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ABSTRACT

Recent studies have demonstrated the vulnerability of deep convolutional neural
networks against adversarial examples. Inspired by the observation that the in-
trinsic dimension of image data is much smaller than its pixel space dimension
and the vulnerability of neural networks grows with the input dimension, we pro-
pose to embed high-dimensional input images into a low-dimensional space to
perform classification. However, arbitrarily projecting the input images to a low-
dimensional space without regularization will not improve the robustness of deep
neural networks. We propose a new framework, Embedding Regularized Clas-
sifier (ER-Classifier), which improves the adversarial robustness of the classifier
through embedding regularization. Experimental results on several benchmark
datasets show that, our proposed framework achieves state-of-the-art performance
against strong adversarial attack methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been widely used for tackling numerous machine learning prob-
lems that were once believed to be challenging. With their remarkable ability of fitting training
data, DNNs have achieved revolutionary successes in many fields such as computer vision, natu-
ral language progressing, and robotics. However, they were shown to be vulnerable to adversarial
examples that are generated by adding carefully crafted perturbations to original images. The ad-
versarial perturbations can arbitrarily change the network’s prediction but often too small to affect
human recognition (Szegedy et al., 2013; Kurakin et al., 2016). This phenomenon brings out security
concerns for practical applications of deep learning.

Two main types of attack settings have been considered in recent research (Goodfellow et al.; Carlini
& Wagner, 2017a; Chen et al., 2017; Papernot et al., 2017): black-box and white-box settings. In
the black-box setting, the attacker can provide any inputs and receive the corresponding predictions.
However, the attacker cannot get access to the gradients or model parameters under this setting;
whereas in the white-box setting, the attacker is allowed to analytically compute the model’s gradi-
ents, and have full access to the model architecture and weights. In this paper, we focus on defending
against the white-box attack which is the harder task.

Recent work (Simon-Gabriel et al., 2018) presented both theoretical arguments and an empirical
one-to-one relationship between input dimension and adversarial vulnerability, showing that the
vulnerability of neural networks grows with the input dimension. Therefore, reducing the data di-
mension may help improve the robustness of neural networks. Furthermore, a consensus in the high-
dimensional data analysis community is that, a method working well on the high-dimensional data is
because the data is not really of high-dimension (Levina & Bickel, 2005). These high-dimensional
data, such as images, are actually embedded in a low dimensional space. Hence, carefully reducing
the input dimension may improve the robustness of the model without sacrificing performance.

Inspired by the observation that the intrinsic dimension of image data is actually much smaller than
its pixel space dimension (Levina & Bickel, 2005) and the vulnerability of a model grows with its
input dimension (Simon-Gabriel et al., 2018), we propose a defense framework that embeds input
images into a low-dimensional space using a deep encoder and performs classification based on
the latent embedding with a classifier network. However, an arbitrary projection does not guaran-
tee improving the robustness of the model, because there are a lot of mapping functions including
pathological ones from the raw input space to the low-dimensional space capable of minimizing
the classification loss. To constrain the mapping function, we employ distribution regularization in
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the embedding space leveraging optimal transport theory. We call our new classification framework
Embedding Regularized Classifier (ER-Classifier). To be more specific, we introduce a discrimina-
tor in the latent space which tries to separate the generated code vectors from the encoder network
and the ideal code vectors sampled from a prior distribution, i.e., a standard Gaussian distribution.
Employing a similar powerful competitive mechanism as demonstrated by Generative Adversarial
Networks (Goodfellow et al., 2014), the discriminator enforces the embedding space of the model
to follow the prior distribution.
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Figure 1: Overview of ER-Classifier framework

In our ER-Classifier framework, the
encoder and discriminator structures
together project the input data to
a low-dimensional space with a
nice shape, then the classifier per-
forms prediction based on the low-
dimensional embedding. Based on
the optimal transport theory, the pro-
posed ER-Classifier minimizes the
discrepancy between the distribution
of the true label and the distribu-
tion of the framework output, thus
only retaining important features for
classification in the embedding space.
With a small embedding dimension,
the effect of the adversarial perturbation is largely diminished through the projection process.

