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ABSTRACT

This paper addresses the data-driven identification of latent representations of
partially-observed dynamical systems, i.e. dynamical systems whose some com-
ponents are never observed, with an emphasis on forecasting applications and
long-term asymptotic patterns. Whereas state-of-the-art data-driven approaches
rely on delay embeddings and linear decompositions of the underlying operators,
we introduce a framework based on the data-driven identification of an augmented
state-space model using a neural-network-based representation. For a given train-
ing dataset, it amounts to jointly reconstructing the latent states and learning an
ODE (Ordinary Differential Equation) representation in this space. Through nu-
merical experiments, we demonstrate the relevance of the proposed framework
w.r.t. state-of-the-art approaches in terms of short-term forecasting errors and
long-term behaviour. We further discuss how the proposed framework relates to
Koopman operator theory and Takens’ embedding theorem.

1 INTRODUCTION

Learning the underlying dynamical representation of observed variables xt ∈ Rn (where t ∈
{t0, ..., T} is the temporal sampling time and n the dimension of the observations) is a key chal-
lenge in various scientific fields, including control theory, geoscience, fluid dynamics, economics;
for applications ranging from system identification to forecasting and assimilation issues Lai & Wei
(1982); Abarbanel & Lall (1996); Jeong & Hussain (1995); Koopmans (1949).

For fully-observed systems, i.e. when the observed variables xt relate to some underlying deter-
ministic states zt, recent advances Brunton et al. (2016b); Fablet et al. (2018); Chen et al. (2018);
Nguyen et al. (2019) have shown that one can identify the governing equations of the dynamics of
zt from a representative dataset of observations {xti}i. Unfortunately, When the observed variables
xt only relate to some but not all the components of underlying states zt, these approaches can not
apply since no ODE or, more generally, no one-to-one mapping defined in the observation space
can represent the time evolution of the observations. In this context, Takens’s theorem states the
conditions under which a delay embedding, formed by lagged versions of the observed variables,
guarantees the existence of governing equations in the embedded space Takens (1981).

Takens’s theorem has motivated a rich literature of machine learning schemes to identify dynam-
ical representations of partially-observed systems using a delay embedding. This comprises both
non-parametric schemes based on nearest-neighbors or analogs Abarbanel (1996a) as well as para-
metric schemes which include polynomial representations Paduart et al. (2010), neural network
models Frank et al. (2010), Support Vector Regression (SVR) models Kazem et al. (2013). For all
these approaches, the identification of the appropriate delay embedding is a critical issue Abarbanel
(1996b;c).

In this work, we show that we do not need to rely explicitly on a delay embedding. We address
the identification of an augmented space of higher dimension than the manifold spanned by the
observed variables, where the dynamics of the observations can be fully described by an ODE. Using
neural-network representations for the parametrization of the dynamical model, it amounts to jointly
learning the governing ODE and reconstructing the augmented latent states for a given observation
dataset. We report experiments on linear and chaotic dynamics, which illustrate the relevance of
the proposed framework compared to state-of-the-art approaches. We then further discuss the key
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features of this framework with respect to state-of-the-art dynamical systems identification tools
such as Koopman operator theory Koopman (1931).

2 BACKGROUND AND RELATED WORK

This section introduces the learning of dynamical representations for partially-observed systems and
links this problem to recent advances in machine learning.

Let us consider an unobserved state variable z governed by an autonomous system of s differ-
ential equations żt = f(zt). Let us also assume that this system generates a flow Φti(zt0) =∫ ti
t0
f(zu)du ∈ Rs with trajectories that are asymptotic to a limit-cycle L of dimension d contained

in Rs. We further assume that we are provided with a measurement function H that maps our state
variable z to our observations xt = H(zt) ∈ Rn.

When considering the data-driven identification of a dynamical mapping that governs some observa-
tion data, we first need to evaluate whether the dynamics in the observation space can be described
using a smooth1 ODE. Another way to tackle this question is to find the conditions under which
the deterministic properties of the unobserved limit-cycle L are preserved in the observation space
in Rn such that one can reliably perform forecasts in the observation space. The general condition
under which a mapping H preserves the topological properties of the initial limit-cycle involves a
differential structure. Assuming that L is a smooth compact differential manifold, the topological
properties of L are preserved through a mapping H in Rn if H is one-to-one and is an immersion
of L in Rn. Under these conditions our observation mapping is called an embedding Sauer et al.
(1991).

The simplest example of an embedding involves an identity observation operatorH. With such em-
bedding we have direct access to the state variable z which is governed by a deterministic ODE. This
particular case has been widely studied in the literature. Parametric representations have been for
decades the most popular models thanks to their simplicity and interpretability Paduart et al. (2010),
Brunton et al. (2016b). Recently, these approaches have been enriched by neural network and deep
learning schemes Wiewel et al. (2018), Raissi et al. (2018). In particular, the link between residual
networks Chen et al. (2018); Ouala et al. (2019) and numerical integration schemes have opened new
research avenues for learning extremely accurate dynamical models even from irregularly-sampled
training data. These schemes show greater interpretability and forecasting performance for the data-
driven representation of systems governed by an ODE, compared with other state-of-the-art neural
networks schemes, including Recurrent Neural Networks (RNN) such as LSTM (Long-Short-Term
Memory). Recent advances in dimensionality reduction algorithms such as Auto-Encoders Fabius
& van Amersfoort (2014), also advocate for the data-driven identification of simple Reduced order
models (ROMs) when the measurement function H is an embedding that maps the hidden states zt
in a higher dimensional space Champion et al. (2019).

