
Under review as a conference paper at ICLR 2020

THE DIVERGENCES MINIMIZED BY NON-SATURATING
GAN TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Interpreting generative adversarial network (GAN) training as approximate diver-
gence minimization has been theoretically insightful, has spurred discussion, and
has lead to theoretically and practically interesting extensions such as f-GANs
and Wasserstein GANs. For both classic GANs and f-GANs, there is an original
variant of training and a “non-saturating” variant which uses an alternative form
of generator gradient. The original variant is theoretically easier to study, but
for GANs the alternative variant performs better in practice. The non-saturating
scheme is often regarded as a simple modification to deal with optimization is-
sues, but we show that in fact the non-saturating scheme for GANs is effectively
optimizing a reverse KL-like f-divergence. We also develop a number of theo-
retical tools to help compare and classify f-divergences. We hope these results
may help to clarify some of the theoretical discussion surrounding the divergence
minimization view of GAN training.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have enjoyed remarkable
progress in recent years, producing images of striking fidelity, resolution and coherence (Karras
et al., 2018; Miyato et al., 2018; Brock et al., 2018; Karras et al., 2019). There has been much
progress in both theoretical and practical aspects of understanding and performing GAN training
(Nowozin et al., 2016; Arjovsky & Bottou, 2017; Arjovsky et al., 2017; Mescheder et al., 2018;
Gulrajani et al., 2017; Sønderby et al., 2017; Miyato et al., 2018; Karras et al., 2018; Brock et al.,
2018; Karras et al., 2019).

One of the key considerations for GAN training is the training scheme used to update the genera-
tor and critic. A rich avenue of developments has come from viewing GAN training as divergence
minimization. This perspective dates back to Goodfellow et al. (2014), who showed that the original
GAN training formulation can be viewed as approximately minimizing the Jensen-Shannon diver-
gence. The f-GAN formulation (Nowozin et al., 2016) extended the range of divergences which
could be minimized by GAN training to f-divergences such as reverse KL, using a principled ap-
proach based on a variational lower bound. Wasserstein GANs (Arjovsky et al., 2017), which ap-
proximately minimize the Wasserstein metric, have become quite popular due in part to their pleas-
ing theoretical underpinning, ease of implementation, and strong practical results. Nevertheless a
relatively unprincipled “non-saturating” scheme (Goodfellow et al., 2014) has continued to obtain
groundbreaking results (Karras et al., 2019) and remains a state-of-the-art approach (Lucic et al.,
2018).

The precise practical effect of the non-saturating scheme and whether it can be motivated in a princi-
pled way have been a source of discussion. The non-saturating scheme modifies the gradient used to
update the generator. Goodfellow et al. (2014) motivates this modification as a simple trick to make
gradients flow better, and claims it does not affect the “fixed point of the dynamics”. We will see that
this is not true in the parametric case. Poole et al. (2016) attempted to interpret the non-saturating
scheme as approximate divergence minimization. However we will see that the proposed divergence
does not match the gradient of the non-saturating loss, and so using this divergence for training does
not replicate the non-saturating scheme. Arjovsky & Bottou (2017) derived a globally coherent ob-
jective function with the correct gradients which is approximately minimized by the non-saturating
scheme. However they expressed the objective as a difference between two divergences, noting that
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it is therefore a strange thing to minimize! In this paper we show that the non-saturating scheme
approximately minimizes the f-divergence 4KL( 12p+

1
2q ‖ p), which refer to as the softened reverse

KL divergence. We also show that the non-saturating version of KL minimization is in fact reverse
KL minimization.

In order to better understand the qualitative behavior of different divergences such as softened re-
verse KL, we develop several tools. While f-divergences unify many divergences, just plotting the
function f is often not informative. The symmetric relationship between divergences such as KL and
reverse KL are obfuscated, and f may grow quickly even when the divergence is well-behaved. We
show how to write f-divergences in a symmetry-preserving way, allowing easy visual comparison
of f-divergences in a way that reflects their qualitative properties. The most important f-divergence
properties are in fact determined by just two numbers. We develop a rigorous formulation of tail
weight which generalizes the notions of mode-seeking and covering behavior. Using these tools we
show that the softened reverse KL divergence is fairly similar to the reverse KL but very different to
the Jensen-Shannon divergence approximately minimized by the original GAN training scheme.

The remainder of the paper is structured as follows. We review the definition of f-divergences in
§2. In §3 and §4 we develop the main tools we will use to compare f-divergences, including push-
forwards, symmetry-preserving representations, tails weights and boundedness. In §5 we discuss
operations on divergences. The softened reverse KL is described in terms of these operations. We
recap the f-divergence approach to variational divergence estimation and minimization, also known
as GAN training, in §6 and §7. We describe the non-saturating scheme in §8. In §9 we derive
our main result, showing the divergences effectively minimized by various forms of non-saturating
scheme. We discuss related previous work in §10. Finally we perform a basic experimental valida-
tion of our main mathematical result in §11.

2 THE FAMILY OF F-DIVERGENCES

In this section we review the definition of an f-divergence (Ali & Silvey, 1966), introduce termi-
nology, and establish a number of relevant mathematical properties related to linearity, symmetry,
limiting behavior for nearby distributions, boundedness and tail weight.

Given a strictly convex twice continuously differentiable function f : R>0 → R, the f -divergence
between probability distributions with densities1 p and q over RK is defined as:2

Df (p, q) =

∫
q(x)f

(
p(x)

q(x)

)
dx (1)

Typically p is the “true” or data distribution and q is the distribution of a model which is intended to
approximate p.