We compare ER-Classifier with other state-of-the-art defense methods on MNIST, CIFAR10, STL10
and Tiny Imagenet. Experimental results demonstrate that our proposed ER-Classifier outperforms
other methods by a large margin. To sum up, this paper makes the following three main contribu-
tions:

• A novel unified end-to-end robust deep neural network framework against adversarial at-
tacks is proposed, where the input image is first projected to a low-dimensional space and
then classified.

• An objective is induced to minimize the optimal transport cost between the true class dis-
tribution and the framework output distribution, guiding the encoder and discriminator to
project the input image to a low-dimensional space without losing important features for
classification.

• Extensive experiments demonstrate the robustness of our proposed ER-Classifier frame-
work under the white-box attacks, and show that ER-Classifier outperforms other state-of-
the-art approaches on several benchmark image datasets.

2 RELATED WORK

In this section, we summarize related work into three categories: attack methods, defense mecha-
nisms and optimal transport theory. We first discuss different white-box attack methods, followed
by a description of different defense mechanisms against, and finally optimal transport theory.

2.1 ATTACK METHODS

Under the white-box setting, attackers have all information about the targeted neural network, in-
cluding network structure and gradients. Most white-box attacks generate adversarial examples
based on the gradient of loss function with respect to the input. An algorithm called fast gradi-
ent sign method (FGSM) was proposed in (Goodfellow et al.) which generates adversarial ex-
amples based on the sign of gradient. Many other white-box attack methods have been proposed
recently (Moosavi-Dezfooli et al., 2016; Chen et al., 2018; Madry et al., 2017; Carlini & Wagner,
2017b), and among them C&W and PGD attacks have been widely used to test the robustness of
machine learning models.

C&W attack: The adversarial attack method proposed by Carlini and Wagner (Carlini & Wagner,
2017b) is one of the strongest white-box attack methods. They formulate the adversarial example
generating process as an optimization problem. The proposed objective function aims at increasing
the probability of the target class and minimizing the distance between the adversarial example
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and the original input image. Therefore, C&W attack can be viewed as a gradient-descent based
adversarial attack.

PGD attack: The projected gradient descent attack is proposed by (Madry et al., 2017), which
finds adversarial examples in an ε-ball of the image. The PGD attack updates in the direction that
decreases the probability of the original class most, then projects the result back to the ε-ball of the
input. An advantage of PGD attack over C&W attack is that it allows direct control of distortion level
by changing ε, while for C&W attack, one can only do so indirectly via hyper-parameter tuning.

Both C&W attack and PGD attack have been frequently used to benchmark the defense algorithms
due to their effectiveness (Athalye et al., 2018). In this paper, we mainly use l∞-PGD untargeted
attack to evaluate the effectiveness of the defense method under white-box setting.

Instead of crafting different adversarial perturbation for different input image, an algorithm was
proposed by (Moosavi-Dezfooli et al., 2017) to construct a universal perturbation that causes natural
images to be misclassified. However, since this universal perturbation is image-agnostic, it is usually
larger than the image-specific perturbation generated by PGD and C&W.

2.2 DEFENSE MECHANISMS

Many works have been done to improve the robustness of deep neural networks. To defend against
adversarial examples, defenses that aim to increase model robustness fall into three main categories:
i) augmenting the training data with adversarial examples to enhance the existing classifiers (Madry
et al., 2017; Na et al., 2017; Goodfellow et al.); ii) leveraging model-specific strategies to enforce
model properties such as smoothness (Papernot et al., 2016); and, iii) trying to remove adversarial
perturbations from the inputs (Xie et al., 2017; Samangouei et al., 2018; Meng & Chen, 2017). We
select three representative methods that are effective under white-box setting.

Adversarial training: Augmenting the training data with adversarial examples can increase the
robustness of the deep neural network. Madry et al. (Madry et al., 2017) recently introduced a min-
max formulation against adversarial attacks. The proposed model is not only trained on the original
dataset but also adversarial example in the ε-ball of each input image.

Random Self-Ensemble: Another effective defense method under white-box setting is RSE (Liu
et al., 2017). The authors proposed a “noise layer”, which fuses output of each layer with Gaussian
noise. They empirically show that the noise layer can help improve the robustness of deep neural
networks. The noise layer is applied in both training and testing phases, so the prediction accuracy
will not be largely affected.

Defense-GAN: Defense-GAN (Samangouei et al., 2018) leverages the expressive capability of
GANs to defend deep neural networks against adversarial examples. It is trained to project input
images onto the range of the GAN’s generator to remove the effect of the adversarial perturba-
tion. Another defense method that uses the generative model to filter out noise is MagNet proposed
by (Meng & Chen, 2017). However, the differences between ER-Classifier and the two methods
are obvious. ER-Classifier focuses on reducing the dimension, and performing classification based
on the low-dimensional embedding, while Defense-GAN and MagNet mainly apply the generative
model to filter out the adversarial noise, and both Defense-GAN and MagNet perform classifica-
tion on the original dimension space. (Samangouei et al., 2018) showed that Defense-GAN is more
robust than MagNet, so we only compare with Defense-GAN in the experiments.

2.3 OPTIMAL TRANSPORT THEORY

There are various ways to define the distance or divergence between the target distribution and the
model distribution. In this paper, we turn to the optimal transport theory (Villani, 2008), which
provides a much weaker topology than many others. In real applications, data is usually embedded
in a space of a much lower dimension, such as a non-linear manifold. Kullback-Leibler divergence,
Jensen-Shannon divergence and Total Variation distance are not sensible cost functions when learn-
ing distributions supported by lower dimensional manifolds (Arjovsky et al., 2017). In contrast, the
optimal transport cost is more sensible in this setting. Kantorovich’s distance induced by the optimal
transport problem is given by

Wc(PY , PC) := inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {c(Y,U)} ,
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whereP(Y ∼ PY , U ∼ PC) is the set of all joint distributions of (Y, U) with marginals PY and PC ,
and c(y, u) : U × U 7→ R+ is any measurable cost function. Wc(PY , PC) measures the divergence
between probability distributions PY and PC .

When the probability measures are on a metric space, the p-th root of Wc is called the p-Wasserstein
distance. Recently, Tolstikhin (Tolstikhin et al., 2017) introduced a new algorithm to build a genera-
tive model of the target data distribution based on the Wasserstein distance. The proposed generative
model can generate samples of better quality, as measured by the FID score1.

3 PROPOSED FRAMEWORK: EMBEDDING REGULARIZED CLASSIFIER

We propose a novel defense framework, ER-Classifier, which aims at projecting the image data
to a low-dimensional space to remove noise and stabilize the classification model by minimizing
the optimal transport cost between the true label distribution PY and the distribution of the ER-
Classifier output (PC). The encoder and discriminator structures together help diminish the effect
of the adversarial perturbation by projecting input data to a space of lower dimension, then the
classifier part performs classification based on the low-dimensional embedding.

Notations In this paper, we use l∞ and l2 distortion metrics to measure similarity. We report l∞
distance in the normalized [0, 1] space, so that a distortion of 0.031 corresponds to 8/256, and l2
distance as the total root-mean-square distortion normalized by the total number of pixels.

We use calligraphic letters for sets (i.e., X ), capital letters for random variables (i.e., X), and lower
case letters for their values (i.e., x). The probability distributions are denoted with capital letters
(i.e., PX ) and corresponding densities with lower case letters (i.e., pX ).

Images X ∈ X = Rd are projected to a low-dimensional embedding vector Z ∈ Z = Rk through
the encoder Qφ. The discriminator Dγ discriminates between the generated code Z̃ ∼ Qφ(Z|X)
and the ideal code Z ∼ PZ . The classifier Cτ performs classification based on the generated code
Z̃, producing output U ∈ U = Rm, where m is the number of classes. The label of X is denoted as
Y ∈ U . An overview of the framework is shown in Figure 1.

3.1 FRAMEWORK DETAILS

At training stage, the encoder Qφ first maps the input x to a low-dimensional space, resulting in gen-
erated code (z̃). Another ideal code (z) is sampled from the prior distribution, and the discriminator
Dγ discriminates between the ideal code (positive data) and the generated code (negative data). The
classifier (Cτ ) predicts the image label based on the generated code (z̃). Details of training process
can be found in Algorithm 1.

At inference time, only the encoder Qφ and the classifier Cτ are used. The input image x is first
mapped to a low-dimensional space by the encoder (z̃ = Qφ(x)), then the latent code z̃ is fed into
the classifier to obtain the predicted label.

The main goal of ER-Classifier is leveraging input space dimension reduction to remove adversarial
perturbations. Therefore, other defense methods can also benefit from this property. Our framework
is trained with min-max robust optimization (Madry et al., 2017).

3.2 THEORETICAL ANALYSIS

The ER-Classifier framework embeds important classification features by minimizing the discrep-
ancy between the distribution of the true label (PY ) and the distribution of the framework output
(PC). In the framework, the classifier (PC(U |Z)) maps a latent code Z sampled from a fixed dis-
tribution in a latent space Z , to the output U ∈ U = Rm. The density of ER-Classifier output is
defined as follow:

pC(u) :=

∫
Z
pC(u|z)pZ(z)dz, ∀u ∈ U . (1)

In this paper we apply standard Gaussian as our prior distribution PZ , but other priors may be used
for different cases. Assume there is an oracle f : X 7→ U assigning the image data (X ∈ X ) its

1Fréchet Inception Distance (FID), a method for measuring the quality of generated image samples.
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Algorithm 1 Training ER-Classifier
1: Input: Regularization coefficient λ > 0, encoder Qφ, discriminator Dγ , and classifier Cτ .
2: Note: ` stands for the cross-entropy loss.
3: while (φ, γ, τ) not converged do
4: Sample {(x1, y1), ..., (xn, yn)} from the training set
5: Sample {z1, ..., zn} from the prior PZ
6: Sample z̃i from Qφ(Z|xi) for i = 1, ..., n
7: Update Dγ by ascending the following objective by 1-step Adam:

λ

n

n∑
i=1

Dγ(zi)−Dγ(z̃i)

8: Update Qφ and Cτ by descending the following objective by 1-step Adam:

1

n

n∑
i=1

`(Cτ (Qφ(xi)), yi)

9: Update Qφ by ascending the following objective by 1-step Adam:

λ

n

n∑
i=1

Dγ(Qφ(xi))

10: end while

true label (Y ∈ U). To minimize the optimal transport cost between the distribution of the true
label (PY ) and the distribution of the ER-Classifier output (PC), it is sufficient to find a conditional
distribution Q(Z|X) such that its marginal distribution QZ is identical to the prior distribution PZ .

Theorem 1 For PC as defined above with a deterministic PC(U |Z) and any function C : Z 7→ U

inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {`(Y,U)}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {`(f(X),C(Z))} ,

where Γ ∈ P(Y ∼ PY , U ∼ PC) is the set of all joint distributions of (Y, U) with marginals
PY and PC , and `(y, u) : U × U 7→ R+ is any measurable cost function. QZ is the marginal
distribution of Z when X ∼ PX and Z ∼ Q(Z|X). (The proof is deferred to the Appendix. )

Therefore, optimizing over the objective on the r.h.s is equivalent to minimizing the discrepancy
between the true label distribution (PY ) and the output distribution PC , thus the important classi-
fication features are embedded in the low-dimensional space. This is the core idea of the paper,
summarizing the high-dimensional data in a space of much lower dimension without losing impor-
tant features for classification. To implement the r.h.s objective, the constraint on QZ can be relaxed
by adding a penalty term. The final objective of ER-Classifier is:

inf
Q(Z|X)∈Q

EPX
EQ(Z|X) {`(f(X),C(Z))}+ λD(QZ , PZ), (2)

whereQ is any nonparametric set of probabilistic encoders, λ > 0 is a hyper-parameter and D is an
arbitrary divergence between QZ and PZ .

To estimate the divergences between QZ and PZ , we apply a GAN-based framework, fitting a
discriminator to minimize the 1-Wasserstein distance between QZ and PZ :

W (QZ , PZ) = inf
Γ∈P(Z̃∼QZ ,Z∼PZ)

E(Z̃,Z)∼Γ‖Z̃ − Z‖.

We have also tried the Jensen-Shannon divergence, but as expected, Wasserstein distance provides
more stable training and better results. When training the framework, the weight clipping method
proposed in Wasserstein GAN (Arjovsky et al., 2017) is applied to help stabilize the training of
discriminator Dγ .
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Figure 2: Testing accuracy under l∞-PGD attack on four different datasets: MNIST, CIFAR10,
STL10 and Tiny Imagenet.

4 EXPERIMENTS

In this section, we compare the performance of our proposed algorithm (ER-Classifier) with other
state-of-the-art defense methods on several benchmark datasets:

• MNIST (LeCun, 1998): handwritten digit dataset, which consists of 60, 000 training im-
ages and 10, 000 testing images. Theses are 28×28 black and white images in ten different
classes.

• CIFAR10 (Krizhevsky & Hinton, 2009): natural image dataset, which contains 50, 000
training images and 10, 000 testing images in ten different classes. These are low resolution
32× 32 color images.

• STL10 (Coates et al., 2011): color image dataset similar to CIFAR10, but contains only
5, 000 training images and 8, 000 testing images in ten different classes. The images are of
higher resolution 96× 96.

• Tiny Imagenet (Deng et al., 2009): a subset of Imagenet dataset. Tiny Imagenet has 200
classes, and each class has 500 training images, 50 testing images, making it a challenging
benchmark for defense task. The resolution of the images is 64× 64.

Various defense methods have been proposed to improve the robustness of deep neural networks.
Here we compare our algorithm with state-of-the-art methods that are robust in white-box setting.
Madry’s adversarial training (Madry’s Adv) has been recognized as one of the most successful
defense method in white-box setting, as shown in (Athalye et al., 2018).

Random Self-Ensemble (RSE) method introduced by (Liu et al., 2017) adds stochastic components
in the neural network, achieving similar performance to Madry’s adversarial training algorithm.

Another method we would like to compare with is Defense-GAN (Samangouei et al., 2018). It first
trains a generative adversarial network to model the distribution of the training data. At inference
time, it finds a close output to the input image and feed that output into the classifier. This process
“projects” input images onto the range of GAN’s generator, which helps remove the effect of ad-
versarial perturbations. In (Samangouei et al., 2018), the author demonstrated the performance of
Defense-GAN on MNIST and Fashion-MNIST, so we will compare our method with Defense-GAN
on MNIST.

Since the main goal of ER-Classifier is using dimension reduction to improve adversarial robustness,
other defense methods can also benefit from this property. The proposed ER-Classifier is trained
with min-max robust optimization (Madry et al., 2017). To demonstrate the dimension reduction
ability of ER-Classifier, we include a variant ER-Classifier− which trains ER-Classifier without
min-max robust optimization.
4.1 EVALUATE MODELS UNDER WHITE-BOX l∞-PGD ATTACK

In this section, we evaluate the defense methods against l∞-PGD untargeted attack, which is one of
the strongest white-box attack methods. Models are evaluated under different distortion level (ε),
and the larger the distortion the stronger the attack. Depending on the image scale and type, different
datasets are sensitive to different strength of attack.

Models on MNIST are evaluated under distortion level from 0 to 0.4 by 0.025. Models on CIFAR10
and STL10 are evaluated under ε ∈ [0, 0.06, 0.005]. Models on Tiny Imagenet are evaluated under
ε ∈ [0, 0.02, 0.002]. As mentioned in the notation part, all the distortion levels are reported in the
normalized [0, 1] space. The experimental results are shown in Figure 2. To demonstrate the results
more clearly, we show part of the results in Table 1.
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Data Defense 0 0.1 0.2 0.3 0.4

MNIST Madry’s Adv 98.7 97.5 93.8 85.5 20.8
ER-Classifier 99.1 98.7 97.2 94.9 71.1

Data Defense 0 0.015 0.03 0.045 0.06

CIFAR10 Madry’s Adv 82.6 68.0 42.3 21.6 12.0
ER-Classifier 84.0 67.5 51.3 35.8 23.3

STL10 Madry’s Adv 63.6 53.5 36.8 25.0 18.7
ER-Classifier 60.7 52.1 40.3 30.6 24.5

Data Defense 0 0.004 0.01 0.016 0.02

Tiny Imagenet Madry’s Adv 57.3 48.6 26.5 15.1 12.0
ER-Classifier 54.6 50.0 36.7 25.6 21.1

Table 1: Testing accuracy (%) under different strength of
PGD attacks. The table shows the results of ER-Classifier
and Madry’s adversarial training (Madry’s Adv). The better
accuracy is marked in bold.

Based on Figure 2 and Table 1, we
can see that ER-Classifier is the most
robust one on a variety of datasets.
ER-Classifier without min-max ro-
bust optimization can also improve
the robustness of deep neural net-
work. Compare the performance of
ER-Classifier− with the performance
of model without defense method
(No Defense), we can see that ER-
Classifier− is much more robust than
the model with no defense method
on all benchmark datasets. Besides,
when the distortion level (ε) is large,
ER-Classifier− tends to perform bet-
ter than other state-of-the-art defense
methods on MNIST, CIFAR10 and
Tiny Imagenet. This phenomenon is
obvious on CIFAR10 and it even per-
forms better than ER-Classifier when the attack strength is strong. The reason might be that without
min-max robust optimization, it is easier to regularize the embedding space.

Method Testing Accuracy

Defense-GAN 55.0
ER-Classifier 99.1

Table 2: Testing accuracy (%) of two de-
fense methods under C&W attack with
l2 ≤ 0.005.

We also compare Defense-GAN with our method
ER-Classifier on MNIST. Both methods are evalu-
ated against the l2-C&W untargeted attack, one of
the strongest white-box attack proposed in (Carlini &
Wagner, 2017b). Defense-GAN is evaluated using the
method proposed in (Athalye et al., 2018), and the
code is available on github2. ER-Classifier is evalu-
ated against l2-C&W untargeted attack with the same
hyper-parameter values as those used in the evaluation
of Defense-GAN. The results under l2 ≤ 0.005 threshold are shown in Table 2. Based on Ta-
ble 2, ER-Classifier is much more robust than Defense-GAN under the l2 ≤ 0.005 threshold. Since
(Samangouei et al., 2018) did not evaluate Defense-GAN on CIFAR10, STL10 and Tiny Imagenet,
without details of GAN structure, we can not compare with Defense-GAN on these datasets.

4.2 EVALUATE THE EFFECT OF DISCRIMINATOR

ER-Classifier framework consists of three parts, and the classification task is done by the encoder
Qφ and classifier Cτ . Without the discriminator part, the encoder can also project the input images
to a low-dimensional space. However, arbitrarily projecting the images to a low-dimensional space
with only the encoder part cannot improve the robustness of the model. In contrast, sometimes it
even decreases the robustness of the model.

To show that arbitrarily projecting the input images to a low-dimensional space can not improve
the robustness, we fit a framework with only the encoder and classifier part (E-CLA), where the
encoder and classifier have the same structures as in ER-Classifier, and compare E-CLA with the
ER-Classifier framework. For a fair comparison, both structures are trained without min-max robust
optimization. The results are shown in Figure 3.

Based on Figure 3, we can observe that ER-Classifier is much more robust than just the encoder
and classifier structure on MNIST, CIFAR10 and Tiny Imagenet. It is also more robust on STL10
but not that much. The reason might be that there are only 5, 000 training images in STL10 and
the resolution is 96× 96. Therefore, it is harder to learn a good embedding with limited amount of
images. However, even when the number of training images is limited, ER-Classifier is still much
more robust than the E-CLA structure. This observation demonstrates that regularization on the
embedding space helps improve the adversarial robustness. Notice that the performance of E-CLA
structure is similar to the performance of model without defense method on CIFAR10, STL10 and

2Publicly available at https://github.com/anishathalye/obfuscated-gradients/
tree/master/defensegan
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Figure 3: Testing accuracy of E-CLA, VAE-CLA and ER-Classsifier− under l∞-PGD attack on four
different datasets: MNIST, CIFAR10, STL10 and Tiny Imagenet.

Tiny Imagenet, and worse on MNIST, which means the robustness of ER-Classifier does not come
from the structure design.

Variational auto-encoder can project the images to low-dimensional space and use Kullback–Leibler
divergence loss to regularize the embedding distribution, which does not need discriminator struc-
ture. Therefore, we also tried VAE-CLA, which applies Variational auto-encoder structure to do
the projection and regularization. The experimental results in Figure 3 show that VAE-CLA does
not perform as well as ER-Classifier. Based on the observation of the Kullback–Leibler loss and
classification loss during the training process, it seems difficult for VAE-CLA to balance between
the two tasks. The reason might be that Kullback–Leibler distances are not sensible cost functions
when learning distributions supported by low dimensional manifolds (Arjovsky et al., 2017).

4.3 PRIOR SELECTION

ER-Classifier does not have restrictions on the choice of prior. However, the selec-
tion of prior is important as it imposes different restrictions on the embedding space.
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Figure 4: Testing accuracy of models with different
prior distributions under l∞-PGD attack.

Three different prior distributions
are tested on MNIST and CIFAR10
datasets. They are standard Gaussian,
Uniform(−3, 3) and Cauchy(0, 1), where
Cauchy(0, 1) has the same support as
standard Gaussian but is heavy tailed and
99.7% of the standard Gaussian points lies
within [−3, 3]. All the models are trained
without min-max robust optimization,
and the experimental results are shown in
Figure 4. Based on the results, all three
priors work well, but standard Gaussian
performs best on both datasets.

Ding et al. (Ding et al., 2019) prove that adversarial robustness is sensitive to the input data dis-
tribution, and if the data is uniformly distributed in the input space, no algorithm can achieve good
robustness. They also empirically show that cornered/concentrated data distributions tend to achieve
better robustness. This helps explain why regularizing the embedding space can help improve ro-
bustness. Though the projection process reduces the input dimension, the embedding space is still
large. Prior distribution helps push the embedding space to be more concentrated, reducing the valid
perturbation space.

Details of hyper-parameter selection, model structure and code are included in the supplementary
part. Embedding space visualization can also be found in the supplementary material.

5 CONCLUSION

In this paper, we propose a new defense framework, ER-Classifier, which projects the input images
to a low-dimensional space to remove adversarial perturbation and stabilize the model through mini-
mizing the discrepancy between the true label distribution and the framework output distribution. We
empirically show that ER-Classifier is much more robust than other state-of-the-art defense methods
on several benchmark datasets. Future work will include further exploration of the low-dimensional
space to improve the robustness of deep neural network.
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APPENDIX

PROOF OF THEOREM 1

The proof of Theorem 1 is adapted from the proof of Theorem 1 in (Tolstikhin et al., 2017). Consider
certain sets of joint probability distributions of three random variables (X,U,Z) ∈ X × U × Z . X
can be taken as the input images, U as the output of the framework, and Z as the latent codes.
PC,Z(U,Z) represents a joint distribution of a variable pair (U,Z), where Z is first sampled from
PZ and then U from PC(U |Z). PC defined in (1) is the marginal distribution of U when (U,Z) ∼
PC,Z .

The joint distributions Γ(X,U) or couplings between values of X and U can be written as
Γ(X,U) = Γ(U |X)PX(X) due to the marginal constraint. Γ(U |X) can be decomposed into an
encoding distribution Q(Z|X) and the generating distribution PC(U |Z), and Theorem 1 mainly
shows how to factor it through Z.

In the first part, we will show that if PC(U |Z) are Dirac measures, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)} , (3)

where P(X ∼ PX , U ∼ PC) denotes the set of all joint distributions of (X,U) with marginals
PX , PC , and likewise for P(X ∼ PX , Z ∼ PZ). The set of all joint distributions of (X,U,Z) such
that X ∼ PX , (U,Z) ∼ PC,Z , and (U ⊥⊥ X)|Z are denoted by PX,U,Z . PX,U and PX,Z denote
the sets of marginals on (X,U) and (X,Z) induced by PX,U,Z .

From the definition, it is clear that PX,U ⊆ P(PX , PC). Therefore, we have

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)}

≤ inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)} , (4)

The identity is satisfied if PC(U |Z) are Dirac measures, such as U = C(Z). This is proved by the
following Lemma in (Tolstikhin et al., 2017). -5pt

Lemma 1 PX,U ⊆ P(PX , PC) with identity if PC(U |Z = z) are Dirac for all z ∈ Z . (see details
in (Tolstikhin et al., 2017).)

In the following part, we show that

inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {`(f(X),C(Z))} . (5)

Based on the definition, P(PX , PC), PX,U,Z and PX,U depend on the choice of conditional distri-
butions PC(U |Z), but PX,Z does not. It is also easy to check that PX,Z = P(X ∼ PX , Z ∼ PZ).
The tower rule of expectation, and the conditional independence property of PX,U,Z implies

inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U,Z

E(X,U,Z)∼Γ {`(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z) {`(f(X), U)}

= inