al., 2018) since it has broken many
previously proposed defenses. It can still perform well even when the loss is difficult to optimize.

General-purpose attack: We also evaluate the general robustness of models when adding Gaussian
noise (Gilmer et al., 2019) or random rotation (Engstrom et al., 2019) on the input images.

Furthermore, to exclude the false robustness caused by, e.g., gradient mask (Athalye et al., 2018), we
modify the above attacking methods to be adaptive attacks (Carlini & Wagner, 2017b; Carlini et al.,
2019; Herley & Van Oorschot, 2017) when evaluating on the robustness of our method. The adaptive
attacks are much more powerful than the non-adaptive ones, as detailed in Sec. 4.2.

3 METHODOLOGY

Various theoretical explanations have been developed for adversarial examples (Fawzi et al., 2016;
2018; Ilyas et al., 2019; Papernot et al., 2018). In particular, Schmidt et al. (2018) show that
training robust classifiers requires significantly larger sample complexity compared to that of training
standard ones, and they further postulate that the difficulty of training robust classifiers stems from,
at least partly, the insufficiency of training samples in the common datasets. Recent efforts propose
alternatives to benefit training with extra unlabeled data (Carmon et al., 2019; Stanforth et al., 2019),
while we explore the complementary way to better use the labeled training samples for robust learning.

Although a given sample is fixed in the input space, we can instead manipulate the local sample
distribution, i.e., sample density in the feature space, via designing appropriate training objectives.
Intuitively, by inducing high-density regions in the feature space, it can be expected to have locally
sufficient samples to train robust models that are able to return reliable predictions. In this section,
we first formally define the notion of sample density in the feature space. Then we provide theoretical
analyses of the sample density induced by the SCE loss and its variants. Finally, we propose our new
Max-Mahalanobis center (MMC) loss and demonstrate its superiority compared to previous losses.

3.1 SAMPLE DENSITY IN THE FEATURE SPACE

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x), y) on this dataset, we define the sample density nearby the feature point z = Z(x)
following the similar definition in physics (Jackson, 1999) as

SD(z) =
∆N

Vol(∆B)
. (2)

Here Vol(·) denotes the volume of the input set, ∆B is a small neighbourhood containing the feature
point z, and ∆N = |Z(D) ∩∆B| is the number of training points in ∆B, where Z(D) is the set of
all mapped features for the inputs in D. Note that the mapped feature z is still of the label y.
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In the training procedure, the feature distribution is directly induced by the training loss L, where
minimizing the loss value is the only supervisory signal for the feature points to move (Goodfellow
et al., 2016). This means that the sample density varies mainly along the orthogonal direction w.r.t.
the loss contours, while the density along a certain contour could be approximately considered as
the same. For example, in the right panel of Fig. 1, the sample density induced by our MMC loss
(detailed in Sec. 3.3) changes mainly along the radial direction, i.e., the directions of red arrows,
where the loss contours are dashed concentric circles. Therefore, supposing L(z, y) = C, we choose
∆B = {z ∈ Rd|L(z, y) ∈ [C,C + ∆C]}, where ∆C > 0 is a small value. Then Vol(∆B) is the
volume between the loss contours of C and C + ∆C for label y in the feature space.

3.2 THE SAMPLE DENSITY INDUCED BY THE GENERALIZED SCE LOSS

Generalized SCE loss. To better understand how the SCE loss and its variants (Pang et al., 2018;
Wan et al., 2018) affect the sample density of features, we first generalize the definition in Eq. (1) as:

Lg-SCE(Z(x), y) = −1>y log [softmax(h)], (3)

where the logit h = H(z) ∈ RL is a general transformation of the feature z, for example, h = Wz+b
in the SCE loss. We call this family of losses as the generalized SCE (g-SCE) loss. Wan et al. (2018)
propose the large-margin Gaussian Mixture (L-GM) loss, where hi = −(z−µi)>Σi(z−µi)−mδi,y
under the assumption that the learned features z distribute as a mixture of Gaussian. Here µi and
Σi are extra trainable means and covariance matrices respectively, m is the margin, and δi,y is the
indicator function. Pang et al. (2018) propose the Max-Mahalanobis linear discriminant analysis
(MMLDA) loss, where hi = −‖z − µ∗i ‖22 under the similar mixture of Gaussian assumption, but the
main difference is that µ∗i are not trainable, but calculated before training with optimal inter-class
dispersion. These two losses both fall into the family of the g-SCE loss with quadratic logits:

hi = −(z − µi)>Σi(z − µi) +Bi, (4)

where Bi are the bias variables. Besides, note that for the SCE loss, there is

softmax(Wz + b)i =
exp(W>i z + bi)∑
l∈[L] exp(W>l z + bl)

=
exp(−‖z − 1

2Wi‖22 + bi + 1
4‖Wi‖22)∑

l∈[L] exp(−‖z − 1
2Wl‖22 + bl + 1

4‖Wl‖22)
.

According to Eq. (4), the SCE loss can also be regraded as a special case of the g-SCE loss with
quadratic logits, where µi = 1

2Wi, Bi = bi + 1
4‖Wi‖22 and Σi = I are identity matrices. Therefore,

later when we refer to the g-SCE loss, we assume that the logits are quadratic as in Eq. (4) by default.