However, for a wide range of real-world systems, we are never provided with an observation oper-
ator that forms an embedding of the latent state variables. In such situations, we do not have any
guarantee on the existence of a smooth ODE that governs the temporal evolution of our observa-
tions (or, more generally, of a projection of the observations that can be computed, for example,
using a dimensionality reduction algorithm). From this point of view, the question of finding an
appropriate dynamical representation of some observed data may not be this straightforward. The
fact that our data may come from some unobserved governing equation may restrict the use of the
above-mentioned state-of-the-art algorithms. The main difficulty lies in the ability to map obser-
vation series to a latent space that provides at least a one-to-one mapping between two successive
states. From a geometrical point of view, the time delay theorem Takens (1981) provides a way
to build a latent space that preserves the topological properties of the true (unobserved) dynamics
limit-cycle. A generalization of this theorem Sauer et al. (1991) shows that one can reconstruct
topologically similar limit-cycles using any appropriate smooth composition map of the observa-
tions. The derivation of a dynamical system from such representations however encounters large
disparities since no explicit relationships between the defined phase space and an ODE formulation
have been clearly made. Classical state-of-the-art techniques such as polynomial representations
Brunton et al. (2016b) and K-Nearest Neighbors (KNN) Lguensat et al. (2017) algorithms were

1The word smooth here stands for continuously differentiable or C1.
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proposed but they often fail to achieve both accurate short-term forecasting performance and long-
term topologically similar reconstructed limit-cycles (see experiments for an illustration). We may
also point out that the limitation of ODE-based representation in deep learning architecture has also
been pointed out recently in Dupont et al. (2019); Zhang et al. (2019) for classification issues. As
ODE-derived trajectories do not intersect, it may limit the ability of neural ODE representations to
reach relevant classification performance in a given feature space. To address this issue, Dupont
et al. (2019) and Zhang et al. (2019) propose to consider an augmented state, simply by augment-
ing the observed state by a number of zeros to create a high-dimensional space in which an ODE
representation can be identified. Such a strategy cannot apply to time series modeling as successive
augmented states cannot be forced to zero for some dimension.

In this work, we address the identification of a latent embedding, associated with an ODE repre-
sentation, for partially-observed systems. The core idea of this work is to replace the augmented
observable vector formulated in Takens (1981) by augmented states that are the outputs of an opti-
mization problem with respect to an ODE formulation. From a dynamical system point of view, we
look for an embedding of our observations in an augmented state space that will be governed by an
ODE.

3 LEARNING LATENT REPRESENTATIONS OF PARTIALLY-OBSERVED
DYNAMICS

Augmented latent dynamics: Let us assume a continuous s-dimensional dynamical system zt gov-
erned by an autonomous ODE żt = f(zt) with Φt the corresponding flow Φt(zt0) =

∫ t
t0
f(zu)du.

In many applications, one cannot fully access the state z and the observations only relate to some
components of this state. Formally, we can define an observation function H : Rs −→ Rn such
that the observations xt follow xt = H(zt). We can also define a bijective map M that maps
our observations xt in some low dimensional manifold rt = M(xt) ∈ Rk. The definition of this
operator is crucial in the data driven identification of ROMs Champion et al. (2019) of real data since
in this case, the provided data is usually mapped through H in a higher dimensional space. Finally,
M is supposed to be bijective so the dynamics in Rn are completely determined by the dynamics in
Rk so from now on, and for the sake of simplicity, we will refer to both rt ∈ Rk and xt ∈ Rn as
observations since they are equivalent up to a bijective mapM.

We aim to derive an ODE representation of rt ∈ Rk. However, the key question arising here is
the extent to which the dynamics expressed in the observations space, reflect the true underlying
dynamics in Rs, and consequently, the conditions on H under which the predictable deterministic
dynamical behavior of the hidden states is still predictable in the observations space. To illustrate
this issue, we may consider a linear dynamical system in the complex domain governed by the
following linear ODE: {

żt = αzt

zt0 = z0
(1)

with z ∈ C a state variable and α ∈ C a complex imaginary number. The solution of this problem is

zt = Keαt (2)

with K a constant depending on z0. Let us assume now that we are only provided with the real part
as direct measurements of the unobserved state i.e. H(.) = Real(.) : xt = Real(zt) so in this case
M = I1 and k = n.

Proposition 1 : The flow of an ODE cannot represent the time evolution of xt.

The proof of the proposition is given in the appendix and the intuition behind it is as follows. As-
suming that we are only provided the real part as direct measurements xt ∈ R of the true states zt,
no smooth autonomous ODE model in the scalar observation space can describe the trajectories of
the observations as the mapping between two observations is not one-to-one. For example, assuming
that zt0 and zt1 correspond to two states that have the same real part but distinct imaginary parts, the
associated observed states are equal xt0 = xt1 . However, the time evolution of the states zt0 and zt1
differ if they have different imaginary parts, such that the observed states xt0+δ and xt1+δ after any
time increment δ are no longer equal. As a consequence, a given observation may have more than
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one future state and this behavior cannot be represented by a smooth ODE in the observation space.
And the application of an ODE mapping such as Chen et al. (2018) and Fablet et al. (2018) for
such observations will lead to poor forecasting performance. From a naive Neural networks point of
view, fitting such a model will most likely force the forecasting into an equilibrium point since we
are iteratively matching the same inputs with different output predictions.

For a given observation operatorH of a deterministic underlying dynamical system that governs zt,
Takens’s theorem guarantees the existence of an augmented space, defined as a delay embedding
of the observations, in which a one-to-one mapping exists between successive time steps of the
observation series Takens (1981). Rather than exploring such delay embedding, we aim to identify
an augmented latent space, where the latent dynamics are governed by a smooth ODE and can be
mapped to the observations. Let us define ut ∈ RdE a dE-dimensional augmented latent state as
follows:

ut
T = [M(xt)

T ,yTt ] (3)

with yt ∈ Rl the unobserved component of latent state ut. The augmented latent space evolves in
time according to the following state space model:{

u̇t = fθ(ut)

xt =M−1(G(ut))
(4)

where the dynamical operator fθ belongs to a family of smooth operators (in order to guarantee
uniqueness Coddington & Levinson (1955)) parametrized by θ. We typically consider a neural-
network representation with Lipschitz nonlinearities and finite weights. G is a projection matrix
that satisfiesM(xt) = G(ut). As detailed in the next sections, we address the identification of the
operator fθ and of the associated latent space u from a dataset of observed state series {x0, . . . ,xT }
as well as the exploitation of the identified latent dynamics for the forecasting of the time evolution
of the observed states, for instance unobserved future states {xT+1, . . . ,xT+N}.
Learning scheme: Given an observation time series {x0, . . . ,xT } and the bijective map M, we
aim to identify the state-space model defined by (4), which amounts to learning the parameters θ of
the dynamical operator fθ. However, as the component yt of the latent state ut is never observed,
this identification requires the joint optimization of the model parameters θ as well as of the hidden
component yt. Formally, this problem is stated as the following minimization of the forecasting
error on observed variables:

