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Abstract

Graph Neural Networks (GNNs) broadly follow the scheme that the repre-
sentation vector of each node is updated recursively using the message from
neighbor nodes, where the message of a neighbor is usually pre-processed
with a parameterized transform matrix. To make better use of edge fea-
tures, we propose the Edge Information maximized Graph Neural Network
(EIGNN) that maximizes the Mutual Information (MI) between edge features
and message passing channels. The MI is reformulated as a differentiable
objective via a variational approach. We theoretically show that the newly
introduced objective enables the model to preserve edge information, and
empirically corroborate the enhanced performance of MI-maximized models
across a broad range of learning tasks including regression on molecular
graphs and relation prediction in knowledge graphs.

1 Introduction

Many real-world datasets naturally come in the form of graphs, such as citation networks (Kipf
& Welling, 2017), social networks Hamilton et al. (2017), knowledge graphs (Schlichtkrull
et al., 2018), molecular graphs (Scarselli et al., 2009; Duvenaud et al., 2015) etc., all of which
consist of a number of nodes and edges equipped with their inherent features. Recently,
impressive performance has been achieved in graph learning tasks with various forms of
Graph Neural Networks (GNNs) (Zhou et al., 2018). Compared to prior works, such
as node2vec (Grover & Leskovec, 2016), GNNs learn the state of a node by recursively
aggregating messages from its neighbors: combining the graph structure with node features.
Intuitively, edge features should play an important role in graph learning tasks. For example,
chemical bonds in a molecule have a high impact on chemical properties of molecules, and
edge features in knowledge graphs encode important relations between concepts, data, and
entities. Our proposed method focuses on improving the usage of edge features in GNNs.

The expressive power of GNNs largely depends on how the message is passed between nodes.
A widely adopted scheme is multiplying neighbor node states with a parameterized transform
matrix before aggregation (Gilmer et al., 2017; Xu et al., 2019). Despite tremendous success
of GNNs, existing models do not exhaustively exploit the full potentials of edge features on
graphs. For example, many GNNs such as GCN (Kipf & Welling, 2017), ChebyNet (Defferrard
et al., 2016) and GAT (Veličković et al., 2018) do not even consider categorized edge types.
To utilize edge features in multi-relational graphs, RGCN (Schlichtkrull et al., 2018) proposes
to learn a different transform matrix for each edge type, respectively. However, it does not
generalize to edge features in continuous space. MPNN (Gilmer et al., 2017) introduces
an edge network that takes edge feature vectors as input and outputs transform matrices,
which are used to transform states of neighbor nodes. In principle, the MPNN framework
can handle complex edge features. Yet, the lack of maximization of MI between edge and
message channels implies that the MPNN may give an edge-independent transform matrix.

In this work, we aim to more efficiently exploit the full potentials of edge features from
the perspective of training. We propose the Edge Information maximized Graph Neural
Network (EIGNN) that maximizes the Mutual Information (MI) between edge features
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and the message passing channel which is parameterized as the transform matrix in the
widely-accepted message passing framework (transformation and aggregation) (Gilmer et al.,
2017; Xu et al., 2019). Considering the challenge of computing the MI, we adopt a variational
approach to reformulate it as an differentiable objective, which can be easily applied as a
regularization term. We theoretically show that EIGNN can reduce information loss of edge
features. Apart from demonstrating the impressive performance of EIGNN on extensive
benchmarks of molecular graphs and knowledge graphs, we also analyze and attribute
the enhanced effectiveness of EIGNN to the exploitation of edge features instead of the
regularization effects. Notably, attribution analysis on molecular graphs show that EIGNN
can capture domain knowledge without human interference.

Preliminaries Let G = (V, E) be a graph with node feature vectors xv ∈ Rd for node
v ∈ V and edge feature vectors evw ∈ E for the edge connecting node v and w. In GNNs,
the state of each node is updated recursively using neighbor nodes. Let Nv be the set of
neighbor nodes of v and h(l)v ∈ Rdl be the hidden state of v at l-th layer, where dl is the
dimension of the hidden layer. For simplicity of notation, we use a single d to denote the
dimension such that h(l)v ∈ Rd. We also have h(0)v = xv at the input layer.

2 Related works

2.1 Relational Modeling in Graph Neural Networks

Single-relational modeling. Many variants such as GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), ChebyNet (Defferrard et al., 2016), GraphSAGE (Hamilton
et al., 2017) focus on learning node states. These models can assign weight to neighbors, but
they can not handle various edge features. A typical neighborhood aggregation scheme is

h(l+1)
v = σ

(∑
w∈Nv

αvwW
(l)
1 h(l)w +W

(l)
0 h(l)v

)
, (1)

where σ denotes an activation function, αvw can be a normalization constant or a learned
attention coefficient (Veličković et al., 2018). States of all neighbors are multiplied by the
same trainable transform matrix W (l)

1 . Sometimes the self-connection is also treated in the
same way, s.t., W (l)

0 =W
(l)
1 .