The contours of the g-SCE loss. To provide a formal representation of the sample density induced
by the g-SCE loss, we first derive the formula of the contours, i.e., the closed-form solution of
Lg-SCE(Z(x), y) = C in the space of z, where C ∈ (0,+∞) is a given constant. Let Ce = exp(C) ∈
(1,+∞), from Eq. (3), we can represent the contours as the solution of

log

(
1+

∑
l 6=y exp(hl)

exp(hy)

)
=C =⇒ hy=log

∑
l 6=y

exp(hl)

− log(Ce−1). (5)

The function in Eq. (5) does not provide an intuitive closed-form solution for the contours, since
the existence of the term log

[∑
l 6=y exp(hl)

]
. However, note that this term belongs to the family of

Log-Sum-Exp (LSE) function, which is a smooth approximation to the maximum function (Nesterov,
2005; Nielsen & Sun, 2016). Therefore, we can locally approximate the function in Eq. (5) with

hy − hỹ = − log(Ce − 1), (6)

where ỹ = arg maxl 6=y hl. In the following text, we apply colored characters with tilde like ỹ to better
visually distinguish them. According to Eq. (6), we can define Ly,ỹ(z) = log[exp(hỹ − hy) + 1] as
the local approximation of the g-SCE loss nearby the feature point z, and substitute the neighborhood
∆B by ∆By,ỹ = {z ∈ Rd|Ly,ỹ(z) ∈ [C,C + ∆C]}. For simplicity, we assume scaled identity
covariance matrix in Eq. (4), i.e., Σi = σiI , where σi > 0 are scalars. Through simple derivations
(detailed in Appendix A.1), we show that if σy 6= σỹ, the solution of Ly,ỹ(z) = C is a (d−1)-
dimensional hypersphere with the center My,ỹ = (σy−σỹ)−1(σyµy−σỹµỹ); otherwise if σy = σỹ ,
the hypersphere-shape contour will degenerate to a hyperplane.
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Figure 2: Intuitive illustration on the inherent limitations of the g-SCE loss. Reasonably learned features for a classification task should
distribute in clusters, so it is counter-intuitive that the feature points tend to move to infinity to pursue lower loss values when applying the
g-SCE loss. In contrast, MMC induces models to learn more structured and orderly features.

The induced sample density. Since the approximation in Eq. (6) depends on the specific y and ỹ, we
define the training subset Dk,k̃ = {(x, y) ∈ D|y = k, ỹ = k̃} and Nk,k̃ = |Dk,k̃|. Intuitively, Dk,k̃
includes the data with the true label of class k, while the highest prediction returned by the classifier
is class k̃ among other classes. In the training process, let Ck,k̃ = 1

Nk,k̃

∑
(x,y)∈Dk,k̃

Lg-SCE(Z(x), y)

be the averaged g-SCE loss on the subset Dk,k̃. Then we can derive the approximated sample density
in the feature space induced by the g-SCE loss, as stated in the following theorem:
Theorem 1. (Proof in Appendix A.1) Assuming that for the input-label pair inDk,k̃, there is Lg-SCE ∼
N (Ck,k̃, S

2
k,k̃

). Given (x, y) ∈ Dk,k̃, z = Z(x) and Lg-SCE(z, y) = C, if there are Σk = σkI ,
Σk̃ = σk̃I , and σk 6= σk̃, then the sample density based on the approximation in Eq. (6) is

SD(z) ∝
Nk,k̃ϕ(

C−Ck,k̃

Sk,k̃
)

Sk,k̃

[
Bk,k̃ + log(Ce−1)

σk−σk̃

] d−1
2

, where Bk,k̃=
σkσk̃‖µk−µk̃‖22

(σk−σk̃)2
+
Bk−Bk̃
σk−σk̃

(7)

and ϕ(x) is the probability density function of standard normal distribution.

Limitations of the g-SCE loss. Based on Theorem 1 and the approximation in Eq. (6), let C∗ =

log(1 + exp(Bk,k̃(σk̃ − σk))) and C∗e = exp(C∗), such that Bk,k̃ +
log(C∗e−1)
σk−σk̃

= 0. According
to Appendix A.1, if σk > σk̃, then C∗ will act as a tight lower bound for C, i.e., the solution set
of C < C∗ is empty. This will make the training procedure tend to avoid this case since the loss
C cannot be further minimized to zero, which will introduce unnecessary biases on the returned
predictions. On the other hand, if σk < σk̃, C could be minimized to zero. However, when C → 0,
the sample density will also tend to zero since there is Bk,k̃ + log(Ce−1)

σk−σk̃
→ ∞, which means the

feature point will be encouraged to go further and further from the hypersphere center Mk,k̃ only to
make the loss value C be lower, as intuitively illustrated in Fig. 2(a).

This counter-intuitive behavior mainly roots from applying the softmax function in training. Namely,
the softmax normalization makes the loss value only depend on the relative relation among logits. This
causes indirect and unexpected supervisory signals on the learned features, such that the points with
low loss values tend to spread over the space sparsely. Fortunately, in practice, the feature point will
not really move to infinity, since the existence of batch normalization layers (Ioffe & Szegedy, 2015),
and the squared radius from the center Mk,k̃ increases as O(| logC|) when minimizing the loss C.
These theoretical conclusions are consistent with the empirical observations on the two-dimensional
features in previous work (cf. Fig. 1 in Wan et al. (2018)).

Another limitation of the g-SCE loss is that the sample density is proportional to Nk,k̃, which is on
average N/L2. For example, there are around 1.3 million training data in ImageNet (Deng et al.,
2009), but with a large number of classes L = 1, 000, there are averagely less than two samples in
each Dk,k̃. These limitations inspire us to design the new training loss as in Sec 3.3.