θ̂ = arg min
θ

min
{yt}t

T∑
t=1

‖xt −M−1(G (Φθ,t (ut−1))) ‖2

Subject to

{
ut = Φθ,t(ut−1)

M(G(ut)) = xt

(5)

with Φθ,t the one-step-ahead diffeomorphic mapping associated with operator fθ such that:

Φθ,t(ut−1) = ut−1 +

∫ t

t−1
fθ(uw)dw

In (5), the loss to be minimized involves the one-step-ahead forecasting error for the observed vari-
able xt. The constraints state that the augmented state ut is composed of observed component
and G(ut) should be a solution of the ODE (4). Here, we numerically minimize the equivalent
formulation:

min
θ

min
{yt}t

T∑
t=1

‖xt −M−1(G (Φθ,t (ut−1))) ‖2 + λ‖ut − Φθ,t(ut−1)‖2 (6)

where uTt = [M(xTt ),yTt ] and λ a weighting parameter. The term ‖ut − Φθ,t(ut−1)‖2 may be
regarded as a regularization term such that the inference of the unobserved component yt of the
augmented state ut−1 is not solved independently for each time step.

Using a neural-network parametrization for the ODE operator fθ, the corresponding forecasting
operator Φθ,t is also stated as a neural network based on a numerical integration scheme formulation
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(typically a 4th-order Runge-Kutta scheme). This architecture, very much similar to a ResNet He
et al. (2015), allows very accurate identification of ODE models Fablet et al. (2018); Ouala et al.
(2019). Hence, for a given observed state series {x0, . . . ,xT }, we minimize (6) jointly w.r.t. θ and
unobserved variables {y0, . . . ,yT }. In the experiments reported in Section 4, we consider bilinear
architectures Fablet et al. (2018). However, the proposed framework applies to any neural-network
architecture.

Application to forecasting: We also apply the proposed framework to the forecasting of the ob-
served states xt. Given a trained latent dynamical model (4), forecasting future states for xt relies
on the forecasting of the entire augmented latent state ut. The latter amounts to determining an ini-
tial condition of the unobserved component yt and performing a numerical integration of the trained
ODE (4).

Let us denote by xnt , t ∈ {t0, ..., T} a new series of observed states. We aim to forecast future states
xnt , t ∈ {T + 1, ..., T + δT}. Following (6), we infer the unobserved component ŷT of latent state
Xn
T at time T from the following minimization:

ŷnT = arg min
yn
T

min
{yn

t }t<T

T+δT∑
t=T+1

‖xnt −M−1(G
(
Φθ,t

(
unt−1)

))
‖2 + λ‖unt − Φθ,t(u

n
t−1)‖2 (7)

Here, we only minimize w.r.t. latent variables {ynt } given the trained forecasting operator Φθ,t. This
minimization relates to a variational assimilation issue with partially-observed states and known
dynamical and observation operators Lynch & Huang (2010). Similarly to the learning step, we
benefit from the neural-network parameterization of operator Φθ,t and from the associated automatic
differentiation tool to compute the solution of the above minimization using a gradient descent.

We may consider different initialization strategies for this minimization problem. Besides a simple
random initialization, we may benefit from the information gained on the manifold spanned by
the unobserved components during the training stage. The basic idea comes to assume that the
training dataset is likely to comprise state trajectories which are similar to the new one. As the
training step embeds the inference of the whole latent state sequence, we may pick as initialization
for minimization (7) the inferred augmented latent state in the training dataset which leads to the
observed state trajectory that is the most similar (in the sense of the L2 norm) to the new observed
sequence xnt ,. The interest of this initialization scheme is two-fold: (i) speeding-up the convergence
of minimization (7) as we expect to be closer to the minimum; (ii) considering an initial condition
which is in the basin of attraction of the reconstructed limit-cycle. The latter may be critical as
we cannot guarantee that the learnt model does not involve other limit-cycles than the ones truly
revealed by the training dataset, which may lead to a convergence to a local and poorly relevant
minimum.

4 NUMERICAL EXPERIMENTS

In this section, we report numerical experiments to illustrate the key features of proposed framework.
We consider three case-studies: a linear ODE case-study; a chaotic system, namely Lorenz-63 dy-
namics, and real upper ocean data.

Application to a linear ODE: In order to illustrate the key principles of the proposed framework,
we consider the following linear ODE in the complex domain:{

żt = αzt

zt0 = z0
(8)

with α = −0.1 − 0.5j, j2 = −1 and z0 = 0.5. As α ∈ C with Real(α) < 0 and z0 6= 0, the
solution of this ODE is an ellipse in the complex plane (Fig. 1).

As observation, we consider the real part of the underlying state, i.e. the observation function
H : C −→ R is given by xt = Real(zt). This is a typical example, where the mapping between two
successive observations is not a one-to-one mapping since all the states that have the same real part
lead to the same observation. As explained in section 3, one cannot identify an autonomous ODE
model that will reproduce the dynamical behavior of the observations in the observations space.
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We apply the proposed framework to this toy example. We consider a 2-dimensional augmented
state ut = [xt,y

1
t ] withM = I1. As neural-network parametrization for operator fθ, we consider a

neural network with a single linear fully-connected layer. We use an observation series of 10000 time
steps as training data. As illustrated in Fig.1, given the same initial condition over the observable
state, the inferred latent state dynamics, though different from the true ones, depicts a similar spiral
pattern. This result is in agreement with the geometrical reconstruction techniques Takens (1981) of
the latent dynamics up to a diffeomorphic mapping. Overall, our model learns a dynamical behavior
similar to the true model represented by an elliptic transient and an equilibrium point limit-set.
Furthermore, the projection of the augmented latent space and the true solution of Eq. (??) in the
real axis illustrate the relevance of the proposed framework in forecasting the observations dynamics
(mean square error < 1E − 6).
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Figure 1: Illustration for a 2-dimensional linear ODE: (left) Forecasted augmented latent space
with respect to the true states. Given the same initial condition we illustrate both the forecasted and
the true trajectories. The projection of the solutions in the real plane illustrates the forecasting of the
observations.