We briefly summarize a few simple mathematical properties. Firstly note that Df is linear f , that is
Df+g = Df + Dg and Dkf = kDf where k > 0. Secondly note that adding a constant or linear
term to f only affects theDf up to an overall additive constant: If g(u) = f(u)+k+ lu for k, l ∈ R
then Dg(p, q) = Df (p, q) + k + l. Thus the second derivative f ′′ determines the divergence up
to an additive constant, and determines the gradients of the divergence completely. This property
is also true of the various bounds and finite sample approximations3 derived below, so we may
legitimately consider f ′′ rather than f as the essential quantity of interest for a given divergence.
For many common f-divergences, f ′′ has a simpler algebraic form than f . For any densities p and q
we have Df (p, q) ≥ f(1) with equality iff p = q, as can be seen by plugging the constant function
u(x) = 1 into (12) below. This justifies referring to Df as a divergence. If f(1) = 0, f ′(1) = 0 and
f ′′(1) = 1 then we say f is in canonical form. We can put any f in canonical form by scaling and
adding a suitable constant-plus-linear term, and this corresponds to a simple shift and scale of Df .
Each f-divergence has a unique canonical form.

1Most results also hold for “discrete” probability distributions. The only difference is that the reparameter-
ization trick can no longer be used to reduce variance of the finite sample approximations.

2For simplicity, we assume the probability distributions are suitably nice, e.g. absolutely continuous with
respect to the Lebesgue measure on RK , p(x), q(x) > 0 for x ∈ RK , and p and q continuously differentiable.

3As long as the reparameterization trick (34) is used, as is standard practice. If a simpler finite sample
approximation such as naive REINFORCE is used then k affects the variance of the generator gradient.
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Different f-divergences may behave very differently when p and q are far apart, but are all closely
related in the region where q ≈ p. Specifically

Df (qλ, qλ+εv) =
1
2ε

2f ′′(1)vTF (λ)v +O(ε3) (2)

where ε ∈ R, v ∈ RK , and F (λ) =
∑
x qλ(x)(

∂
∂λ log qλ(x))(

∂
∂λ log qλ(x))

T
is the Fisher informa-

tion matrix for the parametric family of distributions specified by qλ. Thus all f-divergences agree
up to a constant factor on the divergence between two nearby distributions, and they are all just
scaled versions of the Fisher metric in this regime. This can also be seen in Figure 2 below, where
all f-divergences approximately overlap near zero.

The definition (1) appears to be quite asymmetric in how it treats p and q, but it obeys a particular
symmetry (Reid & Williamson, 2011). It is straightforward to verify that if fR(u) = uf(u−1) then
DfR(p, q) = Df (q, p) for any densities p and q. Differentiating twice, if f ′′R (u) = u−3f ′′(u−1)
then DfR(p, q) = Df (q, p) + k for some unimportant constant k ∈ R. The converse is also true:
If DfR(p, q) = Df (q, p) + k for all densities p and q then f ′′R (u) = u−3f ′′(u−1). This can be
seen for example by partitioning RK into two sets A and B and considering densities p and q which
are constant on A and constant on B, or strictly speaking smooth approximations thereof. Thus
swapping the role of p and q corresponds to a particular transform of f ′′. We say Df is symmetric
if Df (p, q) = Df (q, p) for all densities p and q. From the above we see that Df is symmetric
iff f ′′(u) = u−3f ′′(u−1). The above discussion allows us to rewrite (1) to be more explicitly
symmetric in the role of p and q. With A = {x : q(x) > p(x)} and B = {x : q(x) < p(x)}, we
have

Df (p, q) =

∫
A

q(x)f

(
p(x)

q(x)

)
dx+

∫
B

p(x)
f
(
p(x)
q(x)

)
p(x)
q(x)

dx (3)

=

∫
A

q(x)f

(
p(x)

q(x)

)
dx+

∫
B

p(x)fR

(
q(x)

p(x)

)
dx (4)

which has clearer symmetry than (1). We refer toA as the set of left mismatches andB and the set of
right mismatches. At each point in A, the two distributions p and q are somewhat mismatched, and
the penalty paid for this mismatch in terms of the overall divergenceDf is governed by the behavior
of f(u) for 0 < u < 1 (the “left” of the graph of f ). Similarly the penalty paid for right mismatches
is governed by f(u) for u > 1. Note from (4) that a left mismatch can only be heavily penalized if
the point is plausible under q, i.e. q(x) is not tiny. Similarly a right mismatch can only be heavily
penalized for points which are plausible under p.

3 PUSHFORWARDS AND SYMMETRY-PRESERVING DIVERGENCE PLOTS

The considerations of symmetry in §2 lead to a straightforward and intuitive way to compare f-
divergences visually, through a symmetry-preserving divergence plot. This perspective also allows a
simple summary of the prevalence of mismatches between p and q, through a pushforward plot. In
this section we develop this viewpoint and look at some examples of these plots.

Firstly note that for x ∼ q(x), p(x)/q(x) is a random variable with some distribution. In fact, since
any f -divergence (1) is the expected value of some function of this random variable, its value must
depend only on the one-dimensional distribution of this random variable and not on the detailed
distribution of p and q in space. Formally the distribution of this random variable may be described
as the pushforward measure of q through the function u∗(x) = p(x)/q(x). To obtain more intuitive
plots, we will work in terms of d∗(x) = log p(x)− log q(x) instead of u∗. We denote the density of
the pushforward of q through d∗ by q̃d∗(d). The expected value defining the f-divergence can thus
be written

Df (p, q) =

∫
q̃d∗(d)f(exp d) dd (5)

As above we can write this more symmetrically. Define

sf (d) =

{
f(exp d), d < 0

fR
(
exp(−d)

)
, d > 0

(6)
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By considering expectations of an arbitrary function of d expressed in x-space and d-space, we can
derive that

q̃d∗(d) = p̃d∗(d) exp(−d) (7)
Thus, using (4), we can write the f-divergence as

Df (p, q) =

∫
A

q(x)sf (d
∗(x)) dx+

∫
B

p(x)sf (d
∗(x)) dx (8)

=

∫ 0

−∞
q̃d∗(d)sf (d) dd+

∫ ∞
0

p̃d∗(d)sf (d) dd (9)

or even more concisely, using (7), as

Df (p, q) =

∫ ∞
−∞

max
{
p̃d∗(d), q̃d∗(d)

}
sf (d) dd (10)

An f-divergence Df (p, q) involves an interaction between the distributions p, q and the function f ,
and (10) nicely decomposes this interaction in terms of something that only depends on p and q
(the pushforwards) and something that only depends on f (the function sf ), connected via a one-
dimensional integral. By plotting sf and imagining integrating against various pushforwards, we
can see the properties of different f-divergences in a very direct way. By plotting the pushforwards,
we can get a feel for what types of mismatch between p and q are present in multidimensional space,
and understand at a glance how badly these mismatches would be penalized for a given f-divergence.