Remark 1. If σk = σk̃ (e.g., as in the SCE loss), the features with loss values in [C,C+ ∆C] will be
encouraged to locate between two hyperplane contours without further supervision, and consequently
there will not be explicit supervision on the sample density as shown in the left panel of Fig. 1.
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Remark 2. Except for the g-SCE loss, Wen et al. (2016) propose the center loss in order to improve
the intra-class compactness of learned features, formulated as LCenter(Z(x), y) = 1

2‖z − µy‖
2
2. Here

the center µy is updated based on a mini-batch of learned features with label y in each training
iteration. The center loss has to be jointly used with the SCE loss as LSCE + λLCenter, since simply
supervise the DNNs with the center loss term will cause the learned features and centers to degrade to
zeros (Wen et al., 2016). This makes it difficult to derive a closed-form formula for the induced sample
density. Besides, the center loss method cannot concentrate on improving intra-class compactness,
since it has to seek for a trade-off between inter-class dispersion and intra-class compactness.

3.3 MAX-MAHALANOBIS CENTER LOSS

Inspired by the above analyses, we propose the Max-Mahalanobis center (MMC) loss to explicitly
learn more structured representations and induce high-density regions in the feature space. The MMC
loss is defined in a regression form without the softmax function as

LMMC(Z(x), y) =
1

2
‖z − µ∗y‖22. (8)

Here µ∗ = {µ∗l }l∈[L] are the centers of the Max-Mahalanobis distribution (MMD) (Pang et al., 2018).
The MMD is a mixture of Gaussian distribution with identity covariance matrix and preset centers µ∗,
where ‖µ∗l ‖2 = CMM for any l ∈ [L], and CMM is a hyperparameter. These MMD centers are invari-
able during training, which are crafted according to the criterion: µ∗ = arg minµ maxi 6=j〈µi, µj〉.
Intuitively, this criterion is to maximize the minimal angle between any two centers, which can
provide optimal inter-class dispersion as shown in Pang et al. (2018).

We derive the sample density induced by the MMC loss in the feature space, as stated in Theorem 2.
Similar to the previously introduced notations, here we define the subset Dk = {(x, y) ∈ D|y = k}
and Nk = |Dk|. In the training process, we let Ck = 1

Nk

∑
(x,y)∈Dk

LMMC(Z(x), y) be the averaged
MMC loss on the training subset Dk.

Theorem 2. (Proof in Appendix A.2) Assuming that for the input-label pair in Dk, there is LMMC ∼
N (Ck, S

2
k), then given (x, y) ∈ Dk, z = Z(x) and LMMC(z, y) = C, the sample density is

SD(z) ∝
Nkϕ(C−Ck

Sk
)

SkC
d−1
2

, (9)

where ϕ(x) is the probability density function of standard normal distribution.

According to Theorem 2, there are several attractive merits of the MMC loss, as described below.

Inducing higher sample density. Compared to Theorem 1, the sample density induced by MMC is
proportional to Nk rather than Nk,k̃, where Nk is on average N/L. It facilitates producing higher
sample density. Furthermore, when the loss value C is minimized to zero, the sample density will
exponentially increase according to Eq. (9), as illustrated in Fig. 2(b). The right panel of Fig. 1 also
provides an intuitive insight on this property of the MMC loss: since the loss value C is proportional
to the squared distance from the preset center µ∗y , the feature points with lower loss values are certain
to locate in a smaller volume around the center. Consequently, the feature points of the same class
are encouraged to gather around the corresponding center, such that for each sample, there will be
locally enough data in its neighborhood for robust learning (Schmidt et al., 2018). The MMC loss
value also becomes a reliable metric of the uncertainty on returned predictions.

Better exploiting model capacity. Behind the simple formula, the MMC loss can explicitly monitor
inter-class dispersion by the hyperparameter CMM, while enabling the network to concentrate on
minimizing intra-class compactness in training. Instead of repeatedly searching for an internal trade-
off in training as the center loss, the monotonicity of the supervisory signals induced by MMC can
better exploit model capacity and also lead to faster convergence, as empirically shown in Fig. 3(a).

Avoiding the degradation problem. The MMC loss can naturally avoid the degradation problem
encountered in Wen et al. (2016) when the center loss is not jointly used with the SCE loss, since
the preset centers µ∗ for MMC are untrainable. In the test phase, the network trained by MMC can
still return a normalized prediction with the softmax function. More details about the empirical
superiorities of the MMC loss over other previous losses are demonstrated in Sec. 4.
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Figure 3: (a) Test error rates on clean images w.r.t training time on CIFAR-10. Here AT refers to 10-steps targeted PGD adversarial training,
i.e., ATtar

10. (b) Two-dimensional visualization of the attacks on trained MMC networks in the feature space of MNIST. For each attack there is
ε = 0.3 with step size of 0.01. The total number of iteration steps is 50, where Iter-n indicates the perturbed features at n-th iteration step.

Remark 3. In Appendix B.1, we provide the generation algorithm for µ∗ in MMC. In Appendix B.2,
we discuss on why the squared-error form in Eq. (8) is preferred compared to, e.g., the absolute form
or the Huber form (Friedman et al., 2001) in the adversarial setting. We further introduce flexible
variants of the MMC loss in Appendix B.3, which can better adapt to various tasks.

Remark 4. Pang et al. (2018) propose a Max-Mahalanobis linear discriminant analysis (MMLDA)
method, which assumes the features to distribute as an MMD. Due to the Gaussian mixture assumption,
the training loss for the MMLDA method is obtained by the Bayes’ theorem as

LMMLDA(Z(x), y) = − log

 exp(−‖z−µ
∗
y‖

2
2

2 )∑
l∈[L] exp(−‖z−µ

∗
l ‖

2
2

2 )

 = − log

[
exp(z>µ∗y)∑
l∈[L] exp(z>µ∗l )

]
. (10)

Note that there is Σi = 1
2I in Eq. (4) for the MMLDA loss, similar with the SCE loss. Thus the

MMLDA method cannot explicitly supervise on the sample density and induce high-density regions
in the feature space, as analyzed in Sec. 3.2. Compared to the MMLDA method, the MMC loss
introduces extra supervision on intra-class compactness, which facilitates better robustness.

