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ABSTRACT

Humans are able to both learn quickly and rapidly adapt their knowledge. One
major component is the ability to incrementally combine many simple concepts to
accelerates the learning process. We show that energy based models are a promis-
ing class of models towards exhibiting these properties by directly combining
probability distributions. This allows us to combine an arbitrary number of dif-
ferent distributions in a globally coherent manner. We show this compositionality
property allows us to define three basic operators, logical conjunction, disjunc-
tion, and negation, on different concepts to generate plausible naturalistic images.
Furthermore, by applying these abilities, we show that we are able to extrapolate
concept combinations, continually combine previously learned concepts, and infer
concept properties in a compositional manner.

1 INTRODUCTION

Humans are able to rapidly learn new concepts and continually integrate them among their prior
knowledge. The key ingredient in enabling this is the ability to compose increasingly complex
concepts out of simpler ones, and recombining and reusing concepts in novel ways (Fodor & Lepore,
2002). By combining a finite number of primitive components, humans can create an exponential
number of new concepts, and use them to rapidly explain current and past experiences (Lake et al.,
2017). We are interested in enabling such compositionality capabilities in machine learning systems,
particularly in the generative modeling context.

Past efforts in machine learning to incorporate compositionality have attempted it in several distinct
ways. One has been to decompose data into disentangled factors of variation and situate each
datapoint in the resulting - typically continuous - factor vector space (Vedantam et al., 2018; Higgins
et al., 2018). The factors can either be explicitly provided or learned in an unsupervised manner. In
both cases, however, the dimensionality of the factor vector space is fixed and defined prior to training.
This makes it difficult to introduce new factors of variation, which may be necessary to explain new
data, or to differently taxonomize past data. Another approach to incorporate the compositionality is
to spatially decompose an image into a collection of objects, each object slot occupying some pixels
of the image defined by a segmentation mask (van Steenkiste et al., 2018; Greff et al., 2019). Such
approaches can generate visual scenes with multiple objects, but may have difficulty in generating
interacting effects between objects. These two incorporations of compositionality are typically seen
as distinct, with very different underlying implementations.

In this work, we propose to implement compositionality ideas via energy based models (EBMs).
Instead of an explicit vector of factors that is input to a generator function, or object slots that are
blended to form an image, our unified treatment defines factors of variation and object slots via energy
functions. Each factor is represented by an individual scalar energy function that takes as input an
image and outputs a low energy value if the factor is exhibited in the image. Images that exhibit the
factor can then be generated implicitly as a result of an MCMC process that minimizes the energy.
Importantly, it is also possible to run MCMC process on some combination of energy functions to
generate images that exhibit multiple factors or multiple objects, in a globally coherent manner.

There are several ways to combine energy functions. One can add or multiply distributions defined
by the energy functions (as in mixtures (Shazeer et al., 2017; Greff et al., 2019) or products (Hinton,
2002) of experts). We view these as probabilistic instances of logical operators over concepts. Instead
of using one, we consider three operators: logical conjunction, disjunction, and negation (illustrated
in Figure 1). We can then flexibly and recursively combine multiple energy functions via these
operators. More complex operators (such as implication) can be formed out of our base operators.
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Figure 1: Ilustration of logical composition operators over energy functions £ and F»> (drawn as level sets).

EBMs with such logical composition operators enable several capabilities. They allow defining
new concepts (factors) implicitly via examples. This is similar to learning to generate images in a
few-shot setting (Reed et al., 2017), with the distinction that instead of learning to generate holistic
images from few examples, we learn properties from examples in a way that can then be flexibly
combined with other previously learned concepts. This allows new concepts to be added on demand
in a continual manner by simply learning a new energy function from examples, and which again
can be combined with all past concepts. Additionally, finely controllable image generation can be
enabled by specifying the desired image via a collection of logical clauses, with applications to neural
scene rendering (Eslami et al., 2018).