Examples of pushforwards for the simple case where p and q are multidimensional Gaussians with
common covariance are shown in Figure 1. In this case the pushforwards q̃d∗ and p̃d∗ are them-
selves one-dimensional Gaussians (since d∗ is linear), with densitiesN (− 1

2σ
2, σ2) andN ( 12σ

2, σ2)
respectively, for some σ (this follows from (7)). For more complicated models, pushforward plots
are straightforward to estimate empirically by using a learned d(x) (see §6) instead of the optimal
d∗(x). This may be a very generally useful approach to monitoring the progression of GAN training.
However we leave its investigation for future work. Examples of sf for various f-divergences are
shown in Figure 2. We refer to sf as a symmetry-preserving representation of f . Note that as long
as f is in canonical form, sf is twice continuously differentiable at zero. Figure 2 directly expresses
several facts about divergences. It shows that left mismatches (regions of space where q(x) > p(x),
corresponding to d < 0) are penalized by reverse KL much more severely than right mismatches
(regions of space where q(x) > p(x), corresponding to d > 0). The symmetry between KL and
reverse KL is evident: a given left mismatch is penalized by KL the same amount a right mismatch
of the same magnitude is penalized by reverse KL. We see that Jensen-Shannon and the Jeffreys
divergence (the average of KL and reverse KL) are both symmetric in how they penalize left and
right mismatches, but differ greatly in how much they penalize small versus large mismatches.

4 CLASSIFICATION OF F-DIVERGENCE TAILS

In this section we introduce a classification scheme for f-divergences in terms of their behavior for
large left and right mismatches. While different f-divergences differ in details, this classification
determines many aspects of their qualitative behavior.

First we define the notion of tail weight and examine some of its consequences. If f ′′(u) ∼ Cu−R

as u → 0 for C > 0 and f ′′(u) ∼ DuS−3 as u → ∞ for D > 0 then we say that Df has
(Cu−R, DuS−3) tails and (R,S) tail weights. Here we have used the notation g(u) ∼ h(u) as
u → a to mean g(u)/h(u) → 1 as u → a. Note that, since f ′′R (u) = u−3f ′′(u−1), f having a
uS−3 right tail is equivalent to fR having a u−S left tail. Thus tail weights interact simply with
symmetry: If Df has (R,S) tail weights then DfR has (S,R) tail weights, and if Df is symmetric
then its left and right tail weights are equal. Tail weights also interact in a simple and intuitive way
with linearity: If one f-divergence has (R1, S1) tail weights and another has (R2, S2) tail weights
then their sum has (maxiRi,maxi Si) tail weights. Intuitively, the left tail weight R determines
how strongly large left mismatches are penalized, whereas the right tail weight S determines how
strongly large right mismatches are penalized.

Some f-divergences such as Jensen-Shannon are bounded, while others such as KL are unbounded,
and it will be useful to have a characterization of when boundedness occurs. We say Df is bounded
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Figure 1: Plots of the pushforward densities
p̃d∗(d) and q̃d∗(d) for the case where p and q
are multidimensional Gaussians with common
covariance. The f-divergence for a given f may
be obtained by integrating these pushforwards
against sf in Figure 2 using (10).
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Figure 2: Plots of sf (d) for various f-
divergences. The f-divergence for a given p and
q may be obtained by integrating sf against the
pushforwards of p and q such as those shown in
Figure 1 using (10). Symmetries such as that
between KL and reverse KL are evident.

divergence tail weights (left, right) boundedness overall boundedness

KL (1, 2) (0,∞) ∞
reverse KL (2, 1) (∞, 0) ∞
Jensen-Shannon (1, 1) (0, 0) 0
Jeffreys ( 12KL + 1

2RKL) (2, 2) (∞,∞) ∞
Pearson χ2 (3, 0) (∞, 0) ∞
softened KL (1, 0) (0, 0) 0
softened reverse KL (SRKL) (2, 0) (∞, 0) ∞

Table 1: Tail weights and boundedness for the f-divergences considered in this paper. For tail
weights, the notation (R,S) denotes a left tail weight ofR and a right tail weight of S. A divergence
is left-bounded iff R < 2, right-bounded iff S < 2, and bounded overall iff both R < 2 and S < 2.
For boundedness, 0 denotes bounded and ∞ denotes unbounded, so for example (0,∞) denotes
left-bounded and right-unbounded.

if there is an M ∈ R such that Df (p, q) ≤ M for all densities p and q. We say f is left-bounded
if f is bounded on (0, 1), and right-bounded if fR is bounded on (0, 1), or equivalently if f(u)/u is
bounded on u > 1. From (4) it is easy to see that if f is left-bounded and right-bounded then Df

is bounded. The converse is also true: If f is left-unbounded or right-unbounded then we can find p
and q with arbitrarily large divergence Df (p, q). This can be seen for example by partitioning RK
into two sets A and B and considering densities p and q which are constant on A and constant on
B, or strictly speaking smooth approximations thereof.

Tail weight determines boundedness. It can be checked by integrating and bounding that a diver-
gence with (R,S) tail weights is left-bounded iff R < 2 and right-bounded iff S < 2. Thus Df is
bounded iff R,S < 2. The tail weights and boundedness properties of various f-divergences consid-
ered in this paper are summarized in Table 1. Boundedness properties can also be seen in Figure 2.
Left and right boundedness of f is trivially equivalent to left and right boundedness of sf . Thus we
can see that reverse KL is left unbounded but right bounded, for example. The unbounded tails in
this plot are all asymptotically linear in d.