Multi-relational modeling. A simple strategy to handle multi-relational graphs is as-
signing each edge type with a separate transform matrix as presented in RGCN (Schlichtkrull
et al., 2018) and adopted by GGNN (Li et al., 2016) and LNet (Liao et al., 2019). RGCN
updates node states according to the following scheme

h(l+1)
v = σ

(∑
r∈R

∑
w∈N r

v

αvw,rW
(l)
r h(l)w +W

(l)
0 h(l)v

)
, (2)

where N r
v is the collection of neighboring nodes of v with relation r ∈ R and αvw,r is a

normalization constant similar as αvw in Eq. (1). Such a scheme faces challenge in handling
edge features of continuous space. GGNN and LNet do not focus on the improvement of
edge expressibility. GGNN introduces Gated Recurrent Unit (GRU) (Cho et al., 2014) and
LNet focus on handling multi-scale connections.

Complex-relational modeling. The relation in a graph can be quite complex, expressed
as a general feature vector e. MPNN (Gilmer et al., 2017) introduces an edge network which
takes edge feature vectors as input and outputs transform matrices. A single edge network is
shared in a MPNN model. The forward propagation is formalized as

m(l+1)
v = σ

(∑
w∈Nv

f(evw)h
(l)
w +W

(l)
0 h(l)v

)
, h(l+1)

v = GRU(h(l)v ,m(l+1)
v ), (3)

where f : e → W denotes the edge network. Recently, some research works treat a multi-
relational problem as the complex-relational one by introducing a continuous edge embedding
vector for each edge type, so as to handle increasing number of relations (Nathani et al., 2019).
Although the MPNN architecture allows the usage of arbitrary edge features, this advantage
is not utilized in practice. MPNN can actually learn an edge-independent transform matrix.
A GNN model that efficiently utilizes edge features is yet to emerge.
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2.2 Readout functions

After several forward propagations, GNNs yield final states of all nodes, which are suitable
for node/edge classification or regression. For graph classification or regression tasks, we can
apply a readout function (Ying et al., 2018; Vinyals et al., 2015) such that

y = R({hLv |v ∈ G}), (4)

where hLv is the state of v at the last layer, R is the readout function that outputs a graph-level
representation y, e.g., summing up the final node states, applying hierarchical pooling (Ying
et al., 2018) or using the set2set model (Vinyals et al., 2015).

3 Our method

3.1 The Usage of Mutual Information

In probability theory and information theory, MI is a measure of mutual dependence between
two random variables. Our method proposes to preserve edge information in GNNs, which
is important in many real-world graph structures such as molecules - apart from node
(atom) features, attributes of edges (bonds) are equally important for predicting properties
of molecules. To this end, we maximize I(e;W ) - the MI between the edge feature vector e
and the message passing channel, i.e., the transform matrix W which is used to transform
neighbor node states in the forward propagation. Our method can be easily generalized to
directly maximize the MI between edge features and the message itself in methods that do
not explicitly have the transform matrix, e.g., the message from node w to node v can be
expressed as f(hv, evw, hw) rather than f(evw)hw, which is shown in Section 4.3.

MI inspired objective functions have long been adopted in unsupervised learning (Bridle
et al., 1992; Barber & Agakov, 2006; Veličković et al., 2019; Hjelm et al., 2019), semi-
supervised learning (Krause et al., 2010) and generative adversarial networks (Chen et al.,
2016). Specifically, DGI (Veličković et al., 2019) also applies MI to GNNs. DGI proposes to
learn node-wise representations in an unsupervised manner by maximizing the MI between
node representations and corresponding high-level summaries of graphs, using adversarial
learning and negative sampling. The node representations may then be retrieved and used
for downstream tasks, such as node classification. DGI can be used to pre-train GNNs, as
demonstrated in Hu et al. (2019). Our EIGNN also proposes information maximization but
targets a completely different objective and adopts a quite different approach.

3.2 A Variational Approach to Maximize Mutual Information

Computing I(e;W ) itself is intractable in practice, needless to say that training a model
requires the derivative. Thus, we adopt a variational approach (Agakov, 2004) to reformulate
I(e;W ) as a differentiable objective. We show that our objective is an approximated lower
bound of I(e;W ) and notably, optimizing our objective does lead to maximizing I(e;W ).
Following MPNN (Gilmer et al., 2017), we use an edge network to parameterize the transform
matrix W and relate it to edge features. Therefore, the prior p(W |e) is

p(W |e) = δ(W − f(e)), (5)

where δ(·) is the Dirac delta function. The posterior p(e|W ) is intractable, so we define a
variational distribution q(e|W ), which can be obtained by defining a neural network g :W → e.
Specifically, q(e|W ) substitutes to some distribution (such as Gaussian distribution) with
parameter g(W ). In this way, f and g are similar to the probabilistic encoder and decoder in
the Variational Auto-Encoder (VAE) (Kingma & Welling, 2013). Then we can approximate
I(e;W ) with a differentiable objective LI(f, g; e) as follows.
Theorem 1. Let e be the edge feature vector, W be the transform matrix with conditional
distribution p(W |e) specified by the probabilistic encoder f as shown in Eq. (5) and q(e|W )
be the variational distribution specified by the probabilistic decoder g, then we have

I(e;W ) ≥ H(e) + Ee∼p(e)[LI(f, g; e)], (6)

where LI(f, g; e) = log q(e|f(e)) and H(·) denotes the entropy.
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Proof. Let DKL(· ‖ ·) denote the KL-divergence, which should be nonnegative, then we have

I(e;W ) = H(e)−H(e|W )

= H(e) + EW∼p(W )[Ee∼p(e|W )[log p(e|W )]]

= H(e) + EW∼p(W )[Ee∼p(e|W )[log p(e|W )− log q(e|W ) + log q(e|W )]]

= H(e) + EW∼p(W )[DKL(p(e|W ) ‖ q(e|W )) + Ee∼p(e|W )[log q(e|W )]]

≥ H(e) + EW∼p(W )[Ee∼p(e|W )[log q(e|W )]]

= H(e) + Ee∼p(e),W∼p(W |e)[log q(e|W )]

(a)
= H(e) + Ee∼p(e)[log q(e|f(e))]

where the equality (a) follows from Eq. (5).

According to Theorem 1, we can maximize the variational lower bound for I(e;W ). The
bound becomes tight when the variational distribution q(e|W ) approaches the true posterior
p(e|W ). Moreover, H(e) is a constant because the distribution of edge feature vector e is
fixed for given graphs, hence we can equivalently maximize LI(f, g; e). We choose the widely
accepted Gaussian distribution as the prior distribution for the probabilistic decoder g,

q(e|W ) = N (e; g(W ), σ2I). (7)

Then we have

LI(f, g; e) = log q(e|f(e)) = logN (e; g(f(e)), σ2I) = −λ‖e− g(f(e))‖22 (8)

where λ > 0 is a constant determined by σ and the dimension of e, taken as a tunable
parameter. The following Theorem 2 shows that maximizing the objective in Eq. (8) does
lead to the maximization of I(e;W ), hence enables the model to preserve edge information.
Theorem 2. Assume the optimal solution of maximizing LI(f, g; e) is f? and g?, then f?
also maximizes I(e;W ).

Proof. Note that H(e) is a constant when the graphs are given. In information theory, we
have

H(g(f(e))) ≤ H(f(e)) ≤ H(e). (9)
I(e;W ) is upper bounded by H(e),

I(e;W ) = I(e; f(e)) = H(f(e))−H(f(e)|e) = H(f(e)) ≤ H(e).

Since f? and g? is the optimal solution of maximizing LI(f, g; e) presented in Eq. (8), it is
not difficult to see that e = g?(f?(e)),∀e ∈ E . In this case, the inequalities in Eq. 9 become
equalities, i.e.,

H(g?(f?(e))) = H(f?(e)) = H(e).

Therefore, we have I(e;W ) = H(e), i.e., the maximum is attained in this case.

3.3 Edge Information Maximized Graph Neural Networks

Our EIGNN is derived by implementing our MI objective in GNNs. As a concrete example,
the forward propagation of our model follows the formulation in Eq. (3), where the dege
network f : e→W is expressed as a multi-layer perceptron (MLP). According to theoretical
analysis presented in Sec. 3.2 , we introduce another MLP g :W → e as the decoder.

For graph regression or classification tasks, the model outputs a prediction y for each graph
G, which has label ŷ. Without MI maximization, we denote the vanilla loss as L0(ŷ, y;G).
Common choice of L0 includes Mean Square Error (MSE), Mean Absolute Error (MAE) and
Cross Entropy (CE). For a graph G = (V, E), EIGNN maximizes LI(f, g; e) and minimizes
L0(ŷ, y;G) using the following loss function

LEIGNN (G) = L0(ŷ, y;G)− λEe∈E [LI(f, g; e)], (10)

where Ee∈E [·] denotes taking the mean over all edges in G = (V, E) and λ is the regularization
parameter. When EIGNN is trained using mini-batches, L0(ŷ, y;G) is averaged over all
graphs in the batch while LI(f, g; e) is averaged over all edges of all graphs in the batch.
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Similarly, for relational prediction tasks in knowledge graphs, EIGNN directly yields node-
level representations hv for each node v ∈ V and edge-level representations e for each
relationship. The objective function of EIGNN can be derived from the translational scoring
function Bordes et al. (2013), which learns embedding such that for a given valid triple
tvw = (hv, evw, hw) from the valid set S, the condition dtvw

= hv + evw − hw ≈ 0 holds. Let
L0 = Etvw∈SEt′vw∈S′ max{dt′vw

− dtvw
+ γ, 0}, where S′ denotes a set of invalid triples and γ

is a margin hyper-parameter, EIGNN can be trained by minimizing the following loss,

LEIGNN (G) = L0 − λEe∈E [LI(f, g; e)]. (11)

4 Experiments

In this section, we first conduct experiments on a large quantum chemistry benchmark QM9,
which is challenging for most baselines. Then we evaluate EIGNN on several useful molecule
benchmarks and use attribution analysis to show that EIGNN increases the impact of edges
and captures domain knowledge without human interference. Finally, we adopt our method to
large-scale knowledge graphs and evaluate the performance on challenging relation prediction
tasks using a wide variety of real-world datasets. All experimental results demonstrate a
clear and substantial improvement of EIGNN over the state-of-the-art methods.

4.1 Quantum Chemistry

QM9 (Ramakrishnan et al., 2014) is a large benchmark containing 134k molecules with 12
quantum chemistry regression properties, which have been show to be quite challenging
for many GNNs (Gilmer et al., 2017). Feature engineering of nodes and edges exactly
follows (Gilmer et al., 2017) such that molecules are preprocessed as graphs according to
atom features and bond features. We compare our EIGNN with nine state-of-the-art baselines
which can be categorized into three groups according to the ability of handling edge features:
i) GCN, ChebyNet, GAT and GIN (Xu et al., 2019) which simply use binary edge features
to indicate the existence of a bond without any other edge features; ii) RGCN, GGNN, LNet
and simplified MPNN (sMPNN) which consider bond types (no bond, single, double, triple,
or aromatic); iii) MPNN and our EIGNN which use edge feature vectors to indicate both
edge types and pairwise distance between atoms.

For a fair comparison, we repeat all experiments 3 times with different random seeds while
during each run, all methods share the same random seed. We randomly choose 10k
molecules for validation, 10k molecules for testing, and keep the rest for training. Each target
property is normalized to zero mean and unit variance for training. Each model is trained to
predict the 12 target properties simultaneously. λ is naively set to 1 for EIGNN. We use
mean square error (MSE) loss to train the models for at most 300 epochs till convergence,
and the performance is measured by mean absolute error (MAE). For LNet and GGNN,
implementation of the readout function follows the original paper. While for all other models,

Table 1: Quantum property regressions for 12 targets and overall performance (top two raws)
on QM9. We repeat all experiments 3 times with different random seeds and report the
average performance. Full results with standard deviation are presented in Appendix A, e.g.,
for MPNN and EIGNN, we have Avg. nMAE 0.0398± 0.0002 and 0.0357± 0.0005.

Method GCN ChebyNet GAT GIN RGCN GGNN LNet sMPNN MPNN EIGNN

Avg. nMAE 0.135 0.121 0.137 0.100 0.102 0.099 0.099 0.089 0.040 0.036
Avg. MAE 5.306 4.303 5.470 3.480 3.817 3.661 3.653 3.161 0.693 0.633

mu 0.568 0.518 0.567 0.478 0.506 0.518 0.472 0.472 0.110 0.097
alpha 0.881 0.793 0.891 0.621 0.632 0.608 0.623 0.528 0.332 0.294
HUMO(10−3) 5.451 4.775 5.429 4.183 4.453 4.483 3.889 3.854 2.481 2.230
LUMO(10−3) 6.400 5.674 6.331 4.796 5.138 5.153 4.194 4.549 2.862 2.593
gap(10−3) 8.201 7.097 8.193 6.096 6.500 6.602 5.813 5.634 3.620 3.275
R2 53.56 41.95 54.52 34.65 40.10 39.68 35.27 33.49 6.064 5.646
ZPVE(10−3) 2.533 2.527 2.271 1.744 1.477 1.292 1.438 1.345 0.679 0.612
U0 2.042 1.984 2.290 1.422 1.059 0.697 1.806 0.791 0.416 0.357
U 2.042 1.984 2.290 1.422 1.059 0.697 1.755 0.791 0.416 0.357
H 2.042 1.984 2.290 1.422 1.059 0.697 1.796 0.791 0.416 0.357
G 2.042 1.984 2.290 1.422 1.059 0.696 1.778 0.791 0.416 0.357
Cv 0.473 0.420 0.479 0.309 0.317 0.315 0.312 0.262 0.134 0.121
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Figure 1: Training and validation error on QM9. L2 weight decay does not improve MPNN
while our method does. The superior of EIGNN is due to exploiting edge features rather
than the regularization effect.

we use the same set2set (Vinyals et al., 2015) readout, which has been demonstrated to work
well in (Gilmer et al., 2017).

In Table 1, we list regression results for all methods. We report individual MAE for each
target in their original scale, averaged MAE (Avg. MAE) over 12 properties, and averaged
normalized MAE (Avg. nMAE; averaged over normalized target properties since different
targets have different units and ranges). Our EIGNN achieves the best performance for each
metric and each target. Now we are ready to answer the following research questions. i) Are
edge features important? Yes. The error has a trend of decreasing with increasing edge
features. The comparison between sMPNN (using edge types) and MPNN (using edge types
and distance) directly verifies the importance of edge features. It is also consistent with
the expert knowledge that distances between pairwise atoms are closely related to quantum
properties. For example, the smaller the distance between the two atoms, the stronger
the bond is, and consequently a higher bond energy is associated with this atom pair. ii)
Does the EIGNN work? Yes. EIGNN achieves the best performance on each target,
outperforming the strong baseline MPNN. Moreover, the advantage of EIGNN over MPNN
is consistent over 3 runs and the standard deviation on this task is quite small. Detailed
results are shown in Table 4 of Appendix A. iii) How does the EIGNN work? Our MI
objective is easily implemented on top of vanilla loss function, similar to a regularization.
Although we have shown that our objective enables preserving of edge information, here
we empirically show the effectiveness of EIGNN is due to exploiting edge features. Fig. 1
demonstrates that regularization such as L2 weight decay can increase training error while
our objective does not. Moreover, the validation error verifies that regularization itself does
not reduce the validation error. Therefore, the superior of our EIGNN is due to exploiting
edge features rather than the regularization effect.

4.2 More Molecule Benchmarks with Potential Applications

We further evaluate EIGNN on three molecule benchmarks: Lipophilicity (Wu et al., 2018),
ESOL (Delaney, 2004) and FreeSolv (Mobley & Guthrie, 2014). These datasets contain fewer
molecules, and have potential usages in applications such as chemistry, drug discovery, and
materials science. For example, the property lipophilicity is an important feature of drug
molecules that affects both membrane permeability and solubility. The dataset Lipophilicity
contains 4200 compounds. ESOL provides water solubility data for 1128 compounds. FreeSolv
contains hydration free energy of 642 small molecules in water. We conduct graph regression
experiments on these benchmarks. All datasets are split into training, validation and test
according to a proportion of 0.8/0.1/0.1. MPNN and our EIGNN share the same architecture
with 3 layers of message passing and 3 steps of set2set. We repeat each experiment 3 times
with different random seeds. Results of testing root mean square error (RMSE) in Table 2

Table 2: Testing RMSE on Lipophilicity, ESOL and FreeSolv.
Dataset Lipophilicity ESOL FreeSolv

Method MPNN EIGNN MPNN EIGNN MPNN EIGNN
mean±std 0.678±0.042 0.653±0.025 0.805±0.064 0.776±0.071 1.398±0.081 1.273±0.137
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(a)

(b)

Figure 2: Attribution analysis. The color indicates the impact of an edge/atom on the
output, i.e., the regression result. EIGNN i) increases the edge attribution, ii) reduces the
prediction error and iii) can learn domain knowledge without human interference.

verify the effectiveness of our method. Our EIGNN outperforms MPNN on each dataset and
each run. Detailed results for each run are presented in Appendix B.

Attribution analysis. To understand how our EIGNN reduces the regression error, we
conduct attribution analysis, i.e., attributing the prediction of a deep network to its input
features, which usually builds up on the standard gradient operator (Sundararajan et al.,
2017). For an output y, i.e., the prediction of a GNN, we define its sensitivity to an edge with
features e as Se = |∂y∂e |, where |·| denotes the L1 norm. Similarly, the sensitivity to an atom
with features x is Sx = | ∂y∂x |. Then Se and Sx are used as the metrics of attribution in our ex-
periments. As an example, we show in Fig. 2 the attribution for two molecules in Lipophilicity:
(a) Nc1nonc1C(=NO)Nc2ccc(F)c(Cl)c2 and (b) Oc1c2ncc3ccccc3c2nn1c4ccccc4 . Molecule
in (a) has the potential to be used to treat, prevent and/or diagnose cancer Prinz et al.
(2019). Compared with MPNN, we can observe an increasing of overall edge attribution
under our EIGNN and a decreasing of prediction error in both cases. Interestingly, the
attribution under EIGNN is similar to the expert knowledge of chemists: halogen atoms
such as {Cl, Br, I} and their bond with the carbon atom greatly effect the lipophilicity of a
molecule Wilcken et al. (2013), while atoms {O, N} also have high impact on the lipophilicity
but usually in a negative way (Augustijns & Brewster, 2007). In Fig. 2 (a), the attribution
of the halogen bond C-Cl and the pair {O, N} under our EIGNN is much higher than the
one under MPNN, which is consistent with the expert knowledge. In Fig. 2 (b), similarly,
the attribution of atoms {O, N} and the bond C-O under EIGNN is much higher. More
examples are presented in Appendix C.

4.3 Predicting Relations in Knowledge Graphs

In this subsection, we adopt EIGNN to tackle the problem of relation prediction in knowledge
graphs (KGs), which entails predicting whether a given triple is valid or not. For example, a
triple (London, capital of, United Kingdom) should be classified as valid or London should be
predicted as the capital of United Kingdom. KGs represent human knowledge as a directed
graph, and have been widely used in practical applications, such as semantic search, dialogue
generation, question answering etc. Recovering missing relations in KGs have been a major
task for practical usages of KGs. We evaluate our methods on three benchmark datasets,
WN18RR (Dettmers et al., 2018), FB15k-237 (Toutanova et al., 2015) and NELL-995 (Xiong
et al., 2017). Without the reversible relation problem (Dettmers et al., 2018), WN18RR
includes 11 relations scraped from WordNet for 40, 943 synsets. FB15k-237 is a subset of
Freebase, and contains 14, 541 entities associated with 237 types of edge. NELL-995 is
constructed from the 995th iteration of NELL system, containing 75, 492 entities and 200
types of edge.
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Table 3: Experimental results on WN18RR, FB15K-237 and NELL-995 test sets. Hits@N
values are in percentage. The best score is in bold and second best score is underlined.

Dataset WN18RR FB15K-237 NELL-995
Hit@N % Hit@N % Hit@N %

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.444 41.2 47 50.4 0.281 19.9 30.1 44.6 0.485 40.1 52.4 61
ComplEx 0.449 40.9 46.9 53 0.278 19.4 29.7 45 0.482 39.9 52.8 60.6
ConvE 0.456 41.9 47 53.1 0.312 22.5 34.1 49.7 0.491 40.3 53.1 61.3
TransE 0.243 42.7 44.1 53.2 0.279 19.8 37.6 44.1 0.401 34.4 47.2 50.1
ConvKB 0.265 58.2 44.5 55.8 0.289 19.8 32.4 47.1 0.43 37.0 47 54.5
R-GCN 0.123 8 13.7 20.7 0.164 10 18.1 30 0.12 8.2 12.6 18.8
KBGAT 0.436 35.8 48.1 57.8 0.431 36.1 45.8 56.9 0.514 42.9 55.3 67.8

EIGNN 0.438 35.7 48.8 58.1 0.451 37.4 48.2 60.5 0.523 43.8 56.1 68.3

A critical issue of applying Eq. (3) to KGs is that high-dimensional embedding vectors are
required to distinguish massive amount of entities and relations, leading to a rapid growth in
number of parameters in EIGNN. To address this issue, we adopt the architecture of (Nathani
et al., 2019) and learn graph attention based embeddings that target relation prediction on
KGs as follows,

mvw = f(h(l)v , elvw, h
(l)
w ), αl

vw = softmax(alml
vw), h

(l+1)
v = σ

(∑
w∈Nv

αl
vwm

l
vw

)
. (12)

Compared with Eq. (3), where mvw = f(evw)hw, the above equation absorbs the transform
matrix f(evw) into f(h(l)v , evw, h

(l)
w ) and reduces the model parameters. In the following

experiments, we implement f using a MLP as in previous experiments, and maximizes the MI
between evw and mvw by introducing another MLP with λ = 0.01. Multi-head attention is
further introduced to stabilize the learning process and encapsulate more information about
neighbors according to (Veličković et al., 2018). After training EIGNN, ConvKB (Nguyen
et al., 2018) is adopted as a regression function for a given triple by analyzing the global
embedding properties across each dimension.

In the relation prediction task, the aim is to predict a triple (v, evw, w) with v or w missing.
We can generate a set of candidate triples for each missing entity v by randomly replacing
it with an arbitrary one. Scores can be calculated by ConvKB for all triples, and we find
the rank of a correct triple by sorting all scores in ascending order. Thus, the performance
of relation prediction task can be evaluated by mean reciprocal rank (MRR) and the
proportion of correct entities in the top N ranks (Hits@N) for N = 1, 3, and 10 (Bordes
et al., 2013). We compare our EIGNN with seven state-of-the-art baselines focusing on this
task: DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al.,
2018), TransE (Bordes et al., 2013), ConvKB (Nguyen et al., 2018), RGCN (Schlichtkrull
et al., 2018) and KBGAT (Nathani et al., 2019). As shown in Table 3, our EIGNN achieves
the best performance for each metric on FB15K-237 and NELL-995, and achieves the best
performance on WN18RR with Hit@3 and 10 metrics. The results of KBGAT are reproduced
following the official implementation1, and the results of other methods can be found in the
previous peer-reviewed publications, i.e. (Nathani et al., 2019).

5 Conclusions

In this work, to make better use of edge features in GNNs, we proposed the edge information
maximized graph neural network (EIGNN) that maximizes the mutual information between
edge feature vectors and message passing channels. We reformulated the mutual information
as a differentiable objective by adopting a variational approach. We have theoretically proved
that our proposed objective enables EIGNN to preserve edge information and empirically
evaluated EIGNN’s performance on a variety of benchmarks incorporating an array of
challenging molecular datasets and knowledge graphs. These results clearly manifested a
substantial improvement of EIGNN over the prior state-of-the-art methods. Apart from
demonstrating the impressive performance of EIGNN, we also showed that its effectiveness is
due to exploitation of edge features instead of the regularization effect. Notably, attribution
analysis on molecular graphs show that EIGNN can capture domain knowledge in an
end-to-end fashion.

1https://github.com/deepakn97/relationPrediction
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A Full Results on QM9

In this section, we present full results of quantum property regressions on QM9 with average
performance and standard deviation.

Table 4: Full results of quantum property regressions for 12 targets and overall performance
(nMAE and MAE in top two raws) on QM9. We repeat all experiments 3 times with
different random seeds and report the average performance and standard deviation. This is
a supplement for Table 1. in the main text.

Method GCN ChebyNet GAT GIN

Avg. nMAE 0.1350±0.0046 0.1206±0.0084 0.1367±0.0050 0.1001±0.0007
Avg. MAE 5.3063±0.1964 4.3032±0.4814 5.4698±0.2040 3.4799±0.0402

mu 0.5679±0.0078 0.5180±0.0131 0.5670±0.0102 0.4783±0.0041
alpha 0.8811±0.0308 0.7932±0.0778 0.8913±0.0314 0.6209±0.0028
HUMO(10−3) 5.4510±0.0790 4.7750±0.2040 5.4290±0.1660 4.1830±0.0370
LUMO(10−3) 6.4000±0.1230 5.6740±0.2670 6.3310±0.2390 4.7960±0.0520
gap(10−3) 8.2010±0.2150 7.0970±0.3620 8.1930±0.2910 6.0960±0.0420
R2 53.563±1.0319 41.950±4.8289 54.519±1.5992 34.647±0.2167
ZPVE(10−3) 2.5330±0.1070 2.5270±0.3560 2.2710±0.1450 1.7440±0.0100
U0 2.0422±0.3281 1.9842±0.2035 2.2899±0.2000 1.4215±0.0857
U 2.0422±0.3281 1.9842±0.2035 2.2899±0.2000 1.4215±0.0857
H 2.0422±0.3281 1.9842±0.2035 2.2899±0.2000 1.4215±0.0857
G 2.0423±0.3281 1.9842±0.2036 2.2899±0.2000 1.4215±0.0857
Cv 0.4730±0.0209 0.4199±0.0499 0.4787±0.0164 0.3093±0.0035

Method RGCN GGNN LNet sMPNN

Avg. nMAE 0.1021±0.0016 0.0992±0.0013 0.0992±0.0061 0.0888±0.0014
Avg. MAE 3.8175±0.0605 3.6608±0.0723 3.6527±0.3417 3.1610±0.0697

mu 0.5056±0.0048 0.5179±0.0076 0.4717±0.0063 0.4718±0.0096
alpha 0.6321±0.0145 0.6077±0.0092 0.6225±0.0508 0.5278±0.0106
HUMO(10−3) 4.4530±0.1290 4.4830±0.0650 3.8889±0.1617 3.8540±0.0410
LUMO(10−3) 5.1380±0.1210 5.1530±0.0890 4.1935±0.2205 4.5490±0.0810
gap(10−3) 6.5000±0.1390 6.6020±0.1400 5.8132±0.6456 5.6340±0.0570
R2 40.102±0.7428 39.685±0.8212 35.275±3.0531 33.489±0.6562
ZPVE(10−3) 1.4770±0.0090 1.2920±0.0340 1.4376±0.0769 1.3450±0.0260
U0 1.0589±0.0231 0.6969±0.0413 1.8058±0.2533 0.7914±0.0446
U 1.0589±0.0231 0.6966±0.0418 1.7555±0.2196 0.7914±0.0446
H 1.0589±0.0231 0.6974±0.0408 1.7964±0.2428 0.7914±0.0446
G 1.0589±0.0231 0.6961±0.0421 1.7780±0.2458 0.7914±0.0446
Cv 0.3170±0.0152 0.3146±0.0125 0.3124±0.0303 0.2625±0.0040

Method MPNN EIGNN

Avg. nMAE 0.0398±0.0002 0.0357±0.0005
Avg. MAE 0.6929±0.0212 0.6331±0.0298

mu 0.1095±0.0014 0.0974±0.0026
alpha 0.3318±0.0026 0.2939±0.0054
HUMO(10−3) 2.4810±0.0200 2.2300±0.0310
LUMO(10−3) 2.8620±0.0370 2.5930±0.0440
gap(10−3) 3.6200±0.0180 3.2750±0.0520
R2 6.0637±0.2511 5.6464±0.3098
ZPVE(10−3) 0.6790±0.0140 0.6120±0.0170
U0 0.4164±0.0225 0.3574±0.0100
U 0.4164±0.0225 0.3575±0.0100
H 0.4164±0.0225 0.3574±0.0100
G 0.4164±0.0225 0.3575±0.0101
Cv 0.1339±0.0013 0.1208±0.0027

B Full Results on Lipophilicity, ESOL and FreeSolv

In this section, we present experimental results on Lipophilicity, ESOL and FreeSolv with
detailed results for each run. The results in Table 5 verify that our EIGNN consistently
outperform MPNN.
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Table 5: Testing RMSE on Lipophilicity, ESOL and FreeSolv. This is a supplement for
Table 2 in the main text.

Dataset Lipophilicity ESOL FreeSolv

Seed MPNN EIGNN MPNN EIGNN MPNN EIGNN
0 0.718 0.676 0.770 0.718 1.396 1.109
1 0.696 0.664 0.750 0.733 1.299 1.265
2 0.620 0.619 0.894 0.876 1.499 1.443

mean±std 0.678±0.042 0.653±0.025 0.805±0.064 0.776±0.071 1.398±0.081 1.273±0.137

(a)

(b)

(c)

(d)

Figure 3: More examples of attribution analysis. The color indicates the impact of an
edge/atom on the output, i.e., the regression result. EIGNN i) increases the edge attribu-
tion, ii) reduces the prediction error and iii) can learn domain knowledge without human
interference.

C More Examples of Attribution

In this section, we present more examples of attribution analysis on Lipophilicity. As a
supplement for Fig. 2 in the main text, the observation here is similar. Compared with
MPNN, we can observe an increasing of overall edge attribution under our EIGNN and a
decreasing of prediction error in both cases. Notably, our EIGNN is able to capture the ex-
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pert knowledge. (a) The molecule is CN [C@@H](C)C(= O)N [C@@H](C1CCCCC1)C(=
O)N [C@H]2CCCN(CCc3ccc(F )cc3)C2. The attribution of {O, N} and the halogen
atom F is higher under EIGNN. (b) The molecule is CC(C)N1CCN [C@H](C1)C(=
O)N2CCN(CC2)C(= O)Nc3ccc(Cl)c(Cl)c3. Our EIGNN successfully captures the im-
portance of two critical halogen atoms Cl and several atoms N. (c) The molecule is
COc1ccc(cc1)C(= O)N2CCCC2 = O. The attribution of two atoms O at the top is
much higher under EIGNN. (d) The molecule is Cc1cc2NC(= O)C(= CC(= O)c2cc1C)O.
The attribution of atoms O is much higher under EIGNN.
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