4 EXPERIMENTS

In this section, we empirically demonstrate several attractive merits of applying the MMC loss. We
experiment on the widely used MNIST, CIFAR-10, and CIFAR-100 datasets (Krizhevsky & Hinton,
2009; LeCun et al., 1998). Since the existing defenses can already provide satisfactory robustness on
MNIST (Madry et al., 2018; Raghunathan et al., 2018; Sinha et al., 2018), we mainly demonstrate
the results on CIFAR-10 and CIFAR-100 in our experiments. Our code is available at an anonymous
link: http://bit.ly/2krZLCg.

4.1 PERFORMANCE ON THE CLEAN INPUTS

The network architecture applied is ResNet-32 with five core layer blocks (He et al., 2016). Here
we use MMC-10 to indicate the MMC loss with CMM = 10, where CMM is assigned based on the
cross-validation results in Pang et al. (2018). The hyperparameters for the center loss, L-GM loss
and the MMLDA method all follow the settings in the original papers (Pang et al., 2018; Wan et al.,
2018; Wen et al., 2016). The pixel values are scaled to the interval [0, 1]. For each training loss with
or without the AT mechanism, we apply the momentum SGD (Qian, 1999) optimizer with the initial
learning rate of 0.01, and train for 40 epochs on MNIST, 200 epochs on CIFAR-10 and CIFAR-100.
The learning rate decays with a factor of 0.1 at 100 and 150 epochs, respectively.

When applying the AT mechanism (Madry et al., 2018), the adversarial examples for training are
crafted by 10-steps targeted or untargeted PGD with ε = 8/255. In Fig. 3(a), we provide the curves
of the test error rate w.r.t. the training time. Note that the MMC loss induces faster convergence
rate and requires little extra computation compared to the SCE loss and its variants, while keeping
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Table 1: Classification accuracy (%) on the white-box adversarial examples crafted on the test set of CIFAR-10. The superscript tar indicates
targeted attacks, while un indicates untargeted attacks. The subscripts indicate the number of iteration steps when performing attacks. The
results w.r.t the MMC loss are reported under the adaptive versions of different attacks. The notation≤ 1 represents accuracy less than 1%.

Perturbation ε = 8/255 Perturbation ε = 16/255

Methods Clean PGDtar
10 PGDun

10 PGDtar
50 PGDun

50 PGDtar
10 PGDun

10 PGDtar
50 PGDun

50

SCE 92.9 ≤ 1 3.7 ≤ 1 3.6 ≤ 1 2.9 ≤ 1 2.6

Center loss 92.8 ≤ 1 4.4 ≤ 1 4.3 ≤ 1 3.1 ≤ 1 2.9

MMLDA 92.4 ≤ 1 16.5 ≤ 1 9.7 ≤ 1 6.7 ≤ 1 5.5

L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8

MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
ATtar

10 (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0

ATtar
10 (MMC-10) 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATun

10 (SCE) 80.9 69.8 55.4 69.4 53.9 53.3 34.1 38.5 21.5

ATun
10 (MMC-10) 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

MIM10
𝐮𝐧, 𝜀 = 8/256PGD10

𝐮𝐧, 𝜀 = 8/256 MIM10
𝐮𝐧, 𝜀 = 16/256PGD10

𝐮𝐧, 𝜀 = 16/256

SCE

MMC-10

MMC-100

AT (SCE)

AT (MMC-10)

AT (MMC-100)

S
u

b
st

it
u

te
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o
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e
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Figure 4: Classification accuracy under the black-box transfer-based attacks on the test set of CIFAR-10. The substitute model refers to the
one used to craft adversarial examples, and the target model is the one that an adversary actually intends to fool. Here AT refers to ATtar

10.

state-of-the-art performance on the clean images. In comparison, implementing the AT mechanism is
computationally expensive in training and will sacrifice the accuracy on the clean images.

4.2 ADAPTIVE ATTACKS FOR THE MMC LOSS

As stated in Athalye et al. (2018), only applying the existing attacks with default hyperparameters is
not sufficient to claim reliable robustness. Thus, we apply the adaptive versions of existing attacks
when evading the networks trained by the MMC loss (detailed in Appendix B.4). For instance,
the non-adaptive objectives for PGD are variants of the SCE loss (Madry et al., 2018), while the
adaptive objectives are−LMMC(z, y) and LMMC(z, yt) in the untargeted and targeted modes for PGD,
respectively. Here yt is the target label. To verify that the adaptive attacks are more effective than
the non-adaptive ones, we modify the network architecture with a two-dimensional feature layer and
visualize the PGD attacking procedure in Fig. 3(b). The two panels separately correspond to two
randomly selected clean inputs indicated by black stars. The ten colored clusters in each panel consist
of the features of all the 10,000 test samples in MNIST, where each color corresponds to one class.
We can see that the adaptive attacks are indeed much more efficient than the non-adaptive one.

4.3 PERFORMANCE UNDER THE WHITE-BOX ATTACKS

We first investigate the white-box l∞ distortion setting using the PGD attack, and report the results in
Table 1. According to Carlini et al. (2019), we evaluate under different combinations of the attacking
parameters: the perturbation ε, iteration steps, and the attack mode, i.e., targeted or untargeted.
Following the setting in Madry et al. (2018), we choose the perturbation ε = 8/255 and 16/255, with
the step size be 2/255. We have also run PGD-100 and PGD-200 attacks, and find that the accuracy
converges compared to PGD-50. In each PGD experiment, we ran several times with different random
restarts to guarantee the reliability of the reported results. From the results in Table 1, the MMC
loss can significantly improve robustness even under the adaptive attacks. When combining with the
AT mechanism, the trained models have better performance under unseen attacks, i.e., the attacks
different from the one used to craft adversarial examples for training.