Tail weights provide an extension of the typical classification of divergences as mode-seeking or
covering. Models trained with reverse KL tend to have distributions which are more compact than
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the true distribution, sometimes only successfully modeling certain modes (density peaks) of a multi-
modal true distribution. Models trained with KL tend to have distributions which are less compact
than the true distribution, “covering” the true distribution entirely even if it means putting density in
regions which are very unlikely under the true distribution. However there are important qualitative
aspects of divergence behavior that are not captured by these labels. For example, is Jensen-Shannon
mode-seeking or covering? Really, it is neither: It would be more accurate to say that a model trained
Jensen-Shannon tries to match very closely when it matches, but doesn’t worry overly about large
mismatches in either direction. The Jeffreys divergence is also symmetric and so neither mode-
seeking nor covering, but has very different behavior from Jensen-Shannon. Tail weights capture
these distinctions in a straightforward but precise way.

5 DIVERGENCE SYMMETRIZATION AND SOFTENING

We can apply some simple operations to a divergence to obtain another divergence. In this section
we consider the effect of reversing, symmetrizing and softening operations on f-divergences. Many
common f-divergences can be obtained from others in this way, and this provides a unified way of
concisely describing f-divergences based on KL.

Consider applying an operation to a divergence D(p, q) to obtain another divergence D̃(p, q). We
have already seen the reversing operation D̃(p, q) = D(q, p). If D is an f-divergence with func-
tion f(u) then DR is an f-divergence with function fR(u) = uf(u−1). In this case f ′′R (u) =

u−3f ′′(u−1). Symmetrization means D̃(p, q) = 1
2D(p, q) + 1

2D(q, p). If D is an f-divergence then
f 7→ 1

2f+
1
2fR enacts symmetrization. Finally (q-)softening refers to replacing q withm = 1

2p+
1
2q,

i.e. D̃(p, q) = 4D(p,m). If D is an f-divergence with function f then setting the new f(u) to be
4 1+u

2 f( 2u
1+u ) enacts softening. In this case the new f ′′(u) is 8

(1+u)3 f
′′( 2u

1+u ). The factor of 4 above
is to ensure that the divergence remains canonical after softening, i.e. f ′′(1) = 1. Softening has
the potential to make large right mismatches much less severely penalized, since in regions of space
where p(x)/q(x) was large because p(x) was moderate and q(x) was tiny, p(x)/m(x) is now ap-
proximately 2, so a large right mismatch is only penalized by the softened divergence as much as a
moderate right mismatch is penalized by the original divergence. This is reflected in the tail weights:
It is easy to show using the tools we have developed above that if the original divergence has (R,S)
tail weights then the softened divergence has (R, 0) tail weights.

Many f-divergences can be written concisely as a series of these operations. For example reverse
KL is Reverse(KL), Jeffreys is Symmetrize(KL), the K-divergence 4KL(p ‖m) (Cha, 2007) is
Soften(KL) and Jensen-Shannon is Symmetrize(Soften(KL)). In this terminology, the main claim
of this paper is that the non-saturating procedure for GAN training is in fact effectively minimizing
the softened reverse KL divergence 4KL(m ‖ p) given by Soften(Reverse(KL)).

6 VARIATIONAL DIVERGENCE ESTIMATION

f-GANs are based on an elegant way to estimate the f-divergence between two distributions given
only samples from the two distributions (Nguyen et al., 2010). In this section we review this ap-
proach to variational divergence estimation.

There is an elegant variational bound on the f-divergence Df (p, q) between two densities p and q.
Since f is strictly convex, its graph lies at or above any of its tangent lines and only touches in one
place. That is, for k, u > 0,

f(k) ≥ f(u) + (k − u)f ′(u) = kf ′(u)−
[
uf ′(u)− f(u)

]
(11)

with equality iff k = u. This inequality is illustrated in Figure 3. Substituting p(x)/q(x) for k and
u(x) for u, for any continuously differentiable function u : RK → R>0 we obtain

Df (p, q) ≥
∫
p(x)f ′(u(x)) dx−

∫
q(x)

[
u(x)f ′(u(x))− f(u(x))

]
dx (12)

with equality iff u = u∗, where u∗(x) = p(x)/q(x). The function u is referred to as the critic. It
will be helpful to have a concise notation for this bound. Writing u(x) = exp(d(x)) without loss of
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Figure 3: A strictly convex function f : R>0 → R and a tangent line. The variational bound used
by f-GANs is based on the fact that a strictly convex function f lies at or above its tangent lines.

generality, for any continuously differentiable function d : RK → R, we have

Df (p, q) ≥ Ef (p, q, d) (13)

with equality iff d = d∗, where

Ef (p, q, d) =

∫
p(x)af (d(x)) dx−

∫
q(x)bf (d(x)) dx (14)

af (d) = f ′(exp(d)) (15)

bf (d) = exp(d)f ′(exp(d))− f(exp(d)) (16)
d∗(x) = log p(x)− log q(x) (17)

Note that both af and bf are linear in f . Their derivatives

a′f (log u) = uf ′′(u) (18)

b′f (log u) = u2f ′′(u) (19)

depend on f only through f ′′.

The above formulation naturally leads to variational divergence estimation. The f -divergence be-
tween p and q can be estimated by maximizing Ef with respect to d (Nguyen et al., 2010). Con-
veniently Ef is expressed in terms of expectations and may be approximately computed and max-
imized with respect to d using only samples from p and q. If we parameterize d as a neural net dν
with parameters ν then we can approximate the divergence by maximizing Ef (p, q, dν) with respect
to ν. This does not compute the exact divergence because there is no guarantee that the optimal
function d∗ lies in the family {dν : ν} of functions representable by the neural net, but we hope that
for sufficiently flexible neural nets the approximation will be close.

