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ABSTRACT

In many real-world settings, a learning model must perform few-shot classification:
learn to classify examples from unseen classes using only a few labeled examples
per class. Additionally, to be safely deployed, it should have the ability to detect
out-of-distribution inputs: examples that do not belong to any of the classes. While
both few-shot classification and out-of-distribution detection are popular topics,
their combination has not been studied. In this work, we propose tasks for out-
of-distribution detection in the few-shot setting and establish benchmark datasets,
based on four popular few-shot classification datasets. Then, we propose two new
methods for this task and investigate their performance.
In sum, we establish baseline out-of-distribution detection results using standard
metrics on new benchmark datasets and show improved results with our proposed
methods.

1 INTRODUCTION

Few-shot learning, at a high-level, is the paradigm of learning where a model is asked to learn about
new concepts from only a few examples (Fei-Fei et al., 2006; Lake et al., 2015). In the case of few-
shot classification, a model must classify examples from novel classes, based on only a few labelled
examples from each class. The model has to quickly learn (or adapt) a classifier given this very
limited amount of learning signal. This paradigm of learning is attractive for the fundamental reason
that it resembles how an intelligent system in the real-world has to behave. Unlike the traditional
supervised setting, in most real-world settings we would not have access to millions of labelled
example. For example, a few-shot classifier can be deployed to recognize facial gestures of a new
user, in order to improve human-computer interaction for individuals with motor disabilities (Wang
et al., 2019).

For an intelligent system to be deployed in the real-world, not only does it have to do well on the
designated task, but perhaps more importantly it should defer its actions when faced with unforeseen
situations. In particular, when an input is invalid, or does not belong to any of the target classes, a
system should identify the input as out-of-distribution. Successfully detecting out-of-distribution
examples is crucial in a safety critical environment. In the supervised setting, out-of-distribution
detection has been studied from many different angles (Hendrycks and Gimpel, 2016; Nalisnick et al.,
2018), but this task has not been investigated in the few-shot setting.

Worryingly, current state-of-the-art learning systems, deep neural networks, are known to be unrea-
sonably confident about inputs unrecognizable to humans (Nguyen et al., 2015), and their predictions
can be manipulated with imperceptible changes in input space (Szegedy et al., 2013). in general, the
behavior of deep nets is not well specified when the test queries are out-of-distribution.

A standard practice to studying out-of-distribution detection is to evaluate the detection performance
when inputs from other datasets are mixed into the test set (Hendrycks and Gimpel, 2016). Here
we refer to this type of out-of-distribution inputs as out-of-dataset (OOS)1 inputs. In the few-shot
setting, within each episode, what is in-distribution is specified based on a few labeled examples,
known as the support set. Hence, there naturally exists another type of out-of-distribution input,
the inputs that belong to the same dataset but come from classes not represented by the support set.

1We denote out-of-distribution and out-of-dataset with the acronyms OOD and OOS, respectively.
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We refer to these as out-of-episode (OOE) examples. These different types of out-of-distribution
examples are illustrated in Figure 1.
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Figure 1: Examples of the support set, in-
distribution, OOE and OOS inputs in one episode.

Being able to detect out-of-distribution ex-
amples is critical for improvements in many
other important applications, including semi-
supervised learning and continual learning. In
the case of semi-supervised learning methods,
it was shown that if the unlabelled set is pol-
luted with only 25% out-of-distribution exam-
ples, then using the unlabeled data actually has
a negative effect on performance (Oliver et al.,
2018). In the very natural continual learning
framework, where a model has to learn about
new concepts while not forgetting old ones, de-
tecting when examples do not belong to any previously-learned classes is a fundamental problem.

Hence, in this work, we focus on this core problem of out-of-distribution detection in the few-shot
setting.

Contributions

• We develop benchmark datasets for out-of-distribution detection, both OOE and OOS, based
on four standard benchmark datasets for few-shot classification: Omniglot, CIFAR100,
miniImageNet, and tieredImageNet.
• We establish baseline results for both the OOS and OOE tasks for two popular few-shot

classifiers — Prototypical Networks, and MAML on these datasets.
• We show that a simple distance metric-based approach dramatically improves the perfor-

mance on both tasks.
• Finally, we propose a learned scoring function which further improves both tasks on the

most challenging new benchmark datasets.

2 OVERVIEW OF FEW-SHOT CLASSIFICATION

Episode 1 Training Set

Training SetEpisode 2 Test Queries

Training SetMeta-Test Time

Test Queries

Test Queries

Figure 2: Standard episodic set-up. A test
episode in standard few-shot classification con-
sists of a few training (or support) examples from
novel classes, and test/query examples from those
classes. Many systems not only evaluate but also
train episodically, i.e., looping over episodes as
opposed to over typical batches.

In few-shot classification, a model is tasked to
classify unlabeled ‘queries’ Q = {xi}

NQ

i=1 into
one of NC classes from a set Ctest. This setup
differs from standard ‘supervised’ classification
in that only a few labeled examples are avail-
able from each class c ∈ Ctest, referred to as
that class’ support set Sc = {(xi, yi)}NS

i=1. Fol-
lowing the standard terminology, we refer to
the number of classes NC as the ‘way’ of the
task and the number of support examples per
class NS as the ‘shot’ of the task. We also use
the term episode to refer to a classification task
defined by a support and a query set.

While we assume that little data is available for
each such test classification episode, the model
has access to a (possibly large) training set be-
forehand that contains examples from a different
set of classes Ctrain, disjoint from Ctest. The
key is therefore to figure out how to exploit this
seemingly-irrelevant data at training time in or-
der to obtain a model that is capable of learning
a new episode at test time using only its small
support set in a way that performs well on clas-
sifying its corresponding query set.
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Most recent approaches for this adopt the design choice of creating episodes from the training set
of classes too, and expressing their training loss for each episode in terms of performing well on its
query examples, after having ‘learned’ on its small support set. The intuition is to practice learning
episodes that have the same structure as those that will be encountered at test time. At training time,
these episodes are created by randomly sampling NC classes (from the training set of classes), NS
examples of each of them to form the support set, and some different examples of each of them to
form the query set. We refer to this type of training as ‘episodic training’ (See Figure 2). Different
methods are distinguished by the manner in which learning is performed on the support set. We now
give an overview of two popular approaches to few-shot learning: Prototypical Networks (Snell et al.,
2017), MAML (Finn et al., 2017).