8
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Table 2: Experiments on CIFAR-10. Part I: Averaged l2 distortion of the white-box adversarial examples crafted by C&W with 1,000
iteration steps. Part II: Classification accuracy (%) under the block-box SPSA attack. Part III: Classification accuracy (%) under general
transformations. The standard deviation σ for the Gaussian noise is 0.05, the degree range is±30◦ for random rotation.

Part I Part II (ε=8/255) Part II (ε=16/255) Part III
Methods C&Wtar C&Wun SPSAtar

10 SPSAun
10 SPSAtar

10 SPSAun
10 Noise Rotation

SCE 0.12 0.07 12.3 1.2 5.1 ≤ 1 52.0 83.5

Center loss 0.13 0.07 21.2 6.0 10.6 2.0 55.4 84.9

MMLDA 0.17 0.10 25.6 13.2 11.3 5.7 57.9 84.8

L-GM 0.23 0.12 61.9 45.9 46.1 28.2 59.2 82.4

MMC-10 0.34 0.17 69.5 56.9 57.2 41.5 69.3 87.2

ATtar
10 (SCE) 1.19 0.63 81.1 67.8 77.9 59.4 82.2 76.0

ATtar
10 (MMC-10) 1.91 0.85 79.1 69.2 74.5 62.7 83.5 75.2

ATun
10 (SCE) 1.26 0.68 78.8 67.0 73.7 60.3 78.9 73.7

ATun
10 (MMC-10) 1.55 0.73 80.4 69.6 74.6 62.4 80.3 75.8

Then we investigate the white-box l2 distortion setting. We apply the C&W attack, where it has a
binary search mechanism to find the minimal distortion to successfully mislead the classifier under
the untargeted mode, or lead the classifier to predict the target label in the targeted mode. Following
the suggestion in Carlini & Wagner (2017a), we set the binary search steps to be 9 with the initial
constant c = 0.01. The iteration steps for each value of c are set to be 1,000 with the learning rate
of 0.005. In the Part I of Table 2, we report the minimal distortions found by the C&W attack. As
expected, it requires much larger distortions to successfully evade the networks trained by MMC.

4.4 PERFORMANCE UNDER THE BLACK-BOX ATTACKS

Table 3: Accuracy (%) of MMC-10 under
SPSA with different batch sizes.

CIFAR-10
Batch SPSAun

10 SPSAtar
10

128 57.0 69.0

4096 41.0 52.0

8192 37.0 49.0

As suggested in Carlini et al. (2019), providing evidence of being
robust against the black-box attacks is critical to claim reliable ro-
bustness. We first perform the transfer-based attacks using PGD
and MIM. Since the targeted attacks usually have poor transferabil-
ity (Kurakin et al., 2018), we only focus on the untargeted mode in
this case, and the results are shown in Fig. 4. We further perform the
gradient-free attacks using the SPSA method and report the results
in the Part II of Table 2. To perform numerical approximations on
gradients in SPSA, we set the batch size to be 128, the learning
rate is 0.01, and the step size of the finite difference is δ = 0.01, as
suggested by Uesato et al. (2018). We also evaluate under stronger
SPSA attacks with batch size to be 4096 and 8192 in Table 3, where the ε = 8/255. With larger
batch sizes, we can find that the accuracy under the black-box SPSA attacks converges to it under
the white-box PGD attacks. These results indicate that training with the MMC loss also leads to
robustness under the black-box attacks, which verifies that our method can induce reliable robustness,
rather than the false one caused by, e.g., gradient mask (Athalye et al., 2018).

4.5 PERFORMANCE UNDER THE GENERAL-PURPOSE ATTACKS

To show that our method is generally robust, we further test under the general-purpose attacks (Carlini
et al., 2019). We apply the Gaussian noise (Fawzi et al., 2016; Gilmer et al., 2019) and rotation
transformation (Engstrom et al., 2019), which are not included in the data augmentation for training.
The results are given in the Part III of Table 2. Note that the AT methods are less robust to
simple transformations like rotation, as also observed in previous work (Engstrom et al., 2019). In
comparison, the models trained by the MMC loss are still robust to these easy-to-apply attacks.

4.6 EXPERIMENTS ON CIFAR-100

In Table 4 and Table 5, we provide the results on CIFAR-100 under the white-box PGD and C&W
attacks, and the black-box gradient-free SPSA attack. The hyperparameter setting for each attack
is the same as it on CIFAR-10. Compared to previous defense strategies which also evaluate on
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Table 4: Experiments on CIFAR-100. Part I: Classification accuracy (%) on the clean test samples. Part II: Classification accuracy (%) under
the white-box PGD attacks and the block-box SPSA attack. The attacks are adaptive for MMC. Here the batch size for SPSA is 128. Part III:
Averaged l2 distortion of the white-box adversarial examples crafted by C&W with 1,000 iteration steps and 9 binary search epochs.

Part I Part II (ε = 8/255) Part I
Methods Clean PGDtar

10 PGDun
10 SPSAtar

10 SPSAun
10 C&Wtar C&Wun

SCE 72.9 ≤ 1 8.0 14.0 1.9 0.16 0.047

Center 72.8 ≤ 1 10.2 14.7 2.3 0.18 0.048

MMLDA 72.2 ≤ 1 13.9 18.5 5.6 0.21 0.050

L-GM 71.3 15.8 15.3 22.8 7.6 0.31 0.063

MMC-10 71.9 23.9 23.4 33.4 15.8 0.37 0.085

Table 5: Classification accuracy (%) on the white-box adversarial examples crafted on the test set of CIFAR-10 and CIFAR-100. The results
w.r.t the MMC loss are reported under the adaptive versions of different attacks. MMC can better exploit deep architectures, while SCE cannot.

Perturbation ε = 8/255 Perturbation ε = 16/255

Methods Cle. PGDtar
10 PGDun

10 PGDtar
50 PGDun

50 PGDtar
10 PGDun

10 PGDtar
50 PGDun

50

CIFAR-10

SCE (Res.32) 93.6 ≤ 1 3.7 ≤ 1 3.6 ≤ 1 2.7 ≤ 1 2.9

MMC (Res.32) 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
SCE (Res.110) 94.7 ≤ 1 3.0 ≤ 1 2.9 ≤ 1 2.1 ≤ 1 2.0

MMC (Res.110) 93.6 54.7 46.0 34.4 31.4 41.0 30.7 16.2 21.6

CIFAR-100

SCE (Res.32) 72.3 ≤ 1 7.8 ≤ 1 7.4 ≤ 1 4.8 ≤ 1 4.7

MMC (Res.32) 71.9 23.9 23.4 15.1 21.9 16.4 16.7 8.0 15.7
SCE (Res.110) 74.8 ≤ 1 7.5 ≤ 1 7.3 ≤ 1 4.7 ≤ 1 4.5

MMC (Res.110) 73.2 34.6 22.4 23.7 16.5 24.1 14.9 13.9 10.5

CIFAR-100 (Pang et al., 2019; Mustafa et al., 2019), MMC can improve robustness more significantly,
while keeping state-of-the-art performance on the clean inputs. Compared to the results on CIFAR-10,
the averaged distortion of C&W on CIFAR-100 is larger for a successful targeted attack and is much
smaller for a successful untargeted attack. This is because when only the number of classes increases,
e.g., from 10 to 100, it is easier to achieve a coarse untargeted attack, but harder to make a subtle
targeted attack. Note that in Table 5, we also train on the ResNet-110 model with eighteen core block
layers except for the ResNet-32 model. The results show that MMC can further benefit from deep
network architectures and better exploit model capacity to improve robustness. Similar properties are
also observed in previous work when applying the AT methods (Madry et al., 2018). In contrast, as
shown in Table 5, the models trained by SCE are comparably sensitive to adversarial perturbations
for different architectures, which demonstrates that SCE cannot take full advantage of the model
capacity to improve robustness. This verifies that MMC provides effective robustness promoting
mechanism like the AT methods, with much less computational cost.

5 CONCLUSION

In this paper, we formally demonstrate that applying the softmax function in training could potentially
lead to unexpected supervisory signals. To solve this problem, we propose the MMC loss to learn more
structured representations and induce high-density regions in the feature space. In our experiments,
we empirically demonstrate several favorable merits of our method: (i) Lead to reliable robustness
even under strong adaptive attacks in different threat models; (ii) Keep state-of-the-art performance
on clean inputs; (iii) Introduce little extra computation compared to the SCE loss; (iv) Compatible
with the existing defense mechanisms, e.g., the AT methods. Our analyses in this paper also provide
useful insights for future work on designing new objectives beyond the SCE framework.
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A PROOF

In this section, we provide the proof of the theorems proposed in the paper.

A.1 PROOF OF THEOREM 1

According to the definition of sample density

SD(z) =
∆N

Vol(∆B)
,

we separately calculate ∆N and Vol(∆B). Since Lg-SCE ∼ N (Ck,k̃, S
2
k,k̃

) for the data points in

Dk,k̃, recall that ∆B = {z ∈ Rd|Lg-SCE ∈ [C,C + ∆C]}, then there is

∆N = |Z(Dk,k̃) ∩∆B|

=
Nk,k̃ϕ(

C−Ck,k̃

Sk,k̃
)

Sk,k̃
·∆C,

(11)

where ϕ(x) is the probability density function of standard normal distribution. Now we calculate
Vol(∆B) by approximating it with Vol(∆By,ỹ). We first derive the solution of Ly,ỹ = C. For
simplicity, we assume scaled identity covariance matrix, i.e., Σi = σiI , where σi > 0 are scalars.
Then ∀i, j ∈ [L], c is any constant, if σi 6= σj , the solution of hi − hj = c is a (d−1)-dimensional
hypersphere embedded in the d-dimensional space of the feature z:

‖z−Mi,j ‖22 = Bi,j −
c

σi−σj
, where Mi,j=

σiµi−σjµj
σi−σj

, Bi,j=
σiσj‖µi−µj‖22

(σi−σj)2
+
Bi−Bj
σi−σj

. (12)

Note that each value of c corresponds to a specific contour, where Mi,j and Bi,j can be regraded
as constant w.r.t. c. When Bi,j < (σi − σj)−1c, the solution set becomes empty. Specially, if
σi = σj = σ, the hypersphere-shape contour will degenerate to a hyperplane: z>(µi − µj) =
1
2

[
‖µi‖22 − ‖µj‖22 + σ−1(Bj −Bi + c)

]
. For example, for the SCE loss, the solution of the contour

is z>(Wi −Wj) = bj − bi + c. For more general Σi, the conclusions are similar, e.g., the solution
in Eq. (12) will become a hyperellipse. Now it easy to show that the solution of Ly,ỹ = C when
y = k, ỹ = k̃ is the hypersphere:

‖z −Mk,k̃ ‖
2
2 = Bk,k̃ +

log(Ce − 1)

σk − σk̃
. (13)

According to the formula of the hypersphere surface area (Loskot & Beaulieu, 2007), the volume of
∆By,ỹ is

Vol(∆By,ỹ) =
2π

d
2

Γ(d2 )