The original f-GAN paper (Nowozin et al., 2016) phrases the above results in terms of the Legendre
transform f∗ of f . The two descriptions are equivalent, as can be seen by setting T (x) = f ′(u(x))
and using the result f∗(f ′(u)) = uf ′(u) − f(u). We find our description helpful since it avoids
having to explicitly match the domain of f∗, ensures the optimal d is the same for all f -divergences,
and because the Legendre transform is complicated for one of the divergences we consider. An
“output activation” was used in the original f-GAN paper to adapt the output d of the neural net
to the domain of f∗. This is equal to f ′(exp(d)), up to irrelevant additive constants, for all the
divergences we consider, and so our description also matches the original description in this respect.

Here we briefly summarize the three main f-divergences we consider. The expressions for Df and
Ef are obtained by plugging the chosen f into (1) and (14) respectively. The Kullback-Leibler (KL)
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divergence satisfies:

f(u) = u log u (20)

f ′′(u) = u−1 (21)

Df (p, q) = KL(p ‖ q) =
∫
p(x) log

p(x)

q(x)
dx (22)

Ef (p, q, d) = 1 +

∫
p(x)d(x) dx−

∫
q(x) exp(d(x)) dx (23)

Using the notation established in §2, the KL divergence has (u−1, u−1) tails, (1, 2) tail weights, and
is left-bounded and right-unbounded.

The reverse KL divergence satisfies:

f(u) = − log u (24)

f ′′(u) = u−2 (25)

Df (p, q) = KL(q ‖ p) =
∫
q(x) log

q(x)

p(x)
dx (26)

Ef (p, q, d) = 1−
∫
p(x) exp(−d(x)) dx−

∫
q(x)d(x) dx (27)

The reverse KL divergence has (u−2, u−2) tails, (2, 1) tail weights, and is left-unbounded and right-
bounded.

If we make the Jensen Shannon (JS) divergence canonical by multiplying it by 4, it is defined as

f(u) = 2u log u− 2(u+ 1) log(u+ 1) + 4 log 2 (28)

f ′′(u) =
2

u(u+ 1)
(29)

Df (p, q) = 4 JS(p, q) (30)

= 2KL(p ‖ 1
2p+

1
2q) + 2KL(q ‖ 1

2p+
1
2q) (31)

= 4 log 2 + 2

∫
p(x) log

p(x)

p(x) + q(x)
dx+ 2

∫
q(x) log

q(x)

p(x) + q(x)
dx (32)

Ef (p, q, d) = 4 log 2 + 2

∫
p(x) log σ(d(x)) dx+ 2

∫
q(x) log σ(−d(x)) dx (33)

where JS denotes the conventional definition of the Jensen-Shannon divergence. The 4 JS diver-
gence has (2u−1, 2u−2) tails, (1, 1) tail weights, and is both left-bounded and right-bounded and so
bounded overall.

7 VARIATIONAL DIVERGENCE MINIMIZATION

f-GANs (Nowozin et al., 2016) generalize classic GANs (Goodfellow et al., 2014) to allow approx-
imately minimizing any f-divergence. The Jensen-Shannon divergence optimized by GANs is an
f-divergence. In this section we briefly review and discuss the f-GAN formulation (Nowozin et al.,
2016).

Consider the task of estimating a probabilistic model from data using an f-divergence. Here p is the
true distribution and the goal is to minimize l(λ) = Df (p, qλ) with respect to λ, where λ 7→ qλ is
a parametric family of densities over RK . We refer to qλ as the generator. For implicit generative
models such as GANs, qλ is defined implicitly: x is assumed to be the result xλ(z) of transforming
a stochastic latent variable z with fixed distribution by a parameterized deterministic neural network
xλ.

Ef (p, qλ, d)
c
=

∫
qλ(x) log σ

(
−d(x)

)
dx =

∫
P(z) log σ

(
−d(xλ(z))

)
dz (34)

However we do not need to assume this specific form for most of our discussion.
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We first note that the variational divergence bound Ef satisfies a convenient gradient matching
property. This is not made explicit in the original f-GAN paper. Denote the optimal d given p and
qλ by d∗λ. We saw above that Df (p, qλ) and Ef (p, qλ, d) match values at d = d∗λ. They also match
gradients:

∂

∂λ
Df (p, qλ) =

∂

∂λ
Ef (p, qλ, d)

∣∣∣∣∣
d=d∗λ

= −
∫ [

∂

∂λ
qλ(x)

]
bf (d

∗
λ(x)) dx (35)

This follows from the fact that Ef is a tight lower bound on Df , similarly to the one-dimensional
result that any differentiable function f : R → R with f(x) ≥ 0 for all x and f(0) = 0 has
f ′(0) = 0. It is also straightforward to verify (35) directly from the definitions of Df and Ef .

We can minimize Df (p, qλ) using variational divergence minimization, maximizing Ef (p, qλ, dν)
with respect to ν while minimizing it with respect to λ. Adversarial optimization such as this lies at
the heart of all flavors of GAN training. Define λ and ν as

λ = − ∂

∂λ
Ef (p, qλ, dν) =

∫ [
∂

∂λ
qλ(x)

]
bf (dν(x)) dx (36)

ν =
∂

∂ν
Ef (p, qλ, dν) (37)

To perform the adversarial optimization, we can feed λ and ν (or in practice, stochastic approxi-
mation to them) as the gradients into any gradient-based optimizer designed for minimization, e.g.
stochastic gradient descent or ADAM. The gradient matching property shows that performing very
many critic updates followed by a single generator update is a sensible learning strategy which,
assuming the critic is sufficiently flexible and amenable to optimization, essentially performs very
slow gradient-based optimization on the true divergence Df with respect to λ. However in practice
performing a few critic updates for each generator update, or simultaneous generator and critic up-
dates, performs well, and it is easy to see that these approaches at least have the correct fixed points
in terms of Nash equilibria of Ef and optima of Df , subject as always to the assumption that the
critic is sufficiently richly parameterized. Convergence properties of these schemes are investigated
much more thoroughly elsewhere, for example (nag; Gulrajani et al., 2017; Mescheder et al., 2017;
2018; Balduzzi et al., 2018; Peng et al., 2019), and are not the main focus here.