Our contributions are as follows: first, while composition of energy-based models has been proposed
in abstract settings before (Hinton, 2002), we show that it can be used to generate plausible natural
images. Second, we propose to combine energy models based on logical operators which can
be chained recursively, allowing controllable generation based on a collection of logical clauses.
Third, we demonstrate unique advantages of such an approach, such as extrapolation to concept
combinations, continual addition of new energy functions, and ability to infer concept properties.

2 METHOD

In this section, we first give a background overview of EBMs and then define three different basic logic
operators on them. The components of these operators can be learnt independently and incrementally
combined to support continual learning. Furthermore, the operators themselves can be combined to
support nested compositions.

2.1 ENERGY BASED MODELS

EBMs represent data by learning an unnormalized probability distribution across the data. For each
data point x, an energy function Fjy(x), parameterized by a neural network, outputs a scalar real
energy such that

po(x) e Fo() (1

To train an EBM on a data distribution pp, we follow the methodology defined in (Du & Mordatch,
2019), where a Monte Carlo estimate (Equation 2) of maximum likelihood is minimized.

VoLl = Ex+NpDE9(:L‘+) — Ez—NpeEg(:E_). 2)

To sample =~ from py for both training and generation, we use MCMC based off Langevin dynamics
(Du & Mordatch, 2019). Samples are initialized from uniform random noise and are iteratively
refined following Equation 3

%k =%kt - %Vng(ik_l) + Wk, Wk~ N(0,N), (3)

where k is the k*" iteration step and )\ is the step size. We refer to each iteration of Langevin dynamics
as a negative sampling step. We note that this form of sampling allows us to generate samples from
distributions composed of py and other distributions by using the gradient of the modified distribution.
We use this ability to generate from multiple distributions that allow various different forms of
compositionality that we detail below.

2.2 COMPOSITION OF ENERGY-BASED MODELS

We next present different ways that EBMs can compose. We consider a set of independently trained
EBMs, E(x|c1), E(x]|c2), ..., E(x|cy,), which are learned conditional distributions on underlying
latents c;. Latents we consider including position, size, color, gender, hair style, and age, which we
refer to as concepts. Figure 2 shows three concepts and their combinations.

2
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Figure 2: Ilustration of concept conjunction and negation. All the images are generated through the conjunction
and negation of energy functions. For example, images in the central part is the conjunction of male, black hair,
and smiling energy function.

Concept Conjunction In concept conjunction, given separate independent concepts such as a
particular gender, hair style, and facial expression, we wish to construct an output with the specified
gender, hair style, and facial expression — the combination of each concept. Since the likelihood of
an output given a set of specific concepts is equal to the product of the likelihood of each individual
concept, we have Equation 4, which is also known as the product of experts (Hinton, 2002)

p(z|er and ca, ..., and ¢;) = Hp(x|ci) o exi E@led), ()]
i

We can thus apply Equation 3 to the distribution that is the sum of the energies of each concept to
obtain Equation 5 to sample from the joint concept space.
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Concept Disjunction In concept disjunction, given separate concepts such as the color red and the
color blue, we wish to construct an output that is either red or blue — either of the given concepts.
Thus, we wish to construct a new distribution which is sharply peaked when any of the chosen
concepts are true. A natural choice of such a distribution is the sum of the likelihood of each concept
(Equation 6) — which will be sharp whenever any of the chosen concepts are true.

p(x|cy or g, ... Or ¢;) o Zp(a;|cl) o Z e~ Bl@led) o logsumexp(—E(z]ei)) (6)
i i

where logsumexp( fi, ..., fn) = log ) . exp(f;). We can thus apply Equation 3 to the distribution
that is logsumexp of the negative energies of each concept to obtain Equation 7 to sample from the
additive concept space.

%P =xF1 4 %Vxlogsumexp(—E(aﬂci)) + W, Wk~ N(0,N) (7)

Concept Negation In concept negation, we wish to construct an output that does not contain the
concept. Given a color red, we wish to construct an output that is of a different color, such as
blue. Thus, we want to construct a distribution that places high likelihood to data that is outside
a given concept. One way to generate such a distribution is to construct a probability distribution
parameterized by an EBM where the energy is a negative scalar multiplies the energy of the target
concept. However, an important issue is that negation is always defined with respect to another
data distribution — the opposite of alive may be dead, but not inanimate. Negation without a data
distribution is not integrable and leads to a generation of chaotic textures that, although indeed is the
absence of concept desired, also does not capture the essence of negation. Thus in our experiments
with negation, we jointly combine negation with another conditional model to ground the negation
and obtain the probability distribution in Equation 8.

p(xnot(cy), ¢z) o e@FElen)=Ewlez) ®
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Figure 3: Examples of combination of different attributes on CelebA (a) and Mujoco scenes (b) via summation
of energies. Each row adds an additional energy function attribute. For example, (a) images on the first row
are only conditioned on young while images on the last row are conditioned on young, female, smiling and
wavy hair; (b) images on the first column are only conditioned on shape while images on the last column are
conditioned on shape, position, size and color. The left part of (b) is the generation results of sphere and the
right part is cylinder.

This allows us to apply Equation 3 to the distribution to obtain Equation 9 to sample from the negated
concept space.

b — k1 %vx(aE(:qcl) _ B(ales)) + ", wF ~ N0, 1) ©)

We note that the combinations of conjunctions, disjunctions and negations can specify more complex
operators such as implication.

Concept Inference In concept inference, we wish to infer the underlying concept through which
a given input is generated. Given several example inputs of an underlying concept, we wish to
combine the data to make an informed estimation of the underlying concept. Assuming each input is
independent of each other, the overall likelihood of the inputs is equivalent to the product of likelihood
of each input under a concept and thus is the conjunction of likelihood of each individual data point

p(x1,Ta,. .., Tylc1) o exi Blziler) (10)

We can then obtain maximum a posteriori (MAP) estimates of concepts by minimizing the energy of
the above expression.

3 EXPERIMENTS

We perform empirical studies to answer the following questions: Can EBMs exhibit concept compo-
sitionality, such as concept negation, conjunction, and disjunction, in generating images? Can we
take advantage of concept combinations to learn new concepts in a continual manner? Does explicit
factor decomposition enable better generalization? Can we perform inference across multiple inputs?

3.1 SETUP

We perform experiments on 64x64 different object scenes rendered in Mujoco (Todorov et al., 2012)
and the 128x128 CelebA dataset. For scenes rendered in Mujoco, we generate a central object of
shape either sphere, cylinder, or box of varying size and height, with some number of (specified)
additional background objects. Images are generated with varying lighting and camera positions.

We use the ImageNet32x32 architecture and ImageNet128x128 architecture from (Du & Mordatch,
2019) with the Swish activation (Ramachandran et al., 2017) on Mujoco and CelebA datasets. Models
are trained on Mujoco datasets for up to 1 day on 1 GPU and for 1 day on 8 GPUs for CelebA.

3.2 COMPOSITIONAL GENERATION

We show EBMs are able to generate images that exhibit the versions of compositionality described in
the methods section.

Concept Conjunction We find that in Figure 3 (a) that EBMs are able to combine independent
concepts of age, gender, smile, and wavy hair with each additional attribute allowing more precise
generation. Similarily, we find in Figure 3 (b) that EBMs are able to combine independent concepts
of shape, position, size, and color together to generate more precise generations.

4
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Figure 4: (a) Examples of concept disjunction on joint attributes (represented by conjunction of energy) of not
smiling+female and smiling+male. EBMs are able to reliably support concept disjunction (generation of either
one concept or the other) even when the concept itself is compound. (b) Examples of concept negation on the
attributes of smiling female. When negating the female energy in combination with the smiling energy function,
we are able to generate photos of males that are smiling.

Concept Disjunction We also find that EBMs are able to combine concepts additively (generate
images that are concept A or concept B) as shown in Figure 4 (a). By constructing sampling using
logsumexp, EBMs are able to either sample an image that is not smiling female or smiling male,
where both not smiling female and smiling male are specified through the conjunction of energies of
the two different concepts. This result also shows that concept disjunction can be chained on top of
other operators such as concept conjunction.

Concept Negation We further generate concepts that are the opposite of the trained concept in
Figure 4 (b), where we find that negating female, in combination with smiling leads to generation of a
smiling male. Furthermore, we note that the ability of concept conjunction, disjunction, and negation
allows us to flexibly specify any set of pairwise concepts.

Multiple Object Combination Finally, we explore the use of an EBM to model single object-based
concepts. To investigate this, we constructed a dataset consisting of a central green cube with size
and position annotations, in conjunction with large amount background clutter objects (which are not
green), in which we trained a conditional EBM.

Despite the fact that the training dataset does not have any other green cubes, we find that adding
two conditional EBMs conditioned on two different position and sizes, allowing us to selectively
generate two different cubes in Figure 5. Furthermore, we find that such generation is able to satisfy
the constraints of the dataset. For example, when two conditional cubes are too close, the conditionals
EBMs are able to default to generating one cube.

Joint
Rendering

Figure 5: Object compositionality with EBMs. An  Figure 6: Examples of continual learning of concepts.
EBM is trained to generate a green cube of specified A positional energy function is learned on set of cubes
size and shape in a scene with other obstacles. At of one color. A shape energy function is then learned
test time, we sample from the conjunction of two on a set of shapes of a fixed color. Finally, a color
different EBMs conditioned on different position/size energy function learned different colored shapes. We
attributes (shown in panels cube 1 and cube 2), which able to continually learn and generate different color
generates cubes at both locations. This generation shapes at different positions, even though position is
further exhibits global coherence, by merging both only learned on cubes of fixed color, and shape is only
cubes when they are too close (right-most column). learned on shapes of fixed color.

3.3 CONTINUAL LEARNING

An important ability humans are endowed with is the ability to both continually learn new concepts,
and to extrapolate existing concepts in combination with previously learned concepts. We evaluate
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Figure 7: Illustration of generation of size/position concepts as a function of data percentage. By learning
a composable representation of underlying concepts, EBMs are able to extrapolate better with less data, and
exhibit both lower size and positional error.

EBM EBM EBM

Baseline GT Baseline GT Baseline GT
1% 10% 100 %
Figure 8: Illustration of generations from extrapolations of concepts of size and position. Models only see all
possible sizes of spheres at (1%, 10%, 100% respectively) of the right most positions in images and are asked
generated novel size/position images at remaining image locations.

to what extent compositionality in EBMs allow us to exhibit these properties through the continual
learning protocol described below:

1. We first train an EBM for position based generation by training it on a dataset of cubes at
various positions of a fixed color.

2. Next we train an EBM for shape based generation, by training the model in combination with
the positional model to generate images on a dataset of different shapes (through summation)
at different positions, but with the position based EBM fixed.

3. Finally we train an EBM for color based generation, by training the model in combination
with both positional and shape models to generate images on a dataset of different shapes at
different positions and colors (through summation). Again we fix both position and shape
EBMs, and only train the color based generation.

We show in Figure 6 that this allow us to extrapolate our learned models for position and shape
to generate different position shapes of various colors. The first column of Figure 6 shows the
generations of a positional model, while the second column shows the generation of both positional
and shape models, and the third column columns shows the generation of position, shape, and color
models. Even though the positional model has only seen cubes of a particular color at a particular
position, and color model shapes of a particular color, the third column illustrates that the composition
of all three models is able to allow the generation of different colored shapes at various positions.

3.4 CROSS PRODUCT GENERALIZATION

Humans are further endowed with the ability to extrapolate novel combinations of concepts when
only a limited number of demonstrations of different concepts learned. For example, when finding a
new toy in a shop, we can already anticipate changes in both the size and shape of the object.

We evaluate the extent to which EBMs, which allow us to factorize generation into different concepts,
can help us extrapolate. To test this, we construct a sphere dataset consisting of sphere of all sizes
at a specified percentage of the rightmost positions and large spheres remaining positions, with
size/position annotations. At test time, we then evaluate the ability to construct spheres of various
sizes at positions not seen at the train time. Such a setup requires a model to be able to extrapolate
the learned position and size latents to generate these new images.

To train an EBM on this task, we first train an EBM conditioned on the position on with large sphere
images at each position, as well as an EBM conditioned on size at each position where all different
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Table 1: Position prediction error on different test datasets. “Test” has the same data distribution with training
set. Other datasets change one or more environmental parameters, e.g. color, size, type, and light, which are
unseen in the training set. “Avg” is the average error of “Color”, “Light”, “Size”, and “Type”. “Steps”indicates
the number of negative sampling steps used to train the EBM. EBMs are able to generalize better. Larger number
of negative sampling steps significantly decrease overall EBM error.

Model Steps Color Light Size Type Avg \ Test

EBM 80 11.172 8458 13.201 7.107 9.985 | 5.582
EBM 200 10.899 6307 8431 6304 7.985 | 3.903
EBM 400 4.084 4.033 6.853 3.694 4.666 | 2.917

Resnet - 20.002 5.881 10.378 6.310 10.643 | 3.635
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Figure 9: The influence of multiple observations on EBMs. Multiple images are generated under different
lighting conditions and camera heights. (a) The position prediction error decreases when the number of input
images increases independent of negative training steps used to train models. (b) Examples of generated images
with varying number of negative sampling steps. Large number of steps leads to more realistic images.

sizes of spheres are available. We then finetune the summation of the EBMs to generate objects in all
positions/sizes in the training dataset. We compare with a baseline model trained on conditioning
both latents together, optimized for MSE loss (with the same architecture/number parameters as the
EBMs) when generating new combinations.

To evaluate the performance of generations, we train a discriminatory model to regress both the
position and size of a generated sphere image. We plot histogram of differences in regressed size and
position from a generation compared to conditioned latents in Figure 7. We find that EBMs are able
to extrapolate both position and size better than a baseline joint model. We note that both models
obtain less positional generation error at 1% data as opposed to 5% or 10% of data. This result is due
the make-up of the data — with 1% data, only 1% of the rightmost sphere positions have different
size annotations, so failed extrapolation causes models to generate large spheres at the conditioned
position. Once there are more different size sphere annotations from data, models either collapse
to an existing size or position, leading to a higher error. Qualitatively, Figure 8 illustrates that by
learning a separate conceptual model for each latent, at a low percentage of data, the EBM is still
able to combine concepts, while under full data, both models perform well.

3.5 COMPOSITIONAL CONCEPT INFERENCE

In this section, we show that EBMs are able to not only infer concepts from images but infer concepts
in a compositional manner.

Concept Inference By minimizing the energy of a concept given an image, EBMs can be adapted
to infer concept labels. To evaluate this, we generate a large dataset of cubes/spheres at various
different locations in Mujoco, with random lighting small camera perturbations, and train an EBM to
infer the position of cubes/spheres. We benchmark the inference ability of an EBM by computing the
mean absolute error (|Z — x| + |§ — y|)/2, where (x, y) is the predicted object position and (&, §) is
the ground truth position.

We compare EBMs with a baseline ResNet model (with the same architecture as the EBM) trained
directly on position regression. Table 1 shows the comparisons of EBMs with different number of
Langevin sampling steps and the ResNet model. We test the performance on several different datasets.
“Color” refers to a test dataset where the object colors never been seen in the training dataset. “Light”
means a test dataset using different light sources. “Size” means a test dataset where the object sizes
are not covered in the training dataset and “Type” dataset consists cylinder images while the training
images are spheres or cubes. EBMs with larger Langevin sampling steps outperform the ResNet
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benchmark, generalizing significantly better to distribution shift. Furthermore, larger numbers of
Langevin sampling steps have better generation quality as shown in Figure 9 (b). This suggests that
many figures in this paper (which are trained with 40 sampling steps) can likewise see a large boost
in the generation quality.

Compositional Concept Inference We next
examine the compositionality of inference in
EBMs. We verify EBMs can effectively use
the information from multiple observations by
measuring the mean absolute error of position
regression when given different views (from a
variation of camera heights and lighting) of the
predictions, using the MAP inference based on
Equation 10. We display results in Figure 9 (a)
and find that multiple observations reduce the
position prediction errors.

Emergent Compositional Inference We
] also investigate the emergent compositional
Figure 10: Energy based model trained on single cubes  ability of EBMs by testing EBMs trained on
and tested on two cubes. The RGB images and Grey  ogition regression on single object images to
images are the input images and energy map of energy  oopag of two objects. We plot energy maps
at each position respectively. The energy maps of two . .. o
cubes is the addition of energy map of two single cubes. OVer pos s1l?1§ positional labels in Figure 10 as
The combined energy maps match the input images by well as individual €nergy maps over each ?:ube.
highlighting two region or a union region. We find that EBMs have implicit compositional
inference, with the joint positional energy map
matching the summation of individual positional energy maps of each object.

Cube 1 Cube 2 Two Cubes

4 RELATED WORK

Our work draws on results in energy based models - see (LeCun et al., 2006) for a comprehensive
review. A number of methods have been used for inference and sampling in EBMs, from Gibbs
Sampling (Hinton et al., 2006), Langevin Dynamics (Du & Mordatch, 2019), Path Integral methods
(Du et al., 2019) and learned samplers (Kim & Bengio, 2016). In this work, we show that MCMC
sampling on EBMs through Langevin Dynamics can generate plausible natural images.

Compositionality has been incorporated in representation learning (see (Andreas, 2019) for a sum-
mary) and in generative modeling. One approach to compositionality has focused on learning
disentangled factors of variation (Higgins et al., 2017; Kulkarni et al., 2015; Vedantam et al., 2018).
Such an approach allows the combinatorial specification of outputs, but does not allow the addi-
tion of new factors. A different approach to compositionality includes learning various different
pixel/segmentation masks for each concept (Greff et al., 2019; Gregor et al., 2015). However such
a factorization may have difficulty capturing the global structure of an image, and in many cases
different concepts can not be explicitly factored as attention masks.

In contrast, our approach towards compositionality focuses on composing separate learned probability
distribution of concepts. Such an approach allows viewing factors of variation as constraints (Mnih
& Hinton, 2005). (Hinton, 1999) shows that product of EBMs allows for conjunction of different
concepts. In our work we illustrate additional logical compositions and corresponding performance
on realistic datasets.

Our work is motivated by the goal of continual lifelong learning - see (Parisi et al., 2018) for a
thorough review. Many methods are focused on how to overcome catashtophic forgetting (Kirkpatrick
et al,, 2017; Li & Hoiem, 2017), but do not support dynamically growing capacity. Progressive
growing of the models (Rusu et al., 2016) has been considered, but is implemented at the level of the
model architecture, whereas our method is agnostic to the models. Meta and few-shot learning (Reed
et al., 2017; Bartunov & Vetrov, 2018) is another approach, but focuses on learning to model images
rather than factors.

5 CONCLUSION

We have presented work demonstrating the potential of EBMs for both compositional generation and
inference and hope to inspire future work in this direction.
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