Prototypical Networks. Prototypical Networks (Snell et al., 2017) are a simple but effective
instance of the above framework where the ‘learning procedure’ that the model undergoes based on
the support set has a closed form. More concretely, it consists of a parameterized embedding function
fφ (typically a deep net) and a distance metric d(·, ·) on the embedding space. Given support sets
of the chosen classes, the Prototypical Network computes the prototype µc of each class c in the
embedding space:

µc =
1

|Sc|
∑

xi∈Sc

fφ(xi).

Then a query xin is classified based on its distance to the class prototypes:

pφ(y = c|xin) =
exp(−d(fφ(xin),µc))∑
c′ exp(−d(fφ(xin),µc′))

(1)

During training episodes, the parameters of fφ are updated according to the Prototypical Network
loss:

LPN (φ; {S,Q}) = −
∑

(xin,c)∈Q

log pφ(y = c|xin). (2)

Algorithm 2 (in the Appendix) is a description of standard episodic training of a Prototypical Network.

Meta-learning. MAML (Finn et al., 2017) is another popular model of this episodic family that is
parameterized by a representation function and a linear classification layer on top, where jointly we
denote the weights as ψ. Training unfolds over a sequence of training episodes, as usual. In each
episode, the weights ψ are adapted via a few steps of gradient descent (denoted as SGDparameters(L))
to minimize the cross entropy loss over the NC-way classification on the support set, resulting in
updated weights φ which are then used for classifying the queries in the given episode. Over a number
of episodes, the aggregated loss is then used to update ψ again with gradient descent.

φi = SGDψ(CrossEntropyLoss(ψ; {Si}))

LMAML(ψ; {Si, Qi}Mi=1) =

M∑
i=1

CrossEntropyLoss(φi; {Si, Qi})

The model is thus encouraged to learn a global initialization ψ of weights such that a few steps of
adaptation on a new episode’s support set suffice for performing well on its query set.

3 OVERVIEW OF OUT-OF-DISTRIBUTION DETECTION

The term “out-of-distribution” refers to input data that is drawn from a different generative process
than that of the training data. Hendrycks and Gimpel (2016) used other benchmark datasets as
sources of out-of-distribution examples. For example, when a network is trained on MNIST, the
out-of-distribution examples come from Omniglot, black-and-white CIFAR10, etc. Another common
evaluation setup is to treat data of different classes from the same dataset as out-of-distribution.
These have been referred to as same manifold (Liang et al., 2017), or unobserved class (Louizos and
Welling, 2017) out-of-distribution examples.
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Problem Set-up. Out-of-distribution detection is a binary detection problem. At test-time, the
model is required to produce a score, sθ(x) ∈ R, where x is the query, and θ is the set of learnable
parameters for this detection task. We desire sθ(xin) > sθ(x

out), i.e, the scores for in-distribution
examples are higher than that of out-of-distribution examples. Typically for quantitative evaluation,
threshold-free metrics are used, e.g. area under the receiver-operating curve (AUROC) (see Section 5
for details).
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Figure 3: Schematic of OOS ap-
proaches.

Approaches. The main approaches to out-of-
distribution detection can be categorized into one of the
three families: 1) scores based on the predictive proba-
bility of a classifier; 2) scores based on fitting a density
model to the inputs directly; and 3) scores based on fitting
a density model to representations of a pretrained model
(e.g., a classifier). These are illustrated in Figure 3.

1. Predictive probability - Recall the classifica-
tion of the in-distribution data is done using pφ(y =
c|xin) where φ is the classifier parameters. Commonly
used scores include softmax prediction probability (SPP),
s(xin;φ) = maxc′ pφ(y = c′|xin) (Hendrycks and
Gimpel, 2016), or negative predictive entropy (NPE),
s(xin;φ) =

∑
c′ pφ(y = c′|xin) log pφ(y = c′|xin). No-

tice we use the notation s(·;φ) to emphasize that these scores operate on top of pretrained classifiers.

A popular extension is to use Bayesian classifiers, i.e., Bayesian Neural Networks (BNNs), and
improve the scores by looking at the aggregated score based on the model posterior.

2. Input density - Another natural approach to detecting out-of-distribution examples is to fit a
density model on the data and consider examples with low likelihood to be OOD Yet, this approach is
not as competitive when the input domain is high-dimensional images. Nalisnick et al. (2018) showed
that deep generative models (e.g., flow-based models (Kingma and Dhariwal, 2018), auto-regressive
models (Salimans et al., 2017)) can assign higher densities to out-of-distribution examples than
in-distribution examples.

3. Representation density - While fitting a density model on the inputs directly has not proven
useful for OOD detection, fitting simple density models on learned classifier representations has.
Lee et al. (2018a) fits a Mixture-of-Gaussian (MoG) density with shared diagonal covariance on the
classifier activations of the training set. Intuitively, this approach fits a density model in a space where
much of the variation in the input has been filtered out, and makes it an easier problem than learning
a density model in the input space.

4 OUT-OF-DISTRIBUTION DETECTION IN THE FEW-SHOT SETTING

In this study, we focus on two types of out-of-distribution detection problems, described below. In
both cases, we denote the set of in-distribution and out-of-distribution examples by Q = {xin

i }
NQ

i=1,
and R = {xout

i }
NQ

i=1 where NQ is the number of examples. Notice we abuse NQ to denote the number
of queries in an episode, and the number of in-distribution/out-of-distribution examples, as they mean
the same thing depending on context. One could consider differet numbers of OOD examples from
in-distribution ones, but this is omitted for presentation clarity.

Out-of-episode (OOE). OOE examples come from the same dataset, but from classes not in the
current episode. In other words, if the current episode consists of classes in Cepisode, we sample OOE
examples R as follows:

Cooe ← RANDOMSAMPLE(Ctrain \ Cepisode, NC) (3)
R← RANDOMSAMPLE(DCooe , NQ) (4)

Here, DC′ denotes the set of all examples of classes in set C ′, \ is the set difference. This type of
out-of-distribution detection is easily motivated. Taking the same example where we want to build
a customized facial gesture recognizer for a user, when the system sees the user’s face performing
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Algorithm 1 Episodic training with OOE inputs. Modified steps are highlighted in blue.