There is a simple generalization of the above training procedure, which is to base the generator
gradients on Ef but the critic gradients on Eg for a possibly different function g (Poole et al., 2016,
section 2.2). Subject as always to the assumption of a richly parameterized critic, if we perform very
many critic updates for each generator update, then the d used to compute the generator gradient will
still be close to d∗, and so the generator gradient will be close to the gradient of Df , even though the
path d took to approach d∗ was governed by g rather than f . The fixed points of the two gradients
are also still correct, and so it seems reasonable to again use more general update schemes and we
might hope for similar convergence results (not analyzed here). We refer to using gradients based
on f to optimize the generator and gradients based on g to optimize the critic as using hybrid (f, g)
gradients. For example, hybrid (KL, reverse KL) denotes optimizing the KL divergence using a
critic trained based on reverse KL. Hybrid schemes were described by Poole et al. (2016).

8 PRACTICAL ISSUES WITH TRAINING

When training classic GANs in practice, an alternative non-saturating loss is used as the basis for
the generator gradient, and is found to perform much better in practice (Goodfellow et al., 2014).
An analogous alternative generator gradient was also found to be useful for f-GANs (Nowozin et al.,
2016). In this section we review the saturation issue with the original loss and describe the alternative
loss.

We first discuss the “saturation” issue that occurs when optimizing bounded f-divergences. Early on
in training, the generator and data distribution are typically not well matched, with samples from p
being very unlikely under q and vice versa. This means most of the probability mass of p and q is
in regions where d has large magnitude, corresponding to the positive and negative tails in Figure 2
and (10). For an implicit generative model xλ(z) where z ∼ P(z), we have

Ef (p, qλ, d)
c
= −

∫
P(z)bf

(
dν(xλ(z))

)
dz (38)
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Thus there is a b′f (d) factor in the generator gradient, and in fact this is the only way the choice
of f-divergence affects the generator gradient. For reverse KL, b′f (d) = 1, allowing the gradients
from the other factors to pass freely. Most of the contribution to the initial gradient for reverse KL
is likely to come from regions in space with large negative d due to the P(z) factor. For (four times)
Jensen-Shannon, b′f (d) = 2σ(d), which tends to zero exponentially quickly as d → −∞ and tends
to 2 as d→∞. Regions of space with large positive d have a tiny contribution to the gradient due to
the P(z) factor, while regions with large negative d are exponentially suppressed by b′f (d). Based on
these considerations it might be tempting to conclude that left-unboundedness is the most important
factor in being able to learn from a random initialization. A divergence with left tail weight R has
b′f (d) ∼ exp(−d(R − 2)) so R ≥ 2 ensures that b′f (d) does not decay exponentially as d → −∞.
However the case of KL shows that right-unboundedness is also capable of allowing learning. For
KL, b′f (d) = exp d, and the situation is complicated, since it exponentially magnifies gradients
from regions with large positive d, which are extremely unlikely under P(z). We know the overall
gradient can sometimes be a reasonable learning signal, since training models such as a multivariate
Gaussian using KL divergence works well. However even if the expected gradient allows learning,
the stochastic approximation obtained by sampling from q is likely to have extremely large variance.

The saturation issue is sometimes presented as being specific to the loss Ef used for classic GAN
training, but the gradient matching property presented in §7 shows it is fundamental to the Jensen-
Shannon divergence. The more critic updates we perform initially, the more saturated d is on samples
from q, and the more closely the gradient of Ef with respect to λ approximates the gradient of the
true divergence Df .

The typical fix to the saturation issue is to use the alternative generator gradient

λ =

∫ [
∂

∂λ
qλ(x)

]
log σ

(
d(x)

)
dx =

∫
P(z)

[
∂

∂λ
log σ

(
d(xλ(z))

)]
dx (39)

Since the gradient of log σ(d) tends to 1 as d tends to −∞, the gradient used for training is now
larger. We have seen that other f-divergences such as KL divergence and reverse KL divergence are
not bounded and do not suffer from the same saturation issue. Nevertheless an analogous alternative
generator gradient was suggested for use in practice for f-GANs (Nowozin et al., 2016). Instead of
the generator gradient being

λ =

∫ [
∂

∂λ
qλ(x)

]
bf (d(x)) dx (40)

it is now

λ =

∫ [
∂

∂λ
qλ(x)

]
af (d(x)) dx (41)

It is easy to verify that this gives the same generator gradient as (39) when f is the Jensen-Shannon
divergence. We refer to (41) as the alternative or non-saturating generator gradient, even though for
general f-GANs “non-saturating” is a bit of a misnomer. The critic gradient is still given by (37).

9 EFFECT OF NON-SATURATING GRADIENTS

A natural question is what effect using the alternative generator gradient has on the final learned
model. Does training using the alternative generator gradient approximately minimize the same di-
vergence as training with the original generator gradient? Indeed the non-saturating loss is often
presented as a practical afterthought to the theoretical discussion and viewed as a simple tweak to
aid optimization (Goodfellow et al., 2014; Nowozin et al., 2016). However in this section we show
that training using the alternative generator gradient effectively optimizes a different divergence. We
also derive this divergence explicitly for some common cases. Finally we investigate some proper-
ties of the divergence effectively optimized by the alternative generator gradient when the original
divergence is Jensen-Shannon, which is the form of gradient most commonly used in practice to
train GANs.