Lorenz-63 dynamics: Lorenz-63 dynamical system is a 3-dimensional model that involves, un-
der some specific parametrizations Lorenz (1963), chaotic dynamics with a strange attractor. We
simulate chaotic Lorenz-63 state sequences with the same model parameters as proposed in Lorenz
(1963) using the LOSDA ODE solver Hindmarsh (1983) with an integration step of 0.01. We as-
sume that only the first Lorenz-63 variable is observed xt = zt,1 and we poseM = I1. We apply
the proposed framework to this experimental setting using a training sequence of 4000 time-steps.

For benchmarking purposes, we perform a quantitative comparison with state-of-the-art approaches
using delay embedding representations Takens (1981). The parameters of the delay embedding
representation, namely the lag τ and the dimension dE of the augmented space were computed using
state-of-the-art techniques. Specifically, the lag parameter was computed using both the mutual
information and correlation techniques Abarbanel (1996b), respectively denoted as τMI and τCorr.
Regarding the dimension of the embedding representation, we used the Takens embedding condition
dE = 2d+ 1 with d the dimension of the hidden limit-cycle. The delay embedding dimension was
also computed using the False Nearest Neighbors (FNN) method Abarbanel (1996c). We also tested
arbitrary parameters for the delay embedding dimension. Given the delay embedding representation,
we tested two state-of-the-art data-driven representations of the dynamics. The Analog Forecasting
technique (AF) which is based on the nearest neighbours algorithm Lguensat et al. (2017) and the
Sparse Regression (SR) method on a second order polynomial representation of the delay embedding
states. Regarding deep learning models, we compare our method to a stacked Bidirectional LSTM
(RNN) and to the Latent-ODE model as proposed in Chen et al. (2018). Finally, the proposed
framework, referred to as Neural embedding for Dynamical Systems (NbedDyn) was tested for
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different dimensions of the augmented state space, namely from 3 to 6 (please refer to the apendix
for details on the neural networks based architectures)2.

Model t0 + h t0 + 4h λ1

AF

τMI =16 dE(FNN) = 3 5.6E − 3 1.3E − 2 0.85
τMI =16 dE(Takens) = 6 9.9E − 3 2.4E − 2 NaN
τCorr =27 dE(FNN) = 3 8.9E − 3 2.3E − 2 12.35
τCorr =27 dE(Takens) = 6 8.5E − 3 1.9E − 2 NaN
τ = 6 dE = 3 8.0E − 4 9.0E − 4 0.87
τ = 10 dE = 3 2.1E − 3 4.9E − 3 0.60

SR

τMI =16 dE(FNN) = 3 7.8E − 2 2.5E − 1 0.12
τMI =16 dE(Takens) = 6 4.5E − 2 1.7E − 1 NaN
τCorr =27 dE(FNN) = 3 1.4E − 1 4.6E − 1 NaN
τCorr =27 dE(Takens) = 6 2.1E − 1 8.4E − 1 NaN
τ = 6 dE = 3 7.6E − 3 7.4E − 3 NaN
τ = 10 dE = 3 2.5E − 2 5.7E − 2 0.2535

Latent-ODE 6.9E − 2± 2.9E − 2 1.5E − 1± 3E − 2 NaN

RNN 6.9E − 2± 4.6E − 2 1.5E − 1± 1.1E − 1 −6.79± 0.0

NbedDyn dE = 3 3.2E − 4± 1.3E − 4 1.7E − 3± 7.5E − 4 0.81± 0.09
dE = 4 1.3E − 4± 5.2E − 5 7.3E − 4± 2.2E − 4 0.82± 0.06
dE = 5 3.8E − 4± 7.4E − 4 2.0E − 3± 3.4E − 4 0.80± 0.02
dE = 6 3.7E − 4± 2.8E − 4 2.0E − 3± 1.7E − 3 0.92± 0.02
dE = 6 (Best) 9.1E − 5 4.7E − 4 0.92

Table 1: Forecasting performance on the test set of data-driven models for Lorenz-63 dynamics
where only the first variable is observed: first two columns : mean RMSE for different forecasting
time steps, third column : largest Lyapunov exponent of a predicted series of length of 10000 time-
steps (The true largest Lyapunov exponent of the Lorenz 63 model is 0.91 Sprott (2003)).
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Figure 2: Evolution of the learnt latent space: starting from a random initialization of the aug-
mented states yi, the latent space is optimized according to thr minimization of Eq. (6) to form a
limit-cycle similar to the true Lorenz 63 attractor. We depict 3-dimensional projections of the learnt
latent space for the proposed model with different embedding dimensions from dE = 3 to dE = 6.

Fig. 2 illustrates the learning process for the latent space from the initialization to the last training
epoch. We also report the analysis of short-term forecasting performance as well as the long-term
asymptotic behavior characterized by the largest Lyapunov exponent of the benchmarked models
in Tab 1. The proposed model leads to significant improvements in terms of short term forecasting
performance with respect to the other approaches. Surprisingly, The Latent-ODE and RNN models

2The results of the neural networks based models were averaged over 5 runs except for NbedDyn dE = 4
and dE = 5 where we only launched 3 runs. We will include other runs for the final version of the manuscript
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lead to the poorest performance both in terms of forecasting error and asymptotic behavior. This is
mainly due, in the Latent-ODE case, to the fact that the latent space is seen as a non linear projection
of the observed variables through the optimization of the ELBO loss Krishnan et al. (2016). By con-
trast, our latent embedding formulation optimizes the latent states to forecast the observed variables
which explicitly constrain the latent space to be an embedding of the true underlying dynamics.
The RNN model in the other hand converges to a periodic solution (please refer to the appendix
for forecasting figures) with still a poor short term forcasting performances. Overall, this results on
deep learning models suggest that one should use such tools with care to guarantee satisfying the
specifications of the underlying system.The SR model seems to lead to better short term forecast
(using ad hoc parameters (τ = 6, dE = 3), however, it does not capture well the chaotic patterns,
which are associated to a positive largest Lyapunov exponent. This may suggest the combination
of the SR model and a delay embedding may require additional investigation as a good geometrical
reconstruction of the phase space as stated in Takens’ theorem does not guarantee the existence of a
parametric ODE model based on the corresponding delay embedding variables. Better performance
is reported using an analog forecasting approach. The performance however greatly varies depend-
ing on the considered definition of the delay embedding. Using ad hoc parameters (τ = 6, dE = 3),
one may retrieve the expected long-term chaotic behavior (λ1 = 0.87) with a relatively low short-
term forecasting error (8.0e-4 for a one-step-ahead forecast). When considering the proposed model,
we report for all parametrizations, augmented space dimensions from 3 to 6, performance at least
in the same range as the best analog forecasting setting. Besides, when increasing the dimension of
the augmented space, we significantly decrease short-term forecasting errors (¡1.e-4 for a one-step-
ahead forecast when considering the best fit for dE = 6, i.e. one order of magnitude compared to
the best benchmark model) while keeping an appropriate chaotic long-term pattern (λ1 = 0.92).

Modeling Sea Level Anomaly (SLA): The data driven identification of dynamical representations
of real data is an extremely difficult task especially when the underlying processes involve non stable
behaviors such as chaotic attractors. This is mainly due to the fact that we do not have any exact
knowledge of the closed form of the equations governing the temporal evolution of our variables.
Furthermore, the measured quantity may depend on other unobserved variables which makes the
exploitation of data-driven techniques highly challenging.

In this context, we report an application to SLA (Sea Level Anomaly) dynamics, which relate to
upper ocean dynamics and are monitored by satellite altimeters Calmant et al. (2008). Sea surface
dynamics are chaotic and clearly involve latent processes, typically subsurface and atmospheric
processes. The dataset used in our experiments is a SLA time series obtained using the WMOP
product Juza et al. (2016). The spatial resolution of our data is a 0.05◦ and the temporal resolution
h = 1 day. We use the data from January 2009 to December 2014 as training data and we tested our
approach on the last month of the year 2014. The considered region is located on south Mallorca
(2.5◦E to 4.25◦E, 37.25◦N to 39.5◦N ). Finally, and in order to identify a ROM, we mapped our
data through a bijective projection defined offline using a PCA as follow : rt = M(xt) ∈ Rk
with k = 15 which amounts to capture 92% of the total variance (hereM is simply a linear PCA
projection).

Model t0 + h t0 + 2h t0 + 4h

AF RMSE 0.036 0.049 0.067
Corr 98.93% 96.97% 93.99%

SR RMSE 0.014 0.021 xx 0.037
Corr 99.42% 97.63% 90.91%

Latent-ODE RMSE 0.030± 0.05 0.031± 0.031 0.040± 0.040
Corr 98.20%± 0.39% 97.39%± 0.36% 93.42%± 0.55%

RNN RMSE 0.026± 0.003 0.038± 0.007 0.053± 0.016
Corr 98.36%± 0.40% 95.29%± 1.73% 74.97%± 5.75%

NbedDynZERO RMSE 0.016± 0.0 0.023± 0.0 0.038± 0.0
Corr 99.44%± 0.0% 97.71%± 0.0% 91.18%± 0.0%

NbedDyn RMSE 0.002± 0.0003 0.006± 0.001 0.020± 0.004
Corr 99.99%± 0.0017% % 99.91%± 0.01% 99.01%± 0.04%

Table 2: SLA Forecasting performance on the test set of
data-driven models: RMSE and correlation coefficients for
different forecasting time steps.

We report forecasting performance
for our model and include a com-
parison with analog methods (AF),
Sparse regression (SR), LSTM
(RNN) and a neural ODE setting
(Latent-ODE) in Tab. 2 (The re-
sults of the neural networks based
models were averaged over 5 runs).
Regarding the proposed NbedDyn
model we consider an augmented
latent space with dE = 60. Our
model clearly outperforms the three
benchmarked schemes with a very
significant gain for the forecasting
performance at one day (relative gain
greater than 90 %) and two days
(relative gain greater than 90 %). For
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a 4-day-ahead forecasting, our model still outperforms the other ones though the gain is lower
(relative gain of 40%). Finally, and in order to illustrate the influence of adding extra dimensions to
define an augmented latent space on real data, we also tested the proposed NbedDyn model directly
on the PCA space (dE = k = 15) this model is referred to as NbedDynZERO and the influence of
the latent components is clear from the results in Tab. 2 witch allows a relative gain up to 90 % with
respect to the same model directly on the PCA space. We let the reader refer to the Supplementary
Material for a more detailed analysis of these experiments, including visual comparisons of the
forecasts.

5 DISCUSSION

In this work, we address the data-driven identification of latent dynamics for systems which are only
partially observed, i.e. when some components of the system of interest are never observed. The
reported forecasting performance for Lorenz-63 dynamics is in line with the forecasting performance
of state-of-the-art learning-based approaches for a noise-free and fully-observed setting. This is of
key interest for real-world applications, where observing systems most often monitor only some
components of the underlying systems. As a typical example, the SLA forecasting experiment
clearly motivates the proposed framework in the context of ocean dynamics for which neither in situ
nor satellite observing systems can provide direct observations for all state variables (e.g., subsurface
velocities, fine-scale sea surface currents).

We may also further discuss how the proposed framework relates to state-of-the-art dynamical sys-
tem theory approaches. Most of these approaches rely on delay embedding, as Takens’s theorem
states the existence of a delay embedding in which the topological properties of the hidden dynami-
cal system are equivalent to those of the true systems up to a diffeomorphic mapping. Hence, state-
of-the-art approaches typically combine the selection of a delay embedding representation within
classic regression models to represent the one-step-ahead mapping in the considered embedding.
Here, we consider latent dynamics governed by an unknown ODE (4) but we do not explicitly state
the latent space. This is however implicit in our forecasting framework. By construction, the con-
sidered forecasting model relies on the integration of the learnt ODE (4) from an initial condition
given as the solution of minimization (7). Let us consider the following embedding ψ such that:

ψ ({xt}t0:T ) = arg min
uT

min
{ut}t<T

T∑
t=1

‖xt−M−1(G (Φθ,t (ut−1))) ‖2 +λ‖ut−Φθ,t(ut−1)‖2 (9)

Given this embedding, the resulting one-step-ahead forecasting for the observed variable may writ-
ten as:

xT+1 =M(G (Φθ,t (ψ ({xt}t=t0:T )))) (10)
Hence, ψ defines a delay embedding representation implicitly stated through minimization (7). In
this embedding, the dynamics of the observed system x is governed by the composition of observa-
tion operatorG and forecasting operator Φθ,t. Regarding the literature on Koopman operator theory,
most approaches rely on the explicit identification of eigenfunctions and eigenvalues of the Koop-
man operator Koopman (1931); Brunton et al. (2016a); Tu et al. (2014). Our framework relates to the
identification of the infinitesimal generator fθ of the one-parameter subgroup defined by Koopman
operator through the ODE representation (4). By construction, the Koopman operator associated
with the identified operator fθ̂ is also diagonalizable, such that the identification of infinitesimal
generator fθ̂ provides an implicit decomposition of the Koopman operator of the underlying and
unknown dynamical system onto the eigenbasis of the learnt latent dynamics governed by ODE (4).

Future work will further explore methodological aspects, especially the application to high-
dimensional and stochastic systems. In the considered framework, operatorM is stated as an iden-
tity operator on the observed component of state ut or as a simple PCA projection. Although for
the geociences community, using PCA to reduce the dimensionality is motivated by the Galerkin
derivation of reduced order models from complex high dimensional governing partial differential
equations Holmes et al. (2012), using auto-encoders have shown promising results in discovering
optimal coordinates when trained jointly with a dynamical system. The combination of the proposed
framework with the variational setting considered in the Latent-ODE model Chen et al. (2018) also
appears as an interesting direction for future work. The extension to stochastic systems through the
identification of a Stochastic ODE is also of key interest, for instance for future applications of the
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proposed framework to geophysical random flows, especially to the simulation and forecasting of
ocean-atmosphere dynamics in which stochastic components naturally arise Chapron et al. (2018).
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APPENDIX

A PROOF OF PROPOSITION 1

This proposition can be easily extended to any observation function that doesn’t form an embedding
of the initial unobserved ODE. However, for the sake of simplicity, we will consider the example
given in Eq. (1).

Lets suppose a a smooth ODE in the observation space that governs the time evolution of x from
Eq. (1).

{
ẋt = f(xt)

xt0 = x0
(11)

This ODE generates a flow xt = Ψt(x0).

Since our observation operator is not one-to-one, we can assume the existence of some t̂, t1, t2
where Real(Φt̂(zt1)) = Real(Φt̂(zt2)) with Real(zt1) 6= Real(zt2) (Φ is the flow generated by
the unobserved ODE illustrated in Eq. (1)). Projecting this equality to the observation space leads
to : Ψt̂(xt1) = Ψt̂(xt2) with xt1 6= xt2 .

Since the above ODE is smooth (or continuously differentiable), we can show that f is locally
Lipschitz on any interval containing t0 Sohrab (2003) which garentees by Picard’s Existence The-
orem the existance of a unique solution Coddington & Levinson (1955). Formally, for the times
t̂, t1, t2, Ψt̂(xt1) = Ψt̂(xt2) if and only if xt1 = xt2 . This contradicts the assumption that
xt1 6= xt2 and thus, there is no existence of a t̂ such that Real(Φt̂(zt1)) = Real(Φt̂(zt2)) with
Real(zt1) 6= Real(zt2).

B DIMENSIONALITY ANALYSIS OF THE NBEDDYN MODEL

One of the Key parameters of the proposed model is the dimension of the latent space. Despite the
fact that it is extremely challenging to get a prior idea of the dimension of the model in the case
of real data experiments, one can analyze the spawned manifold of the learnt latent states to get an
idea of the true dimension of the underlying model (true here stands for a sufficient dimension of
the latent space). The idea here is to compute the modulus of the eigenvalues of the Jacobian matrix
for each input of the training data. An eigenvalue does not influence the temporal evolution of the
latent state if it has a modulus that tend to zero. The number of non-zero eigenvalues can then be
seen as a sufficient dimension of the latent space.

Regarding the identification of an ODE model governing the first state variable of the Lorenz 63
model, Fig. 3 illustrates the eigenvalues of the Jacobian matrix and their modulus for a dimension of
the latent space dE = 6. Interestingly, only 3 eigenvalues have non-zero modulus and are effectively
influencing the underlying dynamics. This result shows that one can use a 3 dimensional latent-space
as a sufficient dimension to identify an ODE model governing the first state of the Lorenz 63 system
which is the same dimension as the true Lorenz 63 model.

The analysis of the eigenvalues of the Sea Level Anomaly model in the other hand are not as straight-
forward as in the case of the Lorenz model since we do not have any idea on the analytical form of
the underlying dynamical model. Fig. 4 illustrates that using a 60 dimensional latent space for the
NbedDyn model, only 50 eigenvalues have non-zero modulus and thus, are effectively influencing
the underlying dynamics. The conclusion in this case is that the observed SLA data evolve in a 50
dimensional latent space parametrised by the dynamical model fθ.

C ADDITIONAL FIGURES OF THE LORENZ 63 EXPERIMENT

We illustrate the forecasting performance of the tested models for the Lorenz-63 experiment through
an example of forecasted trajectories in Fig. 8. Our model with dE = 6 leads to a trajectory similar
to the true one up to 7 Lyapunov times, when the best alternative approach diverge from the true
trajectory beyond 4 Lyapunov times.
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(b) Eigenvalues imaginary part.
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(c) Eigenvalues modulus.

Figure 3: Analysis of the eigenvalues of the NbedDyn model Jacobian matrix.: Lorenz-63 case-
study with dE = 6

An other interesting experiment is to find the initial condition for new observation data. This issue
is addressed as presented in section 3 as follow. Given a new noisy and partial observation sequence
(Fig. 6), we first look for a potential initial condition in the inferred training latent state sequence.
This initial condition is then optimized using the cost function described by equation (7) to minimize
the forecasting error of the new observation sequence.

D ADDITIONAL FIGURES OF THE SEA LEVEL ANOMALY EXPERIMENT

Forecasted states of the Sea Level Anomaly are illustrated in Fig. 7 and 9. The visual analysis of
the forecasted SLA states emphasize the relevance of the proposed NbedDyn model. While state of
the art approaches generally overestimate the time evolution of some structures such as eddies, our
model is the only one to give near perfect forecasting up to 4 days.

E NEURAL NETWORKS HYPERPARAMETERS

E.1 LORENZ 63 EXPERIMENTS HYPERPARAMETERS

E.2 SLA EXPERIMENTS HYPERPARAMETERS

F SCOOP AND LIMITATIONS

Constraining limit cycles The proposed augmented ODE formulation does not suppose any prior
knowledge on the underlying dynamics responsible for the temporal evolution of the observations.
This can lead in some cases (especially when working on chaotic dynamics) to output a dynamical
representation that has several attracting regions in addition to the one leading to the observations
limit cycle. This can lead to inappropriate results when trying to find an initial condition that fore-
casts a given observation sequence. The Idea of using the manifold spanned by the augmented

14
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Parameter Value

Number of LSTM layers 10
Hidden size 10
Sequence length 30
Learning rate 0.001
Optimizer Adam
Training data 4000

Table 3: RNN parameters in the Lorenz 63 Experiment.