1: while not converged do
2: Cepisode ← RANDOMSAMPLE(Ctrain, NC) . randomly select classes
3: for c in Cepisode do . for each class
4: Sc ← RANDOMSAMPLE(D{c}, NS) . select the support set
5: Qc ← RANDOMSAMPLE(D{c} \ Sc, NQ) . select the query set
6: end for
7: Cooe ← RANDOMSAMPLE(Ctrain \ Cepisode, NC) . prepare OOE queries
8: R← RANDOMSAMPLE(DCooe , NQ)
9: φ← φ− α(∇φLPN (φ; {S,Q}) +λ∇φLOOE(φ; {S,Q,R})

10: end while

a gesture that is not registered (i.e., not in the support set), we would like the system to know it’s
out-of-distribution, and not perform inappropriate actions.

Out-of-dataset (OOS). OOS examples come from a completely different dataset. For example, if
the in-distribution set is Omniglot, then the OOS examples can come from black-and-white CIFAR10.
Motivation for this type of out-of-distribution example is also straightforward. A system really should
defer its actions when faced with something completely different from what it’s trained on.

Generally, we use s(·) to denote the scoring function for out-of-distribution detection, which expresses
the model’s ‘confidence’ that an example is in-distribution. Hence, we desire that s(xin) > s(xout)
for any in-distribution query xin and out-of-distribution example xout.

4.1 PROPOSED FEW-SHOT OUT-OF-DISTRIBUTION DETECTION METHODS

In what follows, we propose two novel methods: 1) a parameter-free method that measures the
distance in the learned embedding of a few-shot classifier, 2) a learned scoring function on top of the
embedding of a few-shot classifier.

(1). Minimum Distance Confidence Score (-MinDist). To illustrate why standard softmax pre-
diction probability (SPP) fails in the few-shot setting, consider the classifier learned by Prototypical
Network. The original Prototypical Network formulation makes decisions based on a softmax over
the negative distances in the embedding space. However, when a query embedding is far away from
all prototypes (as we may expect for OOS examples), converting distances to probabilities can yield
arbitrarily confident predictions (for details see Appendix E). This makes SPP unsuitable for OOS
detection. We propose an alternative confidence score, based on the negative minimum distance from
a query to any of the prototypes:

s(xin;φ) = −min
c
d(fφ(xin),µc) (5)

Episodic Optimization with OOE Inputs When training our backbone, we can also add
a term to our loss to encourage it to accurately detect OOE examples in addition to accurately
performing the episode’s classification task. Intuitively, adding this term changes the embedding in
such a way that the optimized confidence score performs well on the OOE task. This new term is the
following:

LOOE(φ; {S,Q,R}) = −
∑
xin∈Q

log σ(s(xin;φ))−
∑

xout∈R

log(1− σ(s(xout;φ))) (6)

where s(·;φ) here can be any of the parameter-free scores, and σ(·) is the logistic function. Algo-
rithm 1 is a description of episodic training with OOE examples.

(2). Learnable Class BOundary (LCBO) Network. We introduce a parametric, class-conditional
confidence score that takes a query x and a class c, and yields a score indicating whether x belongs
to class c.
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The LCBO takes as input: 1) the support embeddings for a particular class, and 2) a query embedding.
The LCBO outputs a real-valued score representing the confidence that the query belongs to the
corresponding class.

s̄θ : (xin, Sc)→ R (7)

Aggregation. The LCBO outputs class-conditional confidence scores (e.g., the confidence
that a query belongs to a specific class). To obtain a final score for in-distribution vs OOS for each
query, we aggregate the class-conditional scores. We take the maximum confidence of all the classes:

sθ(x
in) = max

c∈C
s̄θ(x

in, Sc) (8)

Intuitively, s̄θ(xin, Sc) computes the distance between a query embedding and a prototype, and the
max() aggregation function says a query is an inlier if it belongs to at least one class. By design,
this is strictly more powerful than -MinDist since it is parameterized by a new set of weights θ, but
could also recover simple distance between xin and µ, i.e., -MinDist. The difficulty of designing a
good uncertainty estimate based on a trained classifier leads us to believe that adding capacity to the
confidence score using learnable parameters can be beneficial.

Implementation Details. We parameterize the learned confidence score sθ by an MLP with
two hidden layers of dimension 100, that takes as input the concatenation [µc; fφ(xin)] where µc is
the class prototype and fφ(xin) is the query embedding.

Note that LCBO always operates on top of the backbone fφ(·), so this dependency is omitted for
notational simplicity.

Training the LCBO. We train the LCBO episodically similar to described in the earlier
paragraph. But instead of training the aggregated score, we use the following binary cross-entropy
objective on the score before aggregation:

LLCBO(φ, θ; {S,Q,R}) = −
∑

(c,xin)∈Q

log σ(s̄θ(x
in, Sc))−

∑
xout∈R,c′∼unif(Cepisode)

log(1−σ(s̄θ(x
out, Sc′)))

(9)
For the OOE queries xout, we assigned them a label drawn from the uniform distribution of the
in-distribution classes.

5 EXPERIMENTS

In this section, we 1) establish the OOE and OOS detection performance of standard few-shot methods
as well as a novel variant; , and 2) show that both our proposed methods improve substantially over
these baseline approaches.

To enable fair comparisons, for all the experiments in this section we use the same network configura-
tion, a standard 4-layer ConvNet architecture that is well-established in the few-shot literature (Snell
et al., 2017). Note that none of the methods discussed here sacrifice in-distribution classification
accuracy.

Evaluation Metrics. We evaluate the OOE and OOS detection performance using the area under
the receiver-operating curve (AUROC). This is a simple metric that circumvents the need to set
a threshold for the score. The base-rate (i.e., a completely naïve scoring function) for all of our
experiments is 50%. A scoring function that can completely separate s(xin) from s(xout) would
achieve an AUROC score of 100%. Following standard practice (Hendrycks and Gimpel, 2016;
Liang et al., 2017; Lee et al., 2018b), we also report scores for area under the precision and recall
curve (AUPR), and false positive rate (FPR) (Table 5.1). All results are evaluated using 1000 test
episodes, i.e., episodes that contain classes never seen during training. Please refer to Appendix C for
descriptions of the in-distribution and OOS datasets.

5.1 OUT-OF-DISTRIBUTION DETECTION WITH BASELINE METHODS
We first evaluate the out-of-episode and out-of-distribution detection performance of three few-shot
classifiers, using the standard SPP confidence score. The results are summarized in Table 2. We note
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AUROC ↑ AUPR ↑ FPR90 ↓
in-distribution task PN MAML ABML PN MAML ABML PN MAML ABML

Omniglot OOE 90.6 88.4 85.5 90.3 89.3 86.3 27.5 38.1 46.1
OOS 63.8 89.5 88.8 70.8 90.3 89.1 53.7 35.1 38.3

CIFAR100 OOE 60.3 61.6 59.4 63.0 63.6 61.1 85.1 84.0 85.3
OOS 57.4 58.1 65.8 63.8 62.6 68.1 86.7 86.0 79.3

miniImageNet OOE 56.6 56.8 54.6 58.5 58.1 56.0 87.0 86.9 88.4
OOS 50.4 65.8 63.8 61.5 68.2 65.4 0.4 78.5 80.0

tieredImageNet OOE 59.4 57.3 63.3 61.3 58.6 66.3 85.1 86.5 80.7
OOS 66.4 68.3 64.2 72.6 70.3 65.4 79.0 75.7 81.4

Table 1: Baseline results for various few-shot classifiers. All numbers are in percentages evaluated
in the 5-way 5-shot setting for all 4 datasets, using the standard Conv4 backbone and SPP confidence
score. The reported OOS numbers are the means over all the OOS datasets used for the corresponding
in-distribution dataset.

AUROC ↑ AUPR ↑ FPR90 ↓
in-distribution task SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

Omniglot OOE 89.5 98.3 96.4 88.6 98.2 92.5 28.3 3.8 7.3
OOS 35.8 100 58.4 45.6 100 58.5 80.4 0.0 42.1

CIFAR100 OOE 60.1 68.0 73.3 61.0 67.2 71.5 84.3 73.1 62.8
OOS 55.8 86.1 79.6 58.3 86.2 79.3 87.6 31.9 52.5

miniImageNet OOE 56.7 61.9 65.6 56.8 61.1 63.1 86.8 80.2 73.1
OOS 51.8 61.0 74.7 54.0 64.0 75.2 89.2 60.1 61.0

tieredImageNet OOE 59.0 62.4 65.0 60.0 61.4 62.8 85.1 79.0 74.4
OOS 53.6 51.4 70.7 56.2 59.9 73.1 88.5 66.0 70.4

Table 2: LCBO, -MinDist results for ProtoNet. All numbers are in percentages evaluated in the
5-way 5-shot setting for all 4 datasets, using the standard Conv4 backbone. The reported OOS
numbers are the means over all the OOS datasets used for the corresponding in-distribution dataset.
For detailed OOS results, see Appendix D
that, not only are these classifiers similar in their distribution classification accuracy (Chen et al.,
2019), their ability to detect out-of-distribution examples are also similar.

Bayesian methods provide an alternative that may help in OOD detection, by quantifying uncertainty
in predictions. We evaluate a recent method that shows strong calibration results: the Amortized
Bayesian Meta-Learning (ABML) algorithm Ravi and Beatson (2019) which realizes a Bayesian
MAML following the hierarchical variational Bayes formulation in Amit and Meir (2018). However,
ABML did not significantly improve over MAML, at least according to our implementation (Ravi
and Beatson (2019) did not release code, but in Appendix F we discuss details about our best effort to
reproduce this method). In what follows we show that out-of-distribution performance can be greatly
improved.

5.2 OUT-OF-DISTRIBUTION DETECTION WITH -MINDIST & LCBO

Few-shot classification can be evaluated in many different (way, shot) settings, e.g., 5-way 5-shot,
10-way 1-shot, etc. Due to lack of space, we report only 5-shot 5-way results in this section. Full
results for {5, 10}-way× {1, 5}-shot settings on CIFAR-100 are provided in Appendix I.

Table 2 shows the results of SPP, -MinDist, and the learned LCBO score on all four of the datasets.
Across the board, on both OOE and OOS tasks, either -MinDist or LCBO outperformed the baseline
method. Interestingly, it seems to confirm our hypothesis that -MinDist might not be the most suitable
confidence score for all embedding spaces. For a more detailed discussion about -MinDist, and its
connection to a similar method proposed in the supervised setting (Lee et al., 2018a), please see
Appendix E. On the largest datasets, i.e., both versions of the ImageNet dataset, LCBO outperformed
-MinDist on both OOE and OOS tasks. This was somewhat surprising, since one might expect
parameter-free functions like -MinDist can generalize better to OOS datasets that are very different
from the in-distribution data. This was still true on CIFAR100, but not the ImageNet datasets.

One major difference between CIFAR100 and ImageNet was the image size (32× 32 vs 84× 84),
which resulted in different embedding dimensions (256 vs 1600). This suggests that as we scale up
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the dimensionality of the embedding space, it becomes increasingly difficult to design a suitable
parameter-free confidence score. Hence, a learnable score such as LCBO becomes critical.

Effect of different backbones. We also investigated the effect of the backbone network, fφ, on OOE
and OOS detection. Recently, Chen et al. (2019) trained larger backbones like ResNet without using
episodic training. We included results with these larger backbones in Appendix I.

Effect on example downstream application.

Ren et al. (2018) proposed to study few-shot semi-supervised learning (FS-SSL), where each episode
is augmented with an unlabelled set. To make it more realistic, there are also ‘distractors’ present.

Model OOE Uniform Gaussian
Supervised 47.5 47.7 47.4

Soft k-means (Ren et al., 2018) +1.4 −9.4 −11.4
with LCBO −0.2 +0.1 +0.0

Table 3: Classification accuracy (in percentages) of semi-
supervised learning results on tieredImageNet. Column headings
indicate type of distractor used at test-time. ‘+’, and ‘−’ denote
the lack and presense of degrade. ’Supervised’ refers to training
without unlabelled set.

In previous FS-SSL studies, only
OOE examples are considered for
both training and testing phases. This
is somewhat unrealistic, as there can
be unforeseen distractors in the test
episodes. In Table 9 we show that
when evaluated on this more realistic
setting, method in Ren et al. (2018)
really suffers. Here, we do not claim
that LCBO improves upon semi-supervised learning methods. Yet, especially in the case when distrac-
tor inputs are OOS, instead of only OOE examples, baseline semi-supervised methods significantly
degrade the classification accuracy (see Appendix G for more details on this task).
6 RELATED WORK
As few-shot out-of-distribution detection is a new problem, here we discuss recent attempts to study
uncertainty in the few-shot setting, and previous approaches that worked well for out-of-distribution
detection in the supervised setting.

Bayesian Few-shot classifier. A number of papers investigated Bayesian extensions of MAML.
Compared with other works (Grant et al., 2018; Finn et al., 2018; Yoon et al., 2018) on extending
the MAML framework to the Bayesian setting, ABML maintains uncertainty on both the global
initialization ψ. Furthermore, as a way to analyze the uncertainty estimate of ABML, Ravi and
Beatson (2019) studied the few-shot out-of-distribution detection of the ABML framework. Yet, they
did not report quantitative evaluations as we did.

Other out-of-distribution approaches. ODIN (Liang et al., 2017) consists of 2 innovations: 1)
perform temperature scaling to calibrate the predicted probability (Guo et al., 2017); and 2) when
doing out-of-distribution detection, add virtual adversarial perturbations (VAP) to the input. Intuitively
VAP will have a larger effect on the in-distribution input compared to the out-of-distribution input.
Lee et al. (2018a) showed that this approach can be complementary to fitting a Gaussian density to
the activations of the network. Our preliminary experiments showed that ODIN did not have a big
impact in the few-shot setting. ‘Outlier exposure’ another recent method (Hendrycks et al., 2019)
also did not show a significant effect. We included results in Appendix J.

For some time, methods using the predictive probability were the dominant approach in out-of-
distribution detection. Nalisnick et al. (2018) pointed out that the community had been using the
learned density model incorrectly by directly looking at the p(x) scores, and instead should use
a measure of typicality (Nalisnick et al., 2019). Ren et al. (2019) proposed to train a separate
“background” model and use the likelihood ratio as the score. Generative/density models have not
been extensively studied in the few-shot setting. We believe this can be related to the lack of a good
task/quantitative evaluation, and the tasks we study might facilitate research done on such models.

7 CONCLUSION

To the best of our knowledge, this is the first study to investigate both OOS and OOE tasks and report
results using commonly-used metrics in the few-shot setting. We showed that existing confidence
scores developed in the supervised setting (i.e., setting with a fixed number of classes) are not suitable
when used with popular few-shot classifiers. Our proposed confidence scores, -MinDist and LCBO,
substantially outperformed the baselines on both tasks across four staple few-shot classification
datasets. We hope our work encourages future studies on quantitative evaluation of out-of-distribution
detection and uncertainty in the few-shot setting.
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A NOTATION

Symbol Meaning
Q,S,R query, support, distractors/out-of-distribution sets
Ctest, Ctrain classes in the test, train set
Cepisode classes in an episode
DCepisode the set of all examples belonging to class Cepisode
NC , NS number of way/classes, number of shots per episode

x generic image input
xin,xout query, and out-of-distribution examples
Sc the set of support examples of class c
fφ embedding/backbone network
µ prototype
s(·) confidence score

Table 4: Description of the functions used throughout this paper.

B EPISODIC TRAINING

Algorithm 2 is a description of episodic training of a classifier. Here, DC′ denotes the set of all
examples of classes in set C ′. RANDOMSAMPLE(s, n) randomly selects n elements from the set s.

Algorithm 2 Episodic training.

1: while not converged do
2: Cepisode ← RANDOMSAMPLE(Ctrain, NC) . sample classes
3: for c in Cepisode do . for each class
4: Sc ← RANDOMSAMPLE(D{c}, NS) . sample support set
5: Qc ← RANDOMSAMPLE(D{c} \ Sc, NQ) . sample query set
6: end for
7: φ← φ− α(∇φLPN (φ; {S,Q})
8: end while

C DATASETS

Omniglot. The Omniglot dataset (Lake et al., 2011) contains 28× 28 greyscale images of hand-
written characters. This is the most widely adopted benchmark dataset for few-shot classification.
We use the same splits as in (Snell et al., 2017). Each class has 20 samples, and there are a total of
1200× 4 training classes, and 423× 4 unseen classes.

CIFAR100. The CIFAR100 dataset (Krizhevsky, 2009) contains 32× 32 color images. It is similar
to the CIFAR10 dataset, but has 100 classes of 600 images each. We used 64 classes for training, 16
for validation, and 20 for test.

miniImageNet. The miniImageNet dataset is another commonly used few-shot benchmark (Snell
et al., 2017; Vinyals et al., 2016). It consists of 84× 84 colored images. It also has 100 classes, and
600 examples each. Similarly, we used 64 classes for training, 16 for validation, and 20 for test.

tieredImagenet. The tieredImageNet dataset is very similar to the miniImageNet dataset. Proposed
by Ren et al. (2018), it has 608 classes instead of 100. 2

2We follow the instructions on https://github.com/renmengye/few-shot-ssl-public.
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Out-of-Dataset. The OOS datasets were adopted from previous studies including Hendrycks et al.
(2019); Liang et al. (2017). Since we experimented with in-distribution datasets of different scales,
the OOS inputs were scaled accordingly.

• Noise: We used uniform, Gaussian, and Rademacher noise, of the same dimensionality as
the in-distribution data (e.g., 3× 32× 32 uniform noise as OOS data for CIFAR-100).

• notMNIST consists of 28 × 28 grayscale images of alphabetic characters from several
typefaces.

• CIFAR10bw is simply a grayscale version of CIFAR10.

• LSUN is a large-scale scene understanding dataset (Yu et al., 2015).

• iSUN is a subset of SUN consisting of 8925 images (Xu et al., 2015).

• Texture is a dataset with different real world patterns (Cimpoi et al., 2014).

• Places is another large scale scene understanding dataset (Zhou et al., 2017).

• SVHN refers to the Google Street View House Numbers dataset (Netzer et al., 2011).

• TinyImagenet consists of 64 × 64 color images from 200 ImageNet classes, with 600
examples of each class.

D EXPANDED TABLE 2

All the results in this section are in the 5-way, 5-shot setting, and were obtained using the 4-layer
convolutional backbone.

D.1 OMNIGLOT

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

OOE 89.5 98.2 96.4 88.6 98.3 92.5 28.3 3.8 7.3
Gaussian 17.4 100.0 82.9 34.3 100.0 67.2 95.5 0.0 17.7
uniform 86.5 100.0 98.2 84.6 100.0 98.5 36.2 0.0 2.5

notMNIST 28.4 100.0 12.2 37.4 100.0 33.2 87.7 0.0 88.5
cifar10bw 29.5 100.0 28.7 37.7 100.0 37.5 86.9 0.0 71.7
MNIST 17.1 100.0 70.1 34.2 100.0 56.1 95.6 0.0 30.1

OOS MEAN 35.8 100.0 58.4 45.6 100.0 58.5 80.4 0.0 42.1
MEAN 44.7 99.7 64.8 52.8 99.7 64.2 71.7 0.6 36.3

Table 5: Expanded Omniglot results

D.2 CIFAR100

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

OOE 60.1 68.0 73.3 61.0 67.2 71.5 84.3 73.1 62.8
Gaussian 47.2 100.0 89.0 49.7 100.0 88.5 93.3 0.0 30.9
Uniform 63.7 96.2 82.8 67.6 97.1 83.9 83.8 7.5 48.8

Rademacher 47.3 100.0 87.2 49.6 100.0 86.5 93.0 0.0 34.7
Texture 54.5 89.5 80.4 54.8 87.5 78.6 87.9 26.1 48.9
Places 56.5 88.9 78.1 58.4 89.0 77.8 87.9 32.9 56.8
SVHN 64.0 48.4 67.7 67.0 50.7 68.2 82.2 93.1 75.5
LSUN 57.3 91.4 79.5 59.2 91.7 80.3 87.5 25.7 56.7
iSUN 55.6 90.1 78.7 57.4 90.1 78.6 88.4 28.9 56.4

TinyImagenet 56.2 88.9 79.7 58.0 88.5 79.5 88.1 31.4 53.7
OOS MEAN 55.8 88.2 80.3 58.0 88.3 80.2 88.0 27.3 51.4

MEAN 56.2 86.1 79.6 58.3 86.2 79.3 87.6 31.9 52.5

Table 6: Expanded CIFAR100 results
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D.3 miniIMAGENET

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

OOE 56.7 61.9 65.6 56.8 61.1 63.1 86.8 80.2 73.1
Gaussian 37.4 100.0 64.3 41.7 100.0 64.7 95.8 0.0 68.0
Uniform 54.4 99.8 87.8 56.3 99.8 87.3 87.5 0.0 34.4

Rademacher 39.0 100.0 64.0 42.4 100.0 65.0 95.7 0.0 71.1
Texture 52.7 49.9 74.6 53.7 45.9 73.3 88.8 77.5 60.2
Places 57.7 46.6 76.6 59.0 47.7 77.3 86.1 91.3 61.6
SVHN 51.1 5.6 74.5 54.0 31.2 76.2 91.0 100.0 65.8
LSUN 59.2 51.3 76.1 61.4 53.6 78.2 85.2 92.7 66.4
iSUN 57.9 49.7 78.1 59.4 50.2 78.7 85.6 89.5 59.4

TinyImagenet 56.4 46.5 75.9 57.7 47.2 76.0 86.9 90.1 62.0
OOS MEAN 51.8 61.0 74.7 54.0 64.0 75.2 89.2 60.1 61.0

MEAN 52.2 61.1 73.8 54.2 63.7 74.0 88.9 62.1 62.2

D.4 tieredIMAGENET

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

OOE 59.0 62.4 65.0 60.0 61.4 62.8 85.1 79.0 74.4
Gaussian 38.4 100.0 76.2 41.5 100.0 77.7 95.6 0.0 57.6
Uniform 41.6 99.1 90.4 42.8 98.9 92.0 94.0 2.0 32.5

Rademacher 40.0 100.0 77.3 42.3 100.0 78.1 95.1 0.0 54.2
Texture 55.5 34.5 61.9 56.8 40.6 63.5 88.6 93.3 81.8
Places 61.7 27.9 66.9 64.7 40.6 70.0 84.6 99.7 80.4
SVHN 54.9 10.6 57.8 58.9 32.2 61.5 90.5 99.9 90.0
LSUN 66.8 30.6 71.4 70.0 43.8 75.0 79.9 99.8 77.2
iSUN 62.7 29.4 67.9 65.1 41.4 71.0 82.8 99.6 79.9

TinyImagenet 60.7 30.8 66.5 63.3 42.0 69.2 85.2 99.4 80.0
OOS MEAN 53.6 51.4 70.7 56.2 59.9 73.1 88.5 66.0 70.4

MEAN 54.1 52.5 70.1 56.5 60.1 72.1 88.1 67.3 70.8

E -MINDIST

In Tables 5 and 6, we show that -MinDist improved both OOE and OOS detection results under all
metrics. The improvement on the OOS task was very pronounced due to the fact that baseline scoring
functions based on p(y|xin) behaved erratically for xin far away from the empirical distribution of
the in-distribution embedding. For example, when the embedding network is trained on CIFAR100,
an embedded point based on image of Gaussian noise has an L2-norm 10× larger than the average
embedding of an in-distribution input. This resulted in a very confident SPP score (See paragraph
below). This effect was eliminated by using -MinDist, and any embedded point far away from the
class prototypes was assigned low confidence. This intuition seemed to apply to most of the OOS
tasks. On the more challenging task of OOE detection, -MinDist improved over the baselines, but not
by as large a margin when the in-distribution dataset is easy (e.g., Omniglot). The improvement on
the OOE task was more substantial when the in-distribution dataset was CIFAR100.

Toy example of when ‘softmax of distance’ breaks down. Note that when the input to the
softmax, or our logits, are the negative distances to each of the prototypes:

pφ(y = c|xin) =
exp(−d(fφ(xin),µc))∑
c′ exp(−d(fφ(xin),µc′))

(10)

the softmax function is invariant to a constant additive bias in the logits. This makes anything outside
of the convex hull formed by the prototypes equivalent to being right on the boundary of the convex
hull. In the case that we have a 1-dimensional embedding, and only 2 prototypes located at 0 and
1. Anything within the range of 0 and 1 would give reasonable probability, and the point 0.5 would
give maximum entropy. However, our intuition says that anything that is very far away from both
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prototypes, say the point of 100, should also have maximum entropy. Yet, due to the invariant to
constant additive bias, anything outside of the range 0 and 1 would have the undesirable behaviour
that has one moves away from this range, the output of the softmax decreases in entropy while we
desire it to increase in entropy. In higher dimensions, similar phenomenon happens, hence confidence
functions that operate in the predicted probability space are not suitable for the out-of-distribution
data.

Figure 4: The toy example in PyTorch. a is our embedded query, and we have a prototype at 0, and
another at 1. When a = .5, SPP is 0.5. When a = 100, SPP is 1, which is undesirable.

Table 7: AUROC comparison to (Lee et al., 2018a)

Dataset CIFAR100 miniImageNet
Model OOE OOS OOE OOS

-MinDist 68 86 62 61
LCBO 73 80 66 75

Mahalanobis (tied)
(Lee et al., 2018a) 57 86 53 59

Mahalanobis
(Lee et al., 2018a) 54 86 56 42

A good connection between -MinDist and
method in (Lee et al., 2018a) can be made.
However, Lee et al. (2018a) fit a full covari-
ance Gaussian to each of the classes, and
use the Mahalanobis distance as score, which
requires computing the inverse covariance
of the support embeddings. This approach
faces a fundamental difficulty in the few-shot
setting: because the number of training ex-
amples (i.e., 25 for the 5-way 5-shot setting)
is smaller than the dimension of the embedding space (i.e. 256), the covariance matrix is singular.
Early in our project we found the most natural adaptation of (Lee et al., 2018a), which learns a
Gaussian with diagonal covariance per class, performed worse than -MinDist (Table 7).
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F ABML

The setup of few-shot ABML consists of a prior p(ψ) on the global initialization ψ, and a prior p(φ|ψ)
on episode-specific model weights for each episode. The training objective is to learn a posterior
distribution of ψ which maximizes a variational lower bound of the likelihood of the data.

In each episode, with model weights prior p(φ|ψ), the ABML algorithm performs standard Bayes
by Backprop (Blundell et al., 2015) on the support set to obtain the variational posterior distribution
for φ. In practice, the initial variational parameter for φ is set to ψ to reduce the total number of
parameters, while the performance did not seem to be negatively affected empirically (Ravi and
Beatson, 2019). Furthermore, based on the assumption that the variance in ψ should be low due to
training over a large number of episodes, Ravi and Beatson (2019) simplifies the inference of ψ to
a point estimate, and ψ is updated by the usual gradient descent with gradients aggregated over a
sequence of episodes, analogous to the MAML setting.

Following the description in (Ravi and Beatson, 2019), we implemented ABML based
on the MAML implementation we got from https://github.com/wyharveychen/
CloserLookFewShot.

Suggested in
Ravi and Beatson (2019) Ours

Inner LR 0.1 0.01
Outer LR 0.001 0.001

SGD steps (training) 5 5
SGD steps (testing) 10 10

Num posterior samples (train-inner) 5 1
Num posterior samples (train-outer) 2 1

Num posterior samples (test) 10 10
a0 for hyper-prior 2 2
b0 for hyper-prior .2 .2
Inner KL weight ? 0.01
Outer KL weight ? 0.1

Table 8: Hyperparameters used for ABML. The last two rows, the KL weights, are not described
in (Ravi and Beatson, 2019) explicitly, but only described as ’down-weighed’ in their text. We chose
what empirically works best for us.

MAML ABML (1 posterior sample) ABML (10 posterior sample)

Figure 5: Calibration results. ABML with 10 posterior samples (ECE=0.40%) have better calibration
than ABML with 1 posterior sample (ECE=1.16%), and MAML (ECE=3.61%). ECE is the expected
calibration error (Guo et al., 2017).

Since in general, it is difficult to measure how properly Bayesian some method is. We also performed
the calibration experiment done in the original paper, and found a similar trend (See Figure 5). Com-
bined with similar classification accuracy, we believe we have a somewhat meaningful implementation
of ABML.

G SEMI-SUPERVISED FEW-SHOT CLASSIFICATION

First studied by Ren et al. (2018), there has been a recent surge of interest in semi-supervised few-shot
learning. Each episode has an additional unlabeled set U = {u}Nu

i . Examples from this set act as
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additional learning signals in each episode, much like the role of the support set. However, there are
two differences: 1) we are not given label information, and 2) it contains ‘distractor’ classes, i.e.,
data that do not come from target classes of interest. In Ren et al. (2018), their ‘distractor’ inputs are
exactly what we refer to as OOE inputs here.

It is known, at least in the supervised setting, that when the unlabelled dataset is polluted with
out-of-distribution examples, semi-supervised methods can sometimes even degrade the classifier
accuracy (Oliver et al., 2018). Similarly, in Ren et al. (2018), without the more sophisticated methods
that implicitly mask out distractors, soft k-Means with the unlabelled dataset barely has an effect.

Here, we propose a simple semi-supervised inference method with Prototypical Networks based on
LCBO. Since naturally, we can think of pi,c , σ(s̄θ(ui, Sc)) as the probability of an unknown input
ui belonging to class c, we simply perform soft k-Means to obtain our new prototypes using p̃i,c as
the responsibilities:

µ̃c =

∑
xi∈Sc

fφ(x) +
∑

ui∈U p̃ip̃i,cfφ(u)

|Sc|+
∑

ui∈U p̃ip̃i,c
(11)

p̃i =
maxc p̃i,c∑
i maxc p̃i,c

(12)

p̃i,c = ReLU(pi,c − .5) (13)
and classification in this semi-supervised setting is done based on these updated prototypes µ̃c.
We use p̃i,c instead of pi,c because pi,c was optimized so that a point on the boundary of being
out-of-distribution would have a pi,c of .5, whereas in this soft clustering scheme, we want those
points to have 0 weight.

Model OOE Uniform Gaussian
Supervised 47.5 47.7 47.4

Baseline soft k-means (Ren et al., 2018) 48.9 38.3 36.0
Ours 47.3 47.8 47.4

Table 9: Classification accuracy (in percentages) of semi-supervised learning results on
tieredImageNet. Column headings indicate type of distractor used.
Here, we do not claim that LCBO improves upon semi-supervised learning methods. Yet, especially
in the case when distractor inputs are OOS, instead of only OOE examples as studied in Ren et al.
(2018), baseline semi-supervised methods significantly degrades the classification accuracy. 3 Yet,
since LCBO can detect out-of-distribution examples, it prevents this harmful effect. This empirically
justifies our motivation that improvements in the out-of-distribution detection can benefit downstream
applications.

H TEST ACCURACIES

Model 5w1s 5w5s 10w1s 10w5s
Protonet 53.0 70.4 40.6 57.9
MAML 51.4 69.8 40.5 55.1
ABML 44.8 63.7 34.6 51.5

Table 10: Test accuracy for different architectures on CIFAR-100 using Conv4

I ADDITIONAL RESULTS FOR CIFAR-100

I.1 DIFFERENT shot-/way- SETTINGS

The overall trend that LCBO and -MinDist are better than SPP holds for different few-shot evaluation
settings.

3This method refers to the baseline formulation of soft k-means in Ren et al. (2018).

16



Under review as a conference paper at ICLR 2020

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

5w1s OOE 54.8 65.4 65.6 55.6 64.2 64.3 87.6 75.3 74.5
5w1s OOS 54.6 80.5 71.6 56.8 80.3 73.1 88.3 49.2 66.8
5w5s OOE 60.1 68.0 73.3 61.0 67.2 71.5 84.3 73.1 62.8
5w5s OOS 55.8 88.2 80.3 58.0 88.3 80.2 88.0 27.3 51.4

10w1s OOE 54.0 61.1 60.7 54.9 60.2 59.8 88.6 80.1 79.9
10w1s OOS 56.5 80.1 62.7 58.7 79.9 66.2 86.5 47.5 84.5
10w5s OOE 57.7 63.0 66.4 58.4 62.5 63.9 86.0 79.3 71.8
10w5s OOS 52.0 87.9 66.2 56.6 88.0 66.0 87.8 27.7 75.0

Table 11: Comparison of OOE and OOS detection performance in several way and shot settings for
CIFAR-100, using the Conv4 backbone.

I.2 DIFFERENT “BACKBONE”

Now for better classification accuracies, researchers are moving to larger network architectures, or
referred to as “backbone” in Chen et al. (2019). Here we show results using the standard Conv4
network, and ResNet18 trained with and without data-augmentation (Table 12).

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP -MinDist LCBO SPP -MinDist LCBO SPP -MinDist LCBO

Conv4 OOE 60.1 68.0 73.3 61.0 67.2 71.5 84.3 73.1 62.8
Conv4 OOS 55.8 88.2 80.3 58.0 88.3 80.2 88.0 27.3 51.4

ResNet18 OOE 61.1 66.1 72.2 60.3 65.0 71.6 85.4 75.2 67.5
ResNet18 OOS 61.4 80.4 81.1 61.2 80.5 82.3 84.8 47.3 53.1

ResNet18+aug OOE 61.8 73.3 77.1 58.8 72.3 74.3 82.4 65.0 54.3
ResNet18+aug OOS 65.0 87.6 84.8 62.0 88.6 84.9 80.6 37.5 42.1

Table 12: Comparison of the Conv4 and ResNet18 backbones, in the 5-way 5-shot setting.
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J OTHER RELATED APPROACHES THAT DID NOT MAKE A BIG DIFFERENCE

J.1 OUTLIER EXPOSURE (HENDRYCKS ET AL., 2019)

We also investigated the effect of outlier exposure (OE) Hendrycks et al. (2019) for training the
LCBO network. We denote LCBO trained with OE by LCBO+OE. Note, however, that this setup
differs from that studied in Hendrycks et al. (2019). They do not have a learnable confidence score
like LCBO. They simply have a regularization term to encourage the backbone network to output a
uniform distribution for OE inputs. We do not train the backbone with OE as they do, but use the OE
inputs as additional out-of-distribution examples to train our LCBO network. To train LCBO+OE,
we modify the second term in Equation 9 to include queries from the auxiliary dataset, D, along with
the usual OOE queries R:

LLCBO+OE(φ, θ; {S,Q,R}) = −
∑

(c,xin)∈Q

log σ(s̄θ(x
in, Sc))−

∑
xout∈R∪D,c′∼unif(V )

log(1−σ(s̄θ(x
out, Sc′)))

(14)

The test-time aggregation for LCBO+OE is identical to that described in Section 4.1.

We investigated two auxiliary dataset settings D for LCBO+OE: 1) using the TinyImages dataset as
suugested in Hendrycks et al. (2019); and 2) using a combination of TinyImages and the three OOS
noise distributions we consider (Gaussian, uniform, and Rademacher noise).

Metric AUROC AUPR FPR90
OOE 72.7 70.7 63.5

Gaussian 95.2 94.2 12.5
Uniform 74.0 72.0 62.2

Rademacher 95.2 94.1 12.4
Texture 75.1 72.8 59.6
Places 71.1 69.9 68.4
SVHN 75.0 74.8 62.1
LSUN 71.4 71.3 69.6
iSUN 69.4 68.5 71.3

TinyImagenet 73.9 72.4 63.6
OOS MEAN 77.8 76.7 53.5

MEAN 77.3 76.1 54.5

Table 13: Conv4 backbone, 5w5s, LCBO+OE {TinyImages}

Metric AUROC AUPR FPR90
OOE 72.3 69.9 63.3

Gaussian 99.9 99.9 0.2
Uniform 100.0 100.0 0.0

Rademacher 99.9 99.9 0.2
Texture 88.9 86.0 26.8
Places 72.5 70.0 61.0
SVHN 79.3 79.9 56.5
LSUN 72.4 70.4 61.2
iSUN 74.1 71.4 57.7

TinyImagenet 75.8 73.2 54.8
OOS MEAN 84.8 83.4 35.4

MEAN 83.5 82.1 38.2

Table 14: Conv4 backbone, LCBO + OE {TinyImages, Gaussian, uniform, Rademacher}

J.2 ODIN (LIANG ET AL., 2017)

ODIN (Liang et al., 2017) is shown to perform well in the supervised setting. However, as we
discussed extensively, SPP does not workw well with the Prototypical Network. Below is a Table
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showing our attempt to use ODIN in our setting. It slightly improves over SPP, but the improvement
is not substantial when compared to -MinDist. We then tried to, like ODIN, perform virtual gradient
perturbation. Instead of computing the gradient of the perturbation by probability, we tried perturbing
based on the distance in the embedding, so we could improve over -MinDist. However, this approach
was not effective in our initial attempts.

Metric AUROC↑ AUPR↑ FPR90↓
Method SPP ODIN -MinDist SPP ODIN -MinDist SPP ODIN -MinDist

OOE 90.2 89.8 98.6 90.0 89.9 98.8 28.3 30.4 5.2
Gaussian 17.9 20.9 100.0 35.6 37.4 100.0 94.5 94.1 0.0
uniform 85.7 88.3 100.0 90.2 92.2 100.0 37.1 31.6 0.0

notMNIST 27.6 32.6 100.0 39.7 43.4 100.0 87.4 86.6 0.0
cifar10bw 30.2 34.4 100.0 39.4 41.9 100.0 85.8 85.0 0.0
MNIST 16.9 20.2 100.0 35.9 38.9 100.0 95.9 94.2 0.0
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