
Under review as a conference paper at ICLR 2020

META-LEARNING CURIOSITY ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration is a key component of successful reinforcement learning, but opti-
mal approaches are computationally intractable, so researchers have focused on
hand-designing mechanisms based on exploration bonuses and intrinsic reward,
some inspired by curious behavior in natural systems. In this work, we propose a
strategy for encoding curiosity algorithms as programs in a domain-specific lan-
guage and searching, during a meta-learning phase, for algorithms that enable RL
agents to perform well in new domains. Our rich language of programs, which can
combine neural networks with other building blocks including nearest-neighbor
modules and can choose its own loss functions, enables the expression of highly
generalizable programs that perform well in domains as disparate as grid nav-
igation with image input, acrobot, lunar lander, ant and hopper. To make this
approach feasible, we develop several pruning techniques, including learning to
predict a program’s success based on its syntactic properties. We demonstrate the
effectiveness of the approach empirically, finding curiosity strategies that are sim-
ilar to those in published literature, as well as novel strategies that are competitive
with them and generalize well.

1 INTRODUCTION

Figure 1: Our RL agent is augmented with a cu-
riosity module, obtained by meta-learning over a
complex space of programs, which computes a
pseudo-reward r̂ at every time step.

When an agent is learning to behave online,
via reinforcement learning (RL), it is critical
that it both explores its domain and exploits
its rewards effectively. In very simple prob-
lems, it is possible to solve the problem opti-
mally, using techniques of Bayesian decision
theory (Ghavamzadeh et al., 2015). However,
these techniques do not scale at all well and are
not effectively applicable to the problems ad-
dressable by modern deep RL, with large state
and action spaces and sparse rewards. This dif-
ficulty has left researchers the task of designing
good exploration strategies for RL systems in
complex environments.

One way to think of this problem is in terms
of curiosity or intrisic motivation: constructing
reward signals that augment or even replace the
extrinsic reward from the domain, which induce
the RL agent to explore their domain in a way
that results in effective longer-term learning and behavior (Pathak et al., 2017; Burda et al., 2018;
Oudeyer, 2018). The primary difficulty with this approach is that researchers are hand-designing
these strategies: it is difficult for humans to systematically consider the space of strategies or to
tailor strategies for the distribution of environments an agent might be expected to face.

We take inspiration from the curious behavior observed in young humans and other animals and hy-
pothesize that curiosity is a mechanism found by evolution that encourages meaningful exploration
early in agent’s life in order to expose it to experiences that enable it to learn to obtain high rewards
over the course of its lifetime.

1

Under review as a conference paper at ICLR 2020

We propose to formulate the problem of generating curious behavior as one of meta-learning: an
outer loop, operating at “evolutionary” scale will search over a space of algorithms for generating
curious behavior by dynamically adapting the agent’s reward signal, and the inner loop will perform
standard reinforcement learning using the adapted reward signal. This process is illustrated in fig-
ure 1; note that the aggregate agent, outlined in gray, has the standard interface of an RL agent. The
inner RL algorithm is continually adapting to its input stream of states and rewards, attempting to
learn a policy that optimizes the discounted sum of proxy rewards

∑
k≥0 γ

kr̂t+k. The outer “evolu-
tionary” search is attempting to find a program for the curiosity module, so to optimize the agent’s
lifetime return

∑T
t=0 rt, or another global objective like the mean performance on the last few trials.

Although it is, in principle, possible to discover a complete, integrated algorithm for the entire
curious learning agent in the gray box, that is a much more complex search problem that is currently
computationally infeasible. We are relying on the assumption that the foundational methods for
reinforcement learning, including those based on temporal differencing and policy gradient, are
fundamentally sound and can serve as the behavior-learning basis for our agents. It is important
to note, though, that the internal RL algorithm in our architecture must be able to tolerate a non-
stationary reward signal, which may necessitate minor algorithmic changes or, at least, different
hyperparameter values.

In this meta-learning setting, our objective is to find a curiosity module that works well given a
distribution of environments from which we can sample at meta-learning time. If the environment
distribution is relatively low-variance (the tasks are all quite similar) then it might suffice to search
over a relatively simple space of curiosity strategies (most trivially, the ε in an ε-greedy exploration
strategy). Meta-RL has been widely explored recently, in some cases with a focus on reducing the
amount of experience needed by initializing the RL algorithm well (Finn et al., 2017; Clavera et al.,
2019) and, in others, for efficient exploration (Duan et al., 2016; Wang et al., 2017). The environment
distributions in these cases have still been relatively low-diversity, mostly limited to variations of
the same task, such as exploring different mazes or navigating terrains of different slopes. We
would like to discover curiosity mechanisms that can generalize across a much broader distribution
of environments, even those with different state and action spaces: from image-based games, to
joint-based robotic control tasks. To do that, we perform meta-learning in a rich, combinatorial,
open-ended space of programs.

This paper makes three novel contributions.
We focus on a regime of meta-reinforcement-learning in which the possible environments the
agent might face are dramatically disparate and in which the agent’s lifetime is very long.
This is a substantially different setting than has been addressed in previous work on meta-RL and it
requires substantially different techniques for representation and search.
We represent meta-learned curiosity strategies in a rich, combinatorial space of programs
rather than in a fixed-dimensional numeric parameter space. The programs are represented
in a domain-specific language (DSL) which includes sophisticated building blocks including neu-
ral networks complete with gradient-descent mechanisms, learned objective functions, ensembles,
buffers, and other regressors. This language is rich enough to represent many previously reported
hand-designed exploration algorithms. We believe that by performing meta-RL in such a rich space
of mechanisms, we will be able to discover highly general, fundamental curiosity-based exploration
methods. This generality means that a relatively computationally expensive meta-learning process
can be amortized over the lifetimes of many agents in a wide variety of environments.
We make the search over programs feasible with relatively modest amounts of computation.
It is a daunting search problem to find a good solution in a combinatorial space of programs, where
evaluating a single potential solution requires running an RL algorithm for up to millions of time
steps. We address this problem in multiple ways. By including environments of substantially dif-
ferent difficulty and character, we can evaluate candidate programs first on relatively simple and
short-horizon domains: if they don’t perform well in those domains, they are pruned early, which
saves a significant amount of computation time. In addition, we predict the performance of an al-
gorithm from its structure and operations, thus trying the most promising algorithms early in our
search. Finally, we also monitor the learning curve of agents and stop unpromising programs before
they reach all T environment steps.

We demonstrate the effectiveness of the approach empirically, finding curiosity strategies that are
similar to those in published literature, as well as novel strategies that are competitive with them and
generalize well.

2

Under review as a conference paper at ICLR 2020

2 PROBLEM FORMULATION

2.1 META-LEARNING PROBLEM

Let us assume we have an agent equipped with an RL algorithm (such as DQN or PPO, with all
hyperparameters specified),A, which receives states and rewards from and outputs actions to an en-
vironment E , generating a stream of experienced transitions e(A; E)t = (st, at, rt, st+1). The agent
continually learns a policy π(t) : st → at, which will change in time as described by algorithm A;
so π(t) = A(e1:t−1) and thus at ∼ A(e1:t−1)(st). Although this need not be the case, we can think
of A as an algorithm that tries to maximize the discounted reward

∑
i γ

irt+i, γ < 1 and that, at any
time-step t, always takes the greedy action that maximizes its estimated expected discounted reward.

To add exploration to this policy, we include a curiosity module C that has access to the stream of
state transitions et experienced by the agent and that, at every time-step t, outputs a proxy reward
r̂t. We connect this module so that the original RL agent receives these modified rewards, thus
observing e(A, C; E)t = (st, at, r̂t = C(e1:t−1), st+1), without having access to the original rt.
Now, even though the inner RL algorithm acts in a purely exploitative manner with respect to r̂, it
may efficiently explore in the outer environment.

Our overall goal is to design a curiosity module C that induces the agent to maximize
∑T
t=0 rt, for

some number of total time-steps T or some other global goal, like final episode performance. In an
episodic problem, T will span many episodes. More formally, given a single environment E , RL
algorithm A, and curiosity module C, we can see the triplet (environment, curiosity module, agent)
as a dynamical system that induces state transitions for the environment, and learning updates for
the curiosity module and the agent. Our objective is to find C that maximizes the expected original
reward obtained by the composite system in the environment. Note that the expectation is over two
different distributions at different time scales: there is an “outer” expectation over environments E ,
and in “inner” expectation over the rewards received by the composite system in that environment,
so our final objective is:

max
C

[
EE

[
Ert∼e(A,C;E)

[
T∑
t=0

rt

]]]
.

2.2 PROGRAMS FOR CURIOSITY

In science and computing, mathematical language has been very successful in describing varied
phenomena and powerful algorithms with short descriptions. As Valiant points out: “the power
[of mathematics and algorithms] comes from the implied generality, that knowledge of one equation
alone will allow one to make accurate predictions about a host of situations not even conceived when
the equation was first written down” (Valiant, 2013). Therefore, in order to obtain curiosity modules
that can generalize over a very broad range of tasks and that are sophisticated enough to provide
exploration guidance over very long horizons, we describe them in terms of general programs in a
domain-specific language. Algorithms in this language will map a history of (st+1, at, rt) triples
into a proxy reward r̂t.

Inspired by human-designed systems that compute and use intrinsic rewards, and to simplify the
search, we decompose the curiosity module into two components: the first, I , outputs an intrin-
sic reward value it based on the current experienced transition (st, at, st+1) (and past transitions
(s1:t−1, a1:t−1) indirectly through its memory); the second, χ, takes the current time-step t, the
actual reward rt, and the intrinsic reward it (and, if it chooses to store them, their histories) and
combines them to yield the proxy reward r̂t. To ease generalization across different timescales, in
practice, before feeding t into χ we normalize it by the total length of the agent’s lifetime, T .

We draw both programs from the same basic class. Fundamentally, they consist of a directed acyclic
graph (DAG) of modules with polymorphically typed inputs and outputs. There are four classes of
modules:

• Input modules (shown in blue), drawn from the set {st, at, st+1} for the I module and
from the set {it, rt} for the χ module. They have no inputs, and their outputs have the type
corresponding to the types of states and actions in whatever domain they are applied to, or
the reals numbers for rewards.

3

Under review as a conference paper at ICLR 2020

Figure 2: Example diagrams of published algorithms covered by our language (larger figures in the
appendix). The green box represents the output of the intrinsic curiosity function, the pink box is
the loss to be minimized. Pink arcs represent paths and networks along which gradients flow back
from the minimizer to update parameters.

• Buffer and parameter modules (shown in gray) of two kinds: FIFO queues that provide
as output a finite list of the k most recent inputs, and neural network weights initialized at
random at the start of the program and which may (pink border) or may not get updated via
back-propagation depending on the computation graph.

• Functional modules (shown in white), which compute output values given input from their
parent modules.

• Update modules (shown in pink), which are functional modules (such as k-Nearest-
Neighbor) that either add variables to buffers or modules which add real-valued outputs
to a global loss that will provide error signals for gradient descent.

A single node in the DAG is designated as the output node (shown in green): the output of this node
is considered to be the output of the entire program, but it need not be a leaf node of the DAG.

On each call to a program (corresponding to one time-step of the system) the current input values
and parameter values are propagated through the functional modules, and the output node’s output
is saved, to be yielded as the output of the whole program. Before the call terminates, the FIFO
buffers are updated and the adjustable parameters are updated via gradient descent using the Adam
optimizer Kingma & Ba (2014). Most operations are differentiable and thus able to propagate gra-
dient backwards. Some operations are not differentiable such as buffers (to avoid backpropagating
through time) and ”Detach” whose purpose is stopping the gradient from flowing back. In practice,
we have multiple copies of the same agent running at the same time, with both a shared policy and
shared curiosity module. Thus, we execute multiple reward predictions on a batch and then update
on a batch.

A crucial, and possibly somewhat counter-intuitive, aspect of these programs is their use of neural
network weight updates via gradient descent as a form of memory. In the parameter update step,
all adjustable parameters are decremented by the gradient of the sum of the outputs of the loss
modules, with respect to the parameters. This type of update allows the program to, for example,
learn to make some types of predictions, online, and use the quality of those predictions in a state
to modulate the proxy reward for visiting that state (as is done, for example, in random network
distillation (RND) (Burda et al., 2018)).

Programs representing several published designs for curiosity modules that perform internal gradient
descent, including inverse features (Pathak et al., 2017), RND (Burda et al., 2018), and ensemble
predictive variance (Pathak et al., 2019), are shown in figure 2 (and bigger versions can be found
in appendix A.3). We can also represent algorithms similar to novelty search (Lehman & Stanley,

4

Under review as a conference paper at ICLR 2020

2008) and EX2 (Fu et al., 2017), which include buffers and nearest neighbor regression modules.
Details on the data types and module library are given in appendix A.

Key to our program search are polymorphic data types: the inputs and outputs to each module are
typed, but the instantiation of some types, and thus of some operations, depends on the environment.
We have the four types: reals R, state space of the given environment S, action space of the given
environment A and feature space F, used for intermediate computations and always set to R32 in our
current implementation. For example, a neural network module going from S to F will be instanti-
ated as a convolutional neural network if S is an image and as a fully connected neural network of the
appropriate dimension if S is a vector. Similarly, if we are measuring an error in action space A we
use mean-squared error for continuous action spaces and negative log-likelihood for discrete action
spaces. This facility means that the same curiosity program can be applied, independent of whether
states are represented as images or vectors, or whether the actions are discrete or continuous, or the
dimensionality of either.

This type of abstraction enables our meta-learning approach to discover curiosity modules that gen-
eralize radically, applying not just to new tasks, but to tasks with substantially different input and
output spaces than the tasks they were trained on.

To clarify the semantics of these programs, we walk through the operation of the RND program in
figure 2. Its only input is st+1, which might be an image or an input vector, which is processed
by two NNs with parameters Θ1 and Θ2, respectively. The structure of the NNs (and, hence, the
dimensions of the Θi) depends on the type of st+1: if st+1 is an image, then they are CNNs,
otherwise a fully connected networks. Each NN outputs a 32-dimensional vector; the L2 distance
between these vectors is the output of the program on this iteration, and is also the input to a loss
module. So, given an input st+1, the output intrinsic reward is large if the two NNs generate different
outputs and small otherwise. After each forward pass, the weights in Θ2 are updated to minimize the
loss while Θ1 remains constant, which causes the trainable NN to mimic the output of the randomly
initialized NN. As the program’s ability to predict the output of the randomized NN on an input
improves, the intrinsic reward for visiting that state decreases, driving the agent to visit new states.

To limit the search space and prioritize short, meaningful programs we limit the total number of
modules of the computation graph to 7. Our language is expressive enough to describe many (but far
from all) curiosity mechanisms in the existing literature, as well as many other potential alternatives,
but the expressiveness leads to a very large search space. Additionally, removing or adding a single
operation can drastically change the behavior of a program, making the objective function non-
smooth and, therefore, the space hard to search. In the next section we explore strategies for speeding
up the search over tens of thousands of programs.

3 IMPROVING THE EFFICIENCY OF OUR SEARCH

We wish to find curiosity programs that work effectively in a wide range of environments, from
simple to complex. However, evaluating tens of thousands of programs in the most expensive en-
vironments would consume decades of GPU computation. Therefore, we have designed multiple
strategies for quickly discarding less promising programs and focusing more computation on a few
promising programs. In doing so, we take inspiration from efforts in the AutoML community (Hutter
et al., 2018).

We divide these pruning efforts into three categories: simple tests that are independent of running
the program in any environment, “filtering” by ruling out some programs based on poor performance
in simple environments, and “meta-meta-RL” learning to predict which programs will perfrom well
based on syntactic features.

3.1 PRUNING INVALID ALGORITHMS WITHOUT RUNNING THEM

Many programs are obviously bad curiosity programs. We have developed two heuristics to imme-
diately prune these programs without an expensive evaluation.

• Checking that programs are not duplicates. Since our language is highly expressive, there
are many non-obvious ways of getting equivalent programs. To find duplicates, we de-
signed a randomized test where we identically seed two programs, feed them both identical

5

Under review as a conference paper at ICLR 2020

fake environment data for tens of steps and check whether their outputs are identical. This
test may, with low probability, prune a program that is not an exact duplicate, but since
there is a very near neighbor under consideration, it is not very harmful to do so.

• Checking that the loss functions cannot be minimized independently of the input data.
Many programs optimize some loss depending on neural network regressors. If we treat
inputs as uncontrollable variables and networks as having the ability to become any pos-
sible function, then for every variable, we can determine whether neural networks can be
optimized to minimize it, independently of the input data. For example, if our loss function
is |NNθ(s)|2 the neural network can learn to make it 0 by disregarding s and optimizing
the weights θ to 0. We discard any program that has this property.

3.2 PRUNING ALGORITHMS IN CHEAP ENVIRONMENTS

Our ultimate goal is to find algorithms that perform well on many different environments, both
simple and complex. We make two key observations. First, there may be only tens of reasonable
programs that perform well on all environments but hundreds of thousands of programs that per-
form poorly. Second, there are some environments that are solvable in a few hundred steps while
others require tens of millions. Therefore, a key idea in our search is to try many programs in cheap
environments and only a few promising candidates in the most expensive environments. This was
inspired by the effective use of sequential halving (Karnin et al., 2013) in hyper-parameter optimiza-
tion (Jamieson & Talwalkar, 2016).

By pruning programs aggressively, we may be losing multiple programs that perform well on com-
plex environments. However, by definition, these programs will tend to be less general and robust
than those that succeed in all environments. Moreover, we seek generalization not only for its own
sake, but also to ease the search since, even if we only cared about the most expensive environment,
performing the complete search only in this environment would be impractical.

3.3 PREDICTING ALGORITHM PERFORMANCE

Perhaps surprisingly, we find that we can predict program performance directly from program struc-
ture. Our search process bootstraps an initial training set of (program structure, program perfor-
mance) pairs, then uses this training set to select the most promising next programs to evaluate. We
encode each program’s structure with features representing how many times each operation is used
as well as the number of times a pair of operations are neighbors in the computation graph and feed
this data to a k-nearest-neighbor regressor. We then try the most promising programs and update the
regressor with their results. Finally, we add an ε-greedy exploration policy to make sure we explore
all the search space.

We can also prune algorithms during the training process of the RL agent. In particular, at any
point during the meta-search, we use the top K current best programs as benchmarks for all T time-
steps. Then, during the training of a new candidate program we compare its current performance at
time t with the performance at time t of the top K programs and stop the run if its performance is
significantly lower. If the program is not pruned and reaches the final time-step T with one of the
top K performances, it becomes part of the benchmark for the future programs.

4 EXPERIMENTS

Our RL agent uses PPO (Schulman et al., 2017) based on the implementation by Kostrikov (2018) in
PyTorch (Paszke et al., 2017). Our code (which will be publicly released during the rebuttal period)
is meant to take in any OpenAI gym environment (Brockman et al., 2016) with a specification of the
desired exploration horizon T .

We evaluate each curiosity algorithm for multiple trials, using a seed dependent on the trial but
independent of the algorithm, which leads to the PPO weights and curiosity data-structures being
initialized identically on the same trials for all algorithms. As is common in PPO, we run multiple
rollouts (5, except for MuJoCo which only has 1), with independent experiences but shared policy
and curiosity modules. Curiosity predictions and updates are batched across these rollouts, but not
across time. PPO policy updates are batched both across rollouts and multiple timesteps.

6

Under review as a conference paper at ICLR 2020

4.1 FIRST SEARCH PHASE IN SIMPLE ENVIRONMENT

We start by searching for a good intrinsic curiosity program I in a purely exploratory environment,
designed by Chevalier-Boisvert et al. (2018), which is an image-based grid world where agents
navigate in an image of a 2D room either by moving forward in the pixel grid or rotating left or
right. We optimize the total number of distinct pixels visited across the agent’s lifetime. This allows
us to evaluate intrinsic reward programs in a fast and simple environment, without worrying about
combining it with external reward.

To bias towards simple, interpretable algorithms and keep the search space manageable, we search
for programs with at most 7 operations. We first discard duplicate and invalid programs, as described
in section 3.1, resulting in about 52,000 programs. We then randomly split the programs across 4
machines, each with 8 Nvidia Tesla K80 GPUs for 10 hours.

Each machine tries to find the highest-scoring 625 programs in its section of the search space and
prunes programs whose partial learning curve is statistically significantly lower than the current top
625 programs. To do so, after every episode of every trial, we check whether the mean performance
of the current program is below the mean performance (at that point during the trial) of the top
625 programs minus two standard deviations of their performance minus one standard deviation of
our estimate of the mean of the current program. In this way we account for both inter-program
variability among the top 625 programs and intra-program variability among multiple trials of the
same program.

Figure 3: Top program in the large phase 1 search.

We use a 10-nearest-neighbor regressor to pre-
dict program performance and choose the next
program to evaluate with an ε-greedy strategy,
choosing the best predicted program 90% of the
time and a random program 10% of the time.
By doing this, we try the most promising pro-
grams early in our search. This is important
for two reasons: first, we only try 26,000 pro-
grams, half of the whole search space, which
we estimated from earlier results (shown in fig-
ure 7 in the appendix) would be enough to get
88% of the top 1% of programs. Second, the
earlier we run our best programs, the higher
the bar for later programs, thus allowing us to
prune them earlier, further saving computation
time. Searching through this space took a total
of 13 GPU days. As shown in figure 8 in the
appendix, we find that most programs perform
relatively poorly, with a long tail of programs
that are statistically significantly better, comprising roughly 0.5% of the whole program space.

The highest scoring program (a few other programs have lower average performance but are sta-
tistically equivalent) is surprisingly simple and meaningful, comprised of only 5 operations, even
though the limit was 7. This program, which we will call Top, is shown in figure 3; it uses a single
neural network (a CNN or MLP depending on the type of state) to predict the action from st+1

and then compares its predictions based on st with its predictions based on st+1, generating high
intrinsic reward when the difference is large. The action prediction loss module either computes a
softmax followed by NLL loss or appends zeros to the action to match dimensions and applies MSE
loss, depending on the type of the action space. Note that this is not the same as rewarding taking a
different action in the previous time-step. To the best of our knowledge, the algorithm represented
by this program has not been proposed before, although its simplicity makes us think it may have.
The network predicting the action is learning to imitate the policy learned by the internal RL agent,
because the curiosity module does not have direct access to the RL agent’s internal state.

Many of the highest-scoring programs are small variations on Top, including versions that predict
the action from st instead of st+1. Of the top 16 programs, 13 are variants of Top and 3 are
variants of an interesting program that is more difficult to understand because it does a combination

7

Under review as a conference paper at ICLR 2020

Figure 4: On the right, a scatterplot of performance of top programs in grid world evaluated in
acrobot. On the left, a scatterplot of performance of top programs in grid world evaluated in lunar
lander. We can see that almost all intrinsic curiosity programs that had statistically significant perfor-
mance for grid world, do well on the other two environments. Both plots reflect mean performance
across all episodes in two trials for acrobot and lunar lander and five trials for grid world.

of random network distillation and state-transition prediction, with some weight sharing, shown in
figure 10 in the appendix.

4.2 TRANSFERRING TO NEW ENVIRONMENTS

Our reward combiner was developed in lunar lander (the simplest environment with meaningful ex-
trinsic reward) based on the best program among a preliminary set of 16,000 programs (which resem-
bled Random Network Distillation, its computation graph is shown in appendix E). Among a set of
2478 candidates (with 5 or less operations) the best reward combiner was r̂t = (1+it−t/T)·it+t/T ·rt

1+it
.

Notice that for 0 < it � 1 (usually the case) this is approximately r̂t = i2t + (1− t/T)it+ (t/T)rt,
which is a down-scaled version of intrinsic reward plus a linear interpolation that ranges from all
intrinsic reward at t = 0 to all extrinsic reward at t = T . In future work, we hope to co-adapt the
search for intrinsic reward programs and combiners as well as find multiple reward combiners.

Given the fixed reward combiner and the list of 2,000 selected programs found in the image-based
grid world, we evaluate the programs on both lunar lander and acrobot, in their discrete action
space versions. Notice that both environments have much longer horizons than the image-based
grid world (37,500 and 50,000 vs 2,500) and they have vector-based inputs, not image-based. The
results in figure 4 show good correlation between performance on grid world and on each of the new
environments. Especially interesting is that, for both environments, when intrinsic reward in grid
world is above 370 (the start of the statistically significant performances), performance on the other
two environments is also good in more than 90% of cases.

Finally, we evaluate the 16 best programs on grid world (most of which also did well on lunar
lander and acrobot) on two MuJoCo environments (Todorov et al., 2012): hopper and ant. These
environments have more than an order of magnitude longer exploration horizon than acrobot and
lunar lander, exploring for 500K time-steps, as well as continuous action-spaces instead of discrete.
We then compare the best 16 programs on grid world to four weak baselines (constant 0,-1,1 intrinsic
reward and Gaussian noise reward) and the three published algorithms expressible in our language
(shown in figure 2). We run two trials for each algorithm and pool all results in each category to get
a confidence interval for the mean of that category. All trials used the reward combiner found on
lunar lander. For both environments we find that the performance of our top programs is statistically

8

Under review as a conference paper at ICLR 2020

Class Ant Hopper
Baseline algorithms [-95.3, -39.9] [318.5, 525.0]

Meta-learned algorithms [+67.5, +80.0] [589.2, 650.6]
Published algorithms [+67.4, +98.8] [627.7, 692.6]

Table 1: Meta-learned algorithms perform significantly better than constant rewards and statistically
equivalently to published algorithms found by human researchers (see 2). The table shows the con-
fidence interval (one standard deviation) for the mean performance (across trials, across algorithms)
for each algorithm category. Performance is defined as mean episode reward for all episodes.

equivalent to published work and significantly better than the weak baselines, confirming that we
meta-learned good curiosity programs.

5 RELATED WORK

In some regards our work is similar to neural architecture search (NAS) (Stanley & Miikkulainen,
2002; Elsken et al., 2018; Pham et al., 2018; Zoph & Le, 2016) or hyperparameter optimization for
deep networks (Mendoza et al., 2016), which aim at finding the best neural network architecture
and hyper-parameters for a particular task. However, in contrast to most (but not all, see Zoph et al.
(2018)) NAS work, we want to generalize to many environments instead of just one. Moreover,
we search over programs, which include non-neural operations and data structures, rather than just
neural-network architectures, and decide what loss functions to use for training. Our work also
resembles work in the AutoML community (Hutter et al., 2018) that searches in a space of programs,
for example in the case of SAT solving (KhudaBukhsh et al., 2009) or auto-sklearn (Feurer et al.,
2015). Although we take inspiration from ideas in that community (Jamieson & Talwalkar, 2016;
Li et al., 2016), our algorithms also specify their own optimization objectives (vs being specified by
the user) which need to work well in syncrony with an expensive deep RL algorithm.