(
Bk,k̃ +

log(Ce − 1)

σk − σk̃

) d−1
2

·∆C, (14)

where Γ(·) is the gamma function. Finally we can approximate the sample density as

SD(z) ≈ ∆N

∆By,ỹ

∝
Nk,k̃ϕ(

C−Ck,k̃

Sk,k̃
)

Sk,k̃

[
Bk,k̃ + log(Ce−1)

σk−σk̃

] d−1
2

.
(15)

A.2 PROOF OF THEOREM 2

Similar to the proof of Theorem 1, there is

∆N = |Z(Dk) ∩∆B|

=
Nkϕ(C−Ck

Sk
)

Sk
·∆C,

(16)
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where ϕ(x) is the probability density function of standard normal distribution. Unlike for the g-SCE,
we can exactly calculate Vol(∆B) for the MMC loss. Note that the solution of LMMC = C is the
hypersphere:

‖z − µ∗y‖22 = 2C. (17)
According to the formula of the hypersphere surface area (Loskot & Beaulieu, 2007), we have

Vol(∆B) =
2

d+1
2 π

d
2C

d−1
2

Γ(d2 )
·∆C, (18)

where Γ(·) is the gamma function. Finally we can obtain the sample density as

SD(z) =
∆N

∆B

∝
Nkϕ(C−Ck

Sk
)

SkC
d−1
2

.
(19)

B TECHNICAL DETAILS

In this section, we provide more technical details we applied in our paper. The most of our experiments
are conducted on the NVIDIA DGX-1 server with eight Tesla P100 GPUs.

B.1 GENERATION ALGORITHM FOR THE MAX-MAHALANOBIS CENTERS

We give the generation algorithm for crafting the Max-Mahalanobis Centers in Algorithm 1, proposed
by Pang et al. (2018). Note that there are two minor differences from the originally proposed
algorithm. First is that in Pang et al. (2018) they use C = ‖µi‖22, while we use CMM = ‖µi‖2.
Second is that we denote the feature z ∈ Rd, while they denote z ∈ Rp. The Max-Mahalanobis
centers generated in the low-dimensional cases are quite intuitive and comprehensible as shown in
Fig. 5. For examples, when L = 2, the Max-Mahalanobis centers are the two vertexes of a line
segment; when L = 3, they are the three vertexes of an equilateral triangle; when L = 4, they are the
four vertexes of a regular tetrahedron.

Algorithm 1 GenerateMMcenters

Input: The constant CMM, the dimension of vectors d and the number of classes L. (L ≤ d+ 1)
Initialization: Let the L mean vectors be µ∗1 = e1 and µ∗i = 0d, i 6= 1. Here e1 and 0d separately
denote the first unit basis vector and the zero vector in Rd.
for i = 2 to L do

for j = 1 to i− 1 do
µ∗i (j) = −[1 + 〈µ∗i , µ∗j 〉 · (L− 1)]/[µ∗j (j) · (L− 1)]

end for
µ∗i (i) =

√
1− ‖µ∗i ‖22

end for
for k = 1 to L do
µ∗k = CMM · µ∗k

end for
Return: The optimal mean vectors µ∗i , i ∈ [L].

(Back to the main text in Sec. 3.3)

B.2 WHY THE SQUARED-ERROR FORM IS PREFERRED

In the feature space, penalizing the distance between the features and the prefixed centers can be
regarded as a regression problem. In the MMC loss, we apply the squared-error form as ‖z − µ∗y‖22.
Other substitutes could be the absolute form ‖z − µ∗y‖2 or the Huber form. As stated in Friedman
et al. (2001), the absolute form and the Huber form are more resistant to the noisy data (outliers) or
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Figure 5: Intuitive illustration of the Max-Mahalanobis centers in the cases of L = 2, 3, 4.

the misspecification of the class labels, especially in the data mining applications. However, in the
classification tasks that we focus on in this paper, the training data is clean and reliable. Thus the
squared-error form can lead to state-of-the-art accuracy with faster convergence rate compared to
other forms. Furthermore, in the adversarial setting, the adversarial examples have similar properties
as the outliers. When we apply the AT mechanism in the training procedure, we expect the classifiers
to pay more attention to the adversarial examples, i.e., the outliers. Note that this goal is the opposite
of it in the data mining applications, where outliers are intended to be ignored. Therefore, due to the
sensitivity to the outliers, the squared-error form can better collaborate with the AT mechanism to
improve robustness.

Besides, the MMC loss can naturally perform stronger AT mechanism without additional regularizer
term. Specifically, let x be the clean input, x∗ be the adversarial example crafted based on x, then in
the adversarial logit pairing (ALP) method (Kannan et al., 2018), there is an extra regularizer except
for SCE as:

‖z(x)− z(x∗)‖22. (20)

When adding x∗ as an extra training point for MMC, then the MMC loss will minimize ‖z(x)−µ∗y‖22+

‖z(x∗)− µ∗y‖22, which is an upper bound for 1
2‖z(x)− z(x∗)‖22. Thus performing naive adversarial

training (Goodfellow et al., 2015; Madry et al., 2018) with MMC is equivalent to performing stronger
adversarial training variants like ALP. As analyzed above, the squared-error form in the MMC loss
can accelerate the convergence of the AT mechanism, since the objective is sensitive to the crafted
adversarial examples.

(Back to the main text in Sec. 3.3)

B.3 VARIANTS OF THE MMC LOSS

In the MMC loss, we encourage the features to gather around the preset Max-Mahalanobis (MM)
centers µ∗ = {µ∗l }l∈[L], which leads to many attractive properties. However, this ’hard’ supervision,
which induces quite an orderly feature distribution may beyond the reach of the model capability, espe-
cially when the classification tasks themselves are already challenging to learn, e.g., ImageNet (Deng
et al., 2009). Therefore, we propose potential variants of the MMC loss that could probably solve the
problem and make our method more adaptable. We leave the experimental investigations as future
work.

Note that the MMC loss can be regarded as minimizing the negative log likelihood (NLL) of
− log(P (z|y)), where the conditional feature distribution is modeled as z|y ∼ N (µ∗y, I). As
described above, this distribution model may not be easy to learn by the DNNs in some cases. Thus,
we construct a softer model: z|y, µy ∼ N (µy, I) and µy ∼ N (µ∗y, αI), where α > 0 is a scalar.
Here we give the feature center µy a prior distribution, while the prior is centered at µ∗y . Intuitively, we
relax the constraint that the features have to gather around µ∗y . Instead, we encourage the features to
gather around a substitute µy , while µy should be in the vicinity of µ∗y . In the training, we minimize
the joint NLL of − log(P (z, µy|y)) = − log(P (z|y, µy)) − log(P (µy)), which is equivalent to
minimize the what we call elastic Max-Mahalanobis center (EMC) loss as:

LEMC(Z(x), y) =
1

2
‖z − µy‖2 +

1

2α
‖µy − µ∗y‖2. (21)
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Here µ = {µl}l∈[L] are simply extra trainable parameters, the prior variance α is a hyperparameter.
When α → 0, the EMC loss degenerates to the MMC loss. Note that although µ∗l are all on the
hypersphere {z ∈ Rd|‖z‖ = CMM}, the support sets of µl are the entire feature space Rd.

Further improvement can be made w.r.t. the MM centers µ∗. An implicit assumption behind the
generation process of µ∗ is that any two classes are mutually independent. This assumption could be
approximately true for MNIST and CIFAR-10, but for more complex datasets, e.g., CIFAR-100 or
ImageNet, this assumption may not be appropriate since there are structures in the relation among
classes. These structures can usually be visualized by a tree. To solve this problem, we introduce the
hierarchical Max-Mahalanobis (HM) centers µH = {µH

l }l∈[L], which adaptively craft the centers
according to the tree structure. Specifically, we first assign a virtual center (i.e., the origin) to the root
node. For any child node nc in the tree, we denote its parent node as np, and the number of its brother
nodes as Lc. We locally generate a set of MM centers as µ(s,Lc) = GenerateMMcenters(Cs, d, Lc),
where s is the depth of the child node nc, Cs is a constant with smaller values for larger s. Then we
assign the virtual center to each child node of np from µnp

+ µ(s,Lc), i.e., a shifted set of crafted
MM centers, where µnp

is the virtual center assigned to np. If the child node nc is a leaf node, i.e., it
correspond to a class label l, then there is µH

l = µnc
. For example, in the CIFAR-100 dataset, there

are 20 superclasses, with 5 classes in each superclass. We first craft 20 MM centers as µ(1,20) =
GenerateMMcenters(C1, d, 20) and 5 MM centers as µ(2,5) = GenerateMMcenters(C2, d, 5), where
C2 � C1. Note that µ(2,5) could be different for each superclass, e.g., by a rotation transformation.
Then if the label l is the j-th class in the i-th superclass, there is µH

l = µ
(1,20)
i + µ

(2,5)
j .

(Back to the main text in Sec. 3.3)

B.4 ADAPTIVE OBJECTIVES AND THE INDUCED ATTACKING MECHANISMS

We apply the adaptive versions of existing attacks when evading the networks trained by the MMC
loss. We separately design two adaptive adversarial objectives LAda to minimize under the untargeted
mode: Lun,1

Ada = −LMMC(z, y); Lun,2
Ada = LMMC(z, ỹ)−LMMC(z, y), and under the targeted mode:

Ltar,1
Ada =LMMC(z, yt); Ltar,2

Ada =LMMC(z, yt)−LMMC(z, y), where yt is the targeted label, ỹ is generally
the highest predicted label except for y as defined in Sec. 3.2. These objectives refer to previous work
by Carlini & Wagner (2017a;b). Specifically, the adaptive objectives Ltar,1

Ada and Lun,1
Ada are used in the

PGD, MIM and SPSA attacks, while the objectives Ltar,2
Ada and Lun,2

Ada are used in the C&W attacks. In
Fig. 6, we demonstrate the attacking mechanisms induced by different adaptive adversarial objectives.
Note that we only focus on the gradients and ignore the specific method which implements the attack.
Different adaptive objectives are preferred under different adversarial goals. For examples, when
decreasing the confidence of the true label is the goal, Lun,1

Ada is the optimal choice; in order to mislead
the classifier to predict an untrue label or the target label, Lun,2

Ada and Ltar,2
Ada are the optimal choices,

respectively. Sometimes there are additional detectors, then the adversarial examples generated by
Ltar,1

Ada could be assigned to the target label with high confidence by the classifiers.

(Back to the main text in Sec. 4.2)

𝜇"∗

𝜇"$∗

𝜇"%
∗

𝑧

Decision	
  boundaryDecision	
  boundary

①

② ③

④
Learned feature z of certain input
Prefixed feature centers in ℒ(()

Auxiliary lines
Moving directions of adversarial examples

① ℒ*+,
𝐮𝐧,0

② ℒ*+,
𝐮𝐧,1

③ ℒ*+,
𝐭𝐚𝐫,0

④ ℒ*+,
𝐭𝐚𝐫,1

Figure 6: Intuitive demonstration of the attacking mechanisms under different adaptive objectives. Here y is the original label, ỹ =
argmaxl6=y hl is the label of the nearest other decision region w.r.t. the feature z, and yt is the target label of targeted attacks.
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