We first establish the main result of this note: “Non-saturating” training based on g is precisely
equivalent to a hybrid (f, g) scheme for some f . Suppose

f ′′(u) = u−1g′′(u) (42)

10
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Then it is straightforward to verify that b′f = a′g , so bf = ag + k, where the constant k ∈ R is
irrelevant to the critic and generator gradients as mentioned in §7. Thus from (40) and (41) we see
that an original generator gradient using f is the same as an alternative generator gradient using g.
Such an f can always be found for any g: By integrating u−1g′′(u) twice, we can find an f with the
desired second derivative, and it is strictly convex since g′′(u) > 0 and so f ′′(u) = u−1g′′(u) > 0
for u > 0. The critic gradient is still based on g, and so the overall scheme is precisely a hybrid
(f, g) one. As discussed in §7, a hybrid (f, g) scheme is designed to optimize Df . In our view
it is thus incorrect to think of “non-saturating” training as a way to optimize Dg as is sometimes
suggested.

In the remainder of this section we explicitly compute the corresponding f for some common
choices of g. It is easy to show that if g has (R,S) tails then the corresponding f has (R+1, S− 1)
tails, so the divergence effectively optimized by non-saturating training penalizes left mismatches
more strongly and right mismatches less strongly than the original divergence.

For the KL divergence g(u) = u log u, we have g′′(u) = u−1, so we need f ′′(u) = u−2. We already
saw in §6 that this f corresponds to the reverse KL divergence f(u) = − log u. The equivalence
of the alternative KL and original reverse KL generator gradients may also be seen directly from
(23) and (27) by noting that ag(d) = d for the KL divergence is equal to bf (d) = d for the reverse
KL divergence (since a plays the same role in the alternative generator gradient (41) as b plays in
the original generator gradient (40) as we saw in §8). Thus “non-saturating” training based on the
KL divergence is in fact a hybrid (reverse KL, KL) scheme, and so in fact optimizes the reverse KL
divergence.

For the reverse KL divergence g(u) = − log u, we have g′′(u) = u−2, so we need f ′′(u) = u−3.
Integrating twice, using constants of integration judiciously chosen to give a nice expression forDf ,
we obtain f(u) = 1

2u
−1(u− 1)2. The corresponding divergence is half the Pearson χ2 (or Kagan)

divergence. It satisfies:

f(u) =
(u− 1)2

2u
(43)

f ′′(u) = u−3 (44)

Df (p, q) =
1
2

∫ (
q(x)− p(x)

)2
p(x)

dx (45)

Ef (p, q, d) = − 1
2 − 1

2

∫
p(x) exp

(
−2d(x)

)
dx+

∫
q(x) exp

(
−d(x)

)
dx (46)

This divergence has (u−3, u−3) tails, (3, 0) tail weights, and is left-unbounded and right-bounded.
Again the equivalence of the two generator gradients may also be seen directly from (27) and (46)
by noting that ag(d) = − exp(−d) for the reverse KL divergence is equal to bf (u) = − exp(−d)
for half the Pearson χ2 divergence. The expression for f here corrects a swapped definition in the
original f-GAN paper4 (according to the definitions of the Pearson and Neyman divergences given in
the paper, the expression given for the Pearson f is actually the Neyman f and vice versa) (Nowozin
et al., 2016). Thus “non-saturating” training based on in fact a hybrid ( 12χ

2, reverse KL) scheme,
and so in fact optimizes the Pearson χ2 divergence.

For Jensen-Shannon-times-4 divergence, g′′(u) = 2
u(u+1) , so we need f ′′(u) = 2

u2(u+1) . Integrat-
ing twice, we obtain f(u) = 2(u + 1) log u+1

u − 4 log 2. The corresponding divergence does not
have a prior name as far as we are aware. In this paper we have termed it the softened reverse KL

4In the the arxiv preprint, not the final NIPS version of the paper.
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Figure 4: Plots of sf (d) for various reverse KL-like f-divergences. Softened reverse KL is the
divergence effectively minimized by non-saturating GAN training. IGOG is the divergence derived
by Poole et al. (2016).

(SRKL) divergence. It satisfies:

f(u) = 2(u+ 1) log
u+ 1

u
− 4 log 2 (47)

f ′′(u) =
2

u2(u+ 1)
(48)

Df (p, q) = 4KL( 12p+
1
2q ‖ p) (49)

= −4 log 2 + 2

∫ (
p(x) + q(x)

)
log

p(x) + q(x)

q(x)
dx (50)

Ef (p, q, d) = 2− 4 log 2 + 2

∫
p(x)

[
− exp

(
−d(x)

)
− log σ

(
d(x)

)]
dx

− 2

∫
q(x) log σ

(
d(x)

)
dx

(51)

The SRKL divergence has (2u−2, 2u−3) tails, (2, 0) tail weights, and is left-unbounded and right-
bounded. Again the equivalence of the two generator gradients may also be seen directly from (33)
and (51) by noting that ag(d) = 2 log σ(d) for the 4 JS divergence is equal to bf (d) = 2 log σ(d)
for the SRKL divergence. Thus the conventional GAN non-saturating training scheme (Goodfellow
et al., 2014) is in fact a hybrid (SRKL, JS) scheme, and so in fact optimizes the softened reverse KL
divergence 4KL( 12p+

1
2q ‖ p).

We can now use the tools developed in the first part of the paper to compare the qualitative effect of
using the non-saturating variant of GAN training. Figure 4 shows the symmetry-preserving repre-
sentation sf (d) for the Jensen-Shannon and softened reverse KL divergences, as well as the reverse
KL for comparison. For reference the three divergences have tail weights (1, 1), (2, 0) and (2, 1)
respectively. The qualitative behavior of softened reverse KL is quite similar to reverse KL. We
noted in §5 that softening has the potential to make large right mismatches much less severely pe-
nalized, thus making the divergence more mode-seeking. However the reverse KL already penalizes
right mismatches lightly and is mode-seeking. Softening decreases the tail weight from 1 to 0 and
increases the slope of the left tail, but these changes are relatively minor modifications. They are
both left-unbounded, right-bounded divergences. The Jensen-Shannon is extremely different to the
reverse KL and softened reverse KL.

12
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10 PREVIOUS DISCUSSION OF NON-SATURATING GRADIENTS

In this section we review some of this previous discussion in the context of the results presented
here.

The original GAN paper claims: “This objective function results in the same fixed point of the
dynamics of G and D but provides much stronger gradients early in learning.” (Goodfellow et al.,
2014, section 3). Note that it is true that the original and alternative generator gradients give the
same final result in the non-parametric case where q is unrestricted, but this is fairly trivial since
both gradients lead to q = p. It is even true that the dynamics are essentially the same for the
original and alternative gradients when q ≈ p, since the alternative gradient-based optimization
minimizes a different f-divergence and we saw above that all f-divergences agree up to a constant in
this regime, but again this is somewhat trivial since there is no sense in which the alternative Jensen-
Shannon gradient is any more similar to the original Jensen-Shannon gradient than it is to any other
original or alternative f-divergence gradient. The “fixed point of the dynamics” is certainly not the
same in the general case of parametric q.

The original f-GAN paper presents a simple argument (which is apparently adapted from an argu-
ment in the original GAN paper (Goodfellow et al., 2014), though we could not find this) that the
“non-saturating” training scheme has the same fixed points (Nowozin et al., 2016, section 3.2)5.
However this argument is erroneous. It is true that if p ≈ q then (f∗)′(f ′(u)) is approximately 1
everywhere, and so the original and alternative generator gradients are approximately equal. How-
ever there is no guarantee that the regime p ≈ q will ever be approached in the general parametric
case, and as we will see it is not the case that the original and alternative generator gradients point
in approximately the same direction in general.

A recent paper showed experimentally that the non-saturating generator gradient can successfully
learn a distribution in a case where optimizing Jensen-Shannon divergence should fail, and used
this to argue that perhaps it is not particularly helpful to view GANs as optimizing Jensen-Shannon
divergence (Fedus et al., 2018). The divergence optimized in practice for parametric critics is not
exactly the desired divergence, so it is conceivable that something might work experimentally that
should not when viewed in an idealized way. Indeed in the situation where p and q initially have
non-overlapping support, all the divergences we consider here are either∞ or log 4, so there is no
gradient. However in this case we would argue the success in practice is probably as much due to
optimizing a different divergence which has reasonable initial gradients as it is due to an inexact
critic.

Arjovsky and Bottou correctly recognize that the alternative generator gradient results in optimizing
a different divergence-like function and derive the function for classic GANs (Arjovsky & Bottou,
2017, section 2.2.2). The divergence-like function there is expressed as

KL(q ‖ p)− 2 JS(p, q) (52)

which is a slightly convoluted form of the expression 2KL( 12p +
1
2q ‖ p) given in (49). The paper

suggests the negative sign of the second term is “pushing for the distributions to be different, which
seems like a fault in the update”, whereas our expression for the divergence makes it clear that this
is not an issue.

Poole et al. (2016) present a very similar view to that presented in this paper, including recognizing
that the generator and critic may be trained to optimize different f-divergences and interpreting
the classic non-saturating generator gradient as a hybrid scheme of this form where the generator
gradient is based on a new f-divergence (Poole et al., 2016). However the f-divergence derived there
is f(u) = log(1+u−1), which differs from (47) by a factor of u+1. We refer to this as the improved
generator objectives for GANs (IGOG) divergence. It has f ′′(u) = u−2 − (1 + u)−2 = 2u+1

(1+u)2u2 .
Figure 4 shows that this divergence is qualitatively quite similar to the softened reverse KL but is
not identical. The IGOG divergence has (2, 0) tail weights. We now discuss the discrepancy. In the
language of this paper, they use the approximation:

Df (p, q) =

∫
q(x)f(p(x)/q(x)) dx ≈ Ẽ(p, q, d) =

∫
q(x)f(exp(d(x))) dx (53)

5Only in the final NIPS version of the paper, not the arxiv preprint.

13



Under review as a conference paper at ICLR 2020

1.0 1.2 1.4 1.6 1.8 2.0

mu

1.0

1.2

1.4

1.6

1.8
si

g
m

a

0
.1

4
0

0.160

0
.1

8
0

0.200

0.220

0.220

0.240

0.240

0.260
0.280

0.300
0.320

0.340

GAN divergence

1.0 1.2 1.4 1.6 1.8 2.0

mu

1.0

1.2

1.4

1.6

1.8

si
g

m
a

0.180

0.240

0.240

0.300

0.360

0.420

0.480
0.540

0.600

0.660
0.720

0.780
0.840

AG divergence

Figure 5: Comparing training using the saturating and non-saturating GAN generator gradients on
a toy problem. The true distribution p is a mixture of two 1D Gaussians and the model distribution
q is a single Gaussian. Contour plots show the Jensen-Shannon (JS) divergence (left), and softened
reverse KL divergence 4KL( 12p+

1
2q ‖ p) (right) as a function of model parameters. Lines show the

progression of SGD-based JS training based on the original, saturating gradient and based on the
alternative, non-saturating gradient (solid for learned critic; dotted for optimal critic). The original
scheme converges to the JS divergence minimum. The alternative scheme, which by the results of
this note is equivalent to a hybrid (SRKL, JS) scheme, converges to the SRKL divergence minimum
as expected.

This is a valid approximation of the value, since Df (p, q) = Ẽf (p, q, d
∗) for the optimal critic

d(x) = d∗(x) = log p(x) − log q(x). However the partial derivative of Ẽf with respect to the
parameters of q is not equal to the derivative ofDf with respect to the parameters of q. Thus it is not
the case that optimizing Ẽf using gradient descent can be straightforwardly related to optimizing
Df . This is the source of the discrepancy between our result and theirs.

11 EXPERIMENTAL VALIDATION OF MATHEMATICAL RESULT

In order to validate our mathematical conclusions we conducted a simple experiment. Training
behavior using the original and alternative gradients on a toy problem are shown in Figure 5. We see
that the two cases minimize different divergences, as expected based on the theoretical arguments
presented above.
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