There has been work on meta-learning with genetic programming (Schmidhuber, 1987), searching
over mathematical operations within neural networks (Ramachandran et al., 2017; Gaier & Ha,
2019), searching over programs to solve games (Wilson et al., 2018; Kelly & Heywood, 2017;
Silver et al., 2019) and to optimize neural network weights (Bengio et al., 1995; Bello et al., 2017),
and neural networks that learn programs (Reed & De Freitas, 2015; Pierrot et al., 2019). In contrast,
our work uses neural networks as basic operations within larger algorithms. Finally, modular meta-
learning (Alet et al., 2018) trains the weights of small neural modules and transfers to new tasks
by searching for a good composition of modules using a relatively simple composition scheme; as
such, it can be seen as a (restricted) dual of our approach.

There has been much interesting work in designing intrinsic curiosity algorithms. We take
inspiration from many of them to design our domain-specific language. In particular, we rely on
the idea of using neural network training as an implicit memory, which scales well to millions
of time-steps, as well as buffers and nearest-neighbour regressors. As we showed in figure 2 we
can represent several prominent curiosity algorithms. We can also generate meaningful algorithms
similar to novelty search (Lehman & Stanley, 2008) and EX2 (Fu et al., 2017); which include
buffers and nearest neighbours. However, there are many exploration algorithm classes that we do
not cover, such as those focusing on generating goals (Srivastava et al., 2013; Kulkarni et al., 2016;
Florensa et al., 2018), learning progress (Oudeyer et al., 2007; Schmidhuber, 2008; Azar et al.,
2019), generating diverse skills (Eysenbach et al., 2018), stochastic neural networks (Florensa et al.,
2017; Fortunato et al., 2017), count-based exploration (Tang et al., 2017) or object-based curiosity
measures (Forestier & Oudeyer, 2016). Finally, part of our motivation stems from Taı̈ga et al. (2019)
showing that some bonus-based curiosity algorithms have trouble generalising to new environments.

Related work on parametric-based meta-RL and efforts to increase its generalization can be found
in appendix B. More relevant to our work, there have been research efforts on meta-learning explo-
ration policies. Duan et al. (2016); Wang et al. (2017) learn an LSTM that explores an environment
for one episode, retains its hidden state and is spawned in a second episode in the same environment;
by training the network to maximize the reward in the second episode alone it learns to explore ef-
ficiently in the first episode. Stadie et al. (2018) improves their exploration and that of and (Finn
et al., 2017) by considering the importance of sampling in RL policies. Gupta et al. (2018) combine

9

Under review as a conference paper at ICLR 2020

gradient-based meta-learning with a learned latent exploration space in which they add structured
noise for meaningful exploration. Closer to our formulation, Zheng et al. (2018) parametrize an in-
trinsic reward function which influences policy-gradient updates in a differentiable manner, allowing
them to backpropagate through a single step of the policy-gradient update to optimize the intrinsic
reward function for a single task. In contrast to all three of these methods, we search over algo-
rithms, which will allows us to generalize more broadly and to consider the effect of exploration on
up to 105 − 106 time-steps instead of the 102 − 103 of previous work. Finally, Chiang et al. (2019);
Faust et al. (2019) have a setting similar to ours where they modify reward functions over the entire
agent’s lifetime, but instead of searching over intrinsic curiosity algorithms they tune the parameters
of a hand-designed reward function.

6 CONCLUSIONS

In this work we show that programs are a powerful, succinct, representation for algorithms for
generating curious exploration, and these programs can be meta-learned efficiently via active search.
Results from this work are two-fold. First, by construction, algorithms resulting from this search will
have broad generalization and will thus be a useful default for RL settings, where reliability is key.
Second, the algorithm search code will be open-sourced to facilitate further research on exploration
algorithms based on new ideas or building blocks, which can be added to the search. In addition,
we note that the approach of meta-learning programs instead of network weights may have further
applications beyond finding curiosity algorithms, such as meta-learning optimization algorithms or
even meta-learning meta-learning algorithms.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Ferran Alet, Tomas Lozano-Perez, and Leslie P. Kaelbling. Modular meta-learning. In Proceedings
of The 2nd Conference on Robot Learning, pp. 856–868, 2018.

Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo Avila Pires, Jean-Bastian Grill, Florent Altché,
and Rémi Munos. World discovery models. arXiv preprint arXiv:1902.07685, 2019.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 459–468. JMLR. org, 2017.

Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for anns.
Neural Processing Letters, 2(4):26–30, 1995.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2):2007–2014, 2019.

Ignasi Clavera, Anusha Nagabandi, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt: Meta-learning for model-based control. In International Conference on
Learning Representations, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377, 2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Aleksandra Faust, Anthony Francis, and Dar Mehta. Evolving rewards to automate reinforcement
learning. arXiv preprint arXiv:1905.07628, 2019.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems 28,
pp. 2962–2970. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf.

Chelsea Finn. Learning to Learn with Gradients. PhD thesis, EECS Department, University
of California, Berkeley, Aug 2018. URL http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2018/EECS-2018-105.html.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017.

11

https://github.com/maximecb/gym-minigrid
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html

Under review as a conference paper at ICLR 2020

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 1515–1528, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL
http://proceedings.mlr.press/v80/florensa18a.html.

Sébastien Forestier and Pierre-Yves Oudeyer. Modular active curiosity-driven discovery of tool
use. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
3965–3972. IEEE, 2016.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 2577–2587,
2017.

Adam Gaier and David Ha. Weight agnostic neural networks. arXiv preprint arXiv:1906.04358,
2019.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. Foundations and Trends in Machine Learning, 8(5–6), 2015.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. In Advances in Neural Information
Processing Systems, pp. 5302–5311, 2018.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning: Meth-
ods, Systems, Challenges. Springer, 2018. In press, available at http://automl.org/book.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial Intelligence and Statistics, pp. 240–248, 2016.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In International Conference on Machine Learning, pp. 1238–1246, 2013.

Stephen Kelly and Malcolm I Heywood. Multi-task learning in atari video games with emergent tan-
gled program graphs. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 195–202. ACM, 2017.

Ashiqur R KhudaBukhsh, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Satenstein: Auto-
matically building local search sat solvers from components. In Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In Advances in
neural information processing systems, pp. 3675–3683, 2016.

Joel Lehman and Kenneth O Stanley. Exploiting open-endedness to solve problems through the
search for novelty. In ALIFE, pp. 329–336, 2008.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. arXiv preprint
arXiv:1603.06560, 2016.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks. In Workshop on Automatic Machine Learning, pp.
58–65, 2016.

12

http://proceedings.mlr.press/v80/florensa18a.html
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Under review as a conference paper at ICLR 2020

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Pierre-Yves Oudeyer. Computational theories of curiosity-driven learning. arXiv preprint
arXiv:1802.10546, 2018.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Adam Paszke, Sam Gross, and Adam Lerer. Automatic differentiation in PyTorch. In International
Conference on Learning Representations, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
arXiv preprint arXiv:1906.04161, 2019.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Thomas Pierrot, Guillaume Ligner, Scott Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre,
David Kas, Karim Beguir, and Nando de Freitas. Learning compositional neural programs with
recursive tree search and planning. arXiv preprint arXiv:1905.12941, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Driven by compression progress: A simple principle explains essential aspects
of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science,
music, jokes. In Workshop on anticipatory behavior in adaptive learning systems, pp. 48–76.
Springer, 2008.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tom Silver, Kelsey R Allen, Alex K Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-shot
bayesian imitation learning with logic over programs. arXiv preprint arXiv:1904.06317, 2019.

Rupesh Kumar Srivastava, Bas R Steunebrink, and Jürgen Schmidhuber. First experiments with
powerplay. Neural Networks, 41:130–136, 2013.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

13

Under review as a conference paper at ICLR 2020

Adrien Ali Taı̈ga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Leslie Valiant. Probably Approximately Correct: NatureÕs Algorithms for Learning and Prospering
in a Complex World. Basic Books (AZ), 2013.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. arXiv preprint arXiv:1909.04607, 2019.

JX Wang, Z Kurth-Nelson, D Tirumala, H Soyer, JZ Leibo, R Munos, C Blundell, D Kumaran, and
M Botivnick. Learning to reinforcement learn. arxiv 1611.05763, 2017.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Dennis G Wilson, Sylvain Cussat-Blanc, Hervé Luga, and Julian F Miller. Evolving simple programs
for playing atari games. In Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 229–236. ACM, 2018.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in neural information processing systems, pp. 2396–2407, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Sergey Levine, and
Chelsea Finn. Meta-world: A benchmark and evaluation for multi-task and meta-reinforcement
learning, 2019. URL https://github.com/rlworkgroup/metaworld.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems, pp. 4644–4654, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

14

https://github.com/rlworkgroup/metaworld

Under review as a conference paper at ICLR 2020

A DETAILS OF OUR DOMAIN-SPECIFIC LANGUAGE FOR CURIOSITY
ALGORITHMS

We have the following types. Note that S and A get defined differently for every environment.

• R: real numbers such as rt or the dot-product between two vectors.
• R+: numbers guaranteed to be positive, such as the distance between two vectors. The

only difference to our program search between R and R+ is in pruning programs that
can optimize objectives without looking at the data. For R+ we check whether they can
optimize down to 0, for R we check whether they can optimize to arbitrarily negative
values.
• state space S: the environment state, such as a matrix of pixels or a vector with robot joint

values. The particular form of this type is adapted to each environment.
• action space A: either a 1-hot description of the action or the action itself. The particular

form of this type is adapted to each environment.
• feature-space F = R32: a space mostly useful to work with neural network embeddings.

For simplicity, we only have a single feature space.
• List[X]: for each type we may also have a list of elements of that type. All operations

that take a particular type as input can also be applied to lists of elements of that type by
mapping the function to every element in the list. Lists also support extra operations such
as average or variance.