Parameter Value

Latent dimension 4
Hidden size 15
RNN hidden size 100
Learning rate 0.01
Optimizer Adam
Training data 4000

Table 4: Latent-ODE parameters in the Lorenz 63 Experiment, please refer to Chen et al. (2018) for
more details.

Parameter Value

Augmented Latent dimension 6
Number of bilinear layers 6
Number of linear layers 6
Integration scheme Runge Kutta 4
Learning rate 0.001
Optimizer Adam
Training data 4000

Table 5: NbedDyn parameters in the Lorenz 63 Experiment, please refer to Fablet et al. (2017) for
more details.

Parameter Value

Number of LSTM layers 5
Hidden size 20
Sequence length 40
Learning rate 0.001
Optimizer Adam
Training data 2000

Table 6: RNN parameters in the SLA Experiment.

Parameter Value

Latent dimension 60
Hidden size 70
RNN hidden size 200
Learning rate 0.01
Optimizer Adam
Training data 2000

Table 7: Latent-ODE parameters in the SLA Experiment, please refer to Chen et al. (2018) for more
details.
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(c) Eigenvalues modulus.

Figure 4: Analysis of the eigenvalues of the NbedDyn model Jacobian matrix.: Sea Level Anomaly
case-study with dE = 60

Parameter Value

Augmented Latent dimension 60
Number of bilinear layers 60
Number of linear layers 60
Integration scheme Runge Kutta 4
Learning rate 0.001
Optimizer Adam
Training data 2000

Table 8: NbedDyn parameters in the SLA Experiment, please refer to Fablet et al. (2017) for more
details.

training data allows to bypass this issue but we believe that adding additional constraints (energy
preserving constraints, known symmetries in the models ...etc.) can significantly improve the qual-
ity of the learnt dynamical models.
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Figure 5: Generated time series of the proposed models. : Given the same initial condition, we
generated a time series of 1000 time steps.
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Figure 6: Forecasted Lorenz 63 state sequence given noisy and partial observations: Given noisy
and partial observations, our model optimizes equation (7) to infer an initial condition that minimize
the forecasting of the observations.

G CODE SAMPLE

# i m p o r t l i b s
from g e n e r a t e d a t a i m p o r t g e n e r a t e d a t a
i m p o r t numpy as np
i m p o r t t o r c h
from t o r c h . a u t o g r a d i m p o r t V a r i a b l e
seed = 0
np . random . seed ( seed )
t o r c h . m a n u a l s e e d ( seed )
# G e n e r a t e d a t a
c l a s s GD:
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(b) Analogs forecasting.
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(c) Sparse regression.
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(d) Latent-ODE.
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(e) RNN.
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(f) NbedDynZERO.
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(g) NbedDyn forecast.

Figure 7: Forecasted SLA states of the proposed models.

model = ’ Lorenz 63 ’
c l a s s p a r a m e t e r s :

s igma = 1 0 . 0
rho = 2 8 . 0
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Figure 8: Generated time series of the proposed models for the forecasting of the SLA dynamics.
: Given the same initial condition, we generated a time series of 150 days.

b e t a = 8 . 0 / 3
d t i n t e g r a t i o n = 0 . 0 1 # i n t e g r a t i o n t ime
n b l o o p d a t a = 50 .01 # s i z e o f t h e c a t a l o g
t e s t s a m p l e s = 1000

# run t h e d a t a g e n e r a t i o n
c a t a l o g , xt , yo = g e n e r a t e d a t a (GD)
X t e s t = c a t a l o g . a n a l o g s [ c a t a l o g . a n a l o g s . shape [0]−GD. t e s t s a m p l e s : , : 1 ]
X t r a i n = c a t a l o g . a n a l o g s [ : c a t a l o g . a n a l o g s . shape [0]−GD. t e s t s a m p l e s , : 1 ]
G r a d t = np . g r a d i e n t ( X t r a i n [ : , 0 ] ) . r e s h a p e ( X t r a i n . shape [ 0 ] , 1 ) \
/GD. d t i n t e g r a t i o n
x = V a r i a b l e ( t o r c h . from numpy ( X t r a i n ) . f l o a t ( ) )
z = V a r i a b l e ( t o r c h . from numpy ( G r a d t ) . f l o a t ( ) )
d a t a s i z e = X t r a i n . shape [ 0 ]
# n e u r a l n e t params
params = {}
params [ ’ t r a n s i t i o n l a y e r s ’ ] = 1
params [ ’ b i l i n e a r l a y e r s ’ ] = 6
params [ ’ d i m h i d d e n l i n e a r ’ ] = 6
params [ ’ d i m i n p u t ’ ] = 1
params [ ’ d i m l a t e n t ’ ] = 5
params [ ’ d i m o u t p u t ’ ] = params [ ’ d i m i n p u t ’ ] + params [ ’ d i m l a t e n t ’ ]
params [ ’ d t i n t e g r a t i o n ’ ] = GD. d t i n t e g r a t i o n
# Dynamical model
c l a s s FC net ( t o r c h . nn . Module ) :

d e f i n i t ( s e l f , params ) :
s u p e r ( FC net , s e l f ) . i n i t ( )
y aug = np . random . un i fo rm ( s i z e =( d a t a s i z e , params [ ’ d i m l a t e n t ’ ] ) )
s e l f . y aug = t o r c h . nn . P a r a m e t e r ( t o r c h . from numpy ( y aug ) . f l o a t ( ) )
s e l f . l i n e a r C e l l = t o r c h . nn . L i n e a r ( params [ ’ d i m o u t p u t ’ ] \

, params [ ’ d i m h i d d e n l i n e a r ’ ] )
s e l f . B l i n e a r C e l l 1 = \
t o r c h . nn . Modu leL i s t (\
[ t o r c h . nn . L i n e a r ( params [ ’ d i m o u t p u t ’ ] , 1 )\
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f o r i i n r a n g e ( params [ ’ b i l i n e a r l a y e r s ’ ] ) ] )
s e l f . B l i n e a r C e l l 2 = \
t o r c h . nn . Modu leL i s t (\
[ t o r c h . nn . L i n e a r ( params [ ’ d i m o u t p u t ’ ] , 1 )\
f o r i i n r a n g e ( params [ ’ b i l i n e a r l a y e r s ’ ] ) ] )
a u g m e n t e d s i z e = params [ ’ b i l i n e a r l a y e r s ’ ] \
+ params [ ’ d i m h i d d e n l i n e a r ’ ]
s e l f . t r a n s L a y e r s = \
t o r c h . nn . Modu leL i s t (\
[ t o r c h . nn . L i n e a r ( a u g m e n t e d s i z e , params [ ’ d i m o u t p u t ’ ] ) ] )
s e l f . t r a n s L a y e r s . e x t e n d (\
[ t o r c h . nn . L i n e a r ( params [ ’ d i m o u t p u t ’ ] , params [ ’ d i m o u t p u t ’ ] ) \
f o r i i n r a n g e ( 1 , params [ ’ t r a n s i t i o n l a y e r s ’ ] ) ] )
s e l f . o u t p u t L a y e r = t o r c h . nn . L i n e a r ( params [ ’ d i m o u t p u t ’ ] , \

params [ ’ d i m o u t p u t ’ ] )
d e f f o r w a r d ( s e l f , inp , d t ) :

i f i n p . shape [−1]<params [ ’ d i m l a t e n t ’ ] + params [ ’ d i m i n p u t ’ ] :
a u g i n p = t o r c h . c a t ( ( inp , s e l f . y aug ) , dim =1)

e l s e :
a u g i n p = i n p

BP outp = V a r i a b l e ( t o r c h . z e r o s ( ( a u g i n p . s i z e ( ) [ 0 ] , \
params [ ’ b i l i n e a r l a y e r s ’ ] ) ) )

L ou tp = s e l f . l i n e a r C e l l ( a u g i n p )
f o r i i n r a n g e ( ( params [ ’ b i l i n e a r l a y e r s ’ ] ) ) :

BP outp [ : , i ]= s e l f . B l i n e a r C e l l 1 [ i ] ( a u g i n p ) [ : , 0 ] ∗ \
s e l f . B l i n e a r C e l l 2 [ i ] ( a u g i n p ) [ : , 0 ]

a u g v e c t = t o r c h . c a t ( ( L outp , BP outp ) , dim =1)
f o r i i n r a n g e ( ( params [ ’ t r a n s i t i o n l a y e r s ’ ] ) ) :

a u g v e c t = ( s e l f . t r a n s L a y e r s [ i ] ( a u g v e c t ) )
g r ad = s e l f . o u t p u t L a y e r ( a u g v e c t )
r e t u r n grad , a u g i n p

model = FC net ( params )
# compute f low : RK4
c l a s s INT ne t ( t o r c h . nn . Module ) :

d e f i n i t ( s e l f , params ) :
s u p e r ( INT net , s e l f ) . i n i t ( )

# s e l f . add module ( ’ Dyn net ’ , FC net ( params ) )
s e l f . Dyn net = model

d e f f o r w a r d ( s e l f , inp , d t ) :
k1 , a u g i n p = s e l f . Dyn net ( inp , d t )
i n p k 2 = a u g i n p + 0 . 5∗ params [ ’ d t i n t e g r a t i o n ’ ] ∗ k1
k2 , tmp = s e l f . Dyn net ( inp k2 , d t )
i n p k 3 = a u g i n p + 0 . 5∗ params [ ’ d t i n t e g r a t i o n ’ ] ∗ k2
k3 , tmp = s e l f . Dyn net ( inp k3 , d t )
i n p k 4 = a u g i n p + params [ ’ d t i n t e g r a t i o n ’ ] ∗ k3
k4 , tmp = s e l f . Dyn net ( inp k4 , d t )
p r ed = a u g i n p + d t ∗ ( k1+2∗k2+2∗k3+k4 ) / 6
r e t u r n pred , k1 , inp , a u g i n p

# I n s t a n c i a t e t h e model
modelRINN = INT ne t ( params )
c r i t e r i o n = t o r c h . nn . MSELoss ( r e d u c t i o n = ’ e lementwise mean ’ )
o p t i m i z e r = t o r c h . opt im . Adam( model . p a r a m e t e r s ( ) )
# P r e t r a i n i n g : f i t t h e g r a d i e n t
params [ ’ n t r a i n ’ ] = [ 3 0 0 0 0 0 , 1 0 0 0 0 ]
f o r t i n r a n g e ( params [ ’ n t r a i n ’ ] [ 0 ] ) :

pred , grad , inp , a u g i n p = modelRINN ( x , params [ ’ d t i n t e g r a t i o n ’ ] )
l o s s 1 = c r i t e r i o n ( g rad [ : , : 1 ] , z )
l o s s 2 = c r i t e r i o n ( p red [ : −1 , : ] , a u g i n p [ 1 : , : ] )
l o s s = 0 . 9∗ l o s s 1 +0 .1∗ l o s s 2
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p r i n t ( t , l o s s )
o p t i m i z e r . z e r o g r a d ( )
l o s s . backward ( r e t a i n g r a p h =True )
o p t i m i z e r . s t e p ( )

# t r a i n i n g
f o r t i n r a n g e ( params [ ’ n t r a i n ’ ] [ 1 ] ) :

pred , grad , inp , a u g i n p = modelRINN ( x , params [ ’ d t i n t e g r a t i o n ’ ] )
l o s s 1 = c r i t e r i o n ( p red [ : −1 , : ] , a u g i n p [ 1 : , : ] )
l o s s 2 = c r i t e r i o n ( p red [ : −1 , 1 : ] , a u g i n p [ 1 : , 1 : ] )
l o s s =10 .0∗ l o s s 1 + 1 . 0∗ l o s s 2
p r i n t ( t , l o s s )
o p t i m i z e r . z e r o g r a d ( )
l o s s . backward ( r e t a i n g r a p h =True )
o p t i m i z e r . s t e p ( )
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(a) Analog forecasting.
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(b) Sparse regression.
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(c) Latent-ODE.
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(d) RNN.
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(e) NbedDynZERO.
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(f) NbedDyn.

Figure 9: Forecasted EOF components of the proposed models.
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