A.1 CURIOSITY OPERATIONS

Operation Input type(s) State Output type
Add R, R R
RunningNorm R R R
VariableAsBuffer X List[X] List[X]
NearestNeighborRegressor F, F List[F] F
SubtractOneTenth R R
NormalDistribution R
Subtract R, R R
Sqrt(Abs(x)) R R+

NN F,F→ F F, F ΘF,F→F F
NN F,F→ A F, F ΘF,F→A A
NN F→ A F ΘF→A A
NN A→ F A ΘA→F F
(C)NN S ΘS→F F
(C)NN, Detach S ΘS→F F
(C)NNEnsemble S 5xΘS→F List[F]
NN Ensemble F→ F F 5xΘF→F List[F]
NN Ensemble F,F→ F F, F 5xΘF,F→F List[F]
NN Ensemble F,A→ F F, A 5xΘA,F→F List[F]
MinimizeValue R Adam
L2Norm X R+

L2Distance X, X R
ActionSpaceLoss X, A R+

DotProduct X, X R
Add X, X X
Detach X X
Mean List[R] R
Variance List[X] R+

Mean List[X] X
Mapped L2 Norm List[X] List[R]
Average Distance List[X], X R
Minus List[X], X List[X]

15

Under review as a conference paper at ICLR 2020

Note that X stands for the option of being F or A. NearestNeighborRegressor takes a query and a
target, automatically creates a buffer of the target (thus keeps a list as a state) and answers based on
the buffer. RunningNorm keeps track of the variance of the input and normalizes by that variance.

A.2 REWARD COMBINER OPERATIONS

Operation Input type(s) State Output type
Constant {0.01,0.1,0.5,1} R
NormalDistribution R
Add R, R R
Max R, R R
Min R, R R
WeightedNormalizedSum R, R, R, R R
RunningNorm R R R
VariableAsBuffer R List[R] List[R]
Subtract R, R R
Multiply R, R R
Sqrt(Abs(x)) R R+

Mean List[R] R

Note that WeightedNormalizedSum(a, b, c, d) = ab+cd
|a|+|c| . RunningNorm keeps track of the vari-

ance of the input and normalizes by that variance.

A.3 TWO OTHER PUBLISHED ALGORITHMS COVERED BY OUR DSL

Figure 5: Curiosity by predictive error on inverse features by Pathak et al. (2017). In pink, paths and
networks where gradients flow back from the minimizer.

16

Under review as a conference paper at ICLR 2020

Figure 6: Curiosity by ensemble predictive variance Pathak et al. (2019). In pink, paths and net-
works where gradients flow back from the minimizer.

B RELATED WORK ON META-RL AND GENERALIZATION

Most work on meta-RL has focused on learning transferable feature representations or parameter
values for quickly adapting to new tasks (Finn et al., 2017; Finn, 2018; Clavera et al., 2019) or im-
proving performance on a single task (Xu et al., 2018; Veeriah et al., 2019). However, the range of
variability between tasks is typically limited to variations of the same goal (such as moving at dif-
ferent speeds or to different locations) or generalizing to different environment variations (such as
different mazes or different terrain slopes). There have been some attempts to broaden the spectrum
of generalization, showing transfer between Atari games thanks to modularity (Fernando et al., 2017;
Rusu et al., 2016) or proper pretraining (Parisotto et al., 2015). However, as noted by Nichol et al.
(2018), Atari games are too different to get big gains with current feature-transfer methods; they
instead suggest using different levels of the game Sonic to benchmark generalization. Moreover, Yu
et al. (2019) recently proposed a benchmark of many tasks. Wang et al. (2019) automatically gen-
erate different terrains for a bipedal walker and transfer policies between terrains, showing that this
is more effective than learning a policy on hard terrains from scratch; similar to our suggestion in
section 3.2. In contrast to these methods, we aim at generalization between completely different
environments, even between environments that do not share the same state and action spaces.

17

Under review as a conference paper at ICLR 2020

C PREDICTING PROGRAM PERFORMANCE

Figure 7: Predicting program performance allows us to find the best programs faster. We investigate
the number of the top 1% of programs found vs. the number of programs evaluated, and observe
that the optimized search (in blue) finds 88% of the best programs after only evaluating 50% of the
programs (highlighted in green). The naive search order would have only found 50% of the best
programs at that point.

18

Under review as a conference paper at ICLR 2020

D PERFORMANCE ON GRID WORLD

Figure 8: In black, mean performance across 5 trials for all 26,000 programs evaluated (out of their
finished trials). In green mean plus one standard deviation for the mean estimate and in red one
minus one standard deviation for the mean estimate. On the right, you can see program means form
roughly a gaussian distribution of very big noise (thus probably not significant) with a very small
(between 0.5% and 1% of programs) long tail of programs with statistically significant performance
(their red dots are much higher than almost all green dots), composed of algorithms leading to good
exploration.

19

Under review as a conference paper at ICLR 2020

E INTERESTING PROGRAMS FOUND BY OUR SEARCH

Figure 9: Top variant in preliminary search on grid world; variant on random network distillation
using an ensemble of trained networks instead of a single one.

20

Under review as a conference paper at ICLR 2020

Figure 10: Good algorithm found by our search (3 of the top 16 programs on grid world are variants
of this program). On its left part it does random network distillation but does not use that error as
a reward. Instead it does an extra prediction based on the state transition on the right and compares
both predictions. Notice that, to make both predictions, the same F → F network was used to map
from the query to the target, thus sharing the weights between both predictions.

21

	Introduction
	Problem formulation
	Meta-learning problem
	Programs for curiosity

	Improving the efficiency of our search
	Pruning invalid algorithms without running them
	Pruning algorithms in cheap environments
	Predicting algorithm performance

	Experiments
	First search phase in simple environment
	Transferring to new environments

	Related work
	Conclusions
	Details of our domain-specific language for curiosity algorithms
	Curiosity operations
	Reward combiner operations
	Two other published algorithms covered by our DSL

	Related work on meta-RL and generalization
	Predicting program performance
	Performance on grid world
	Interesting programs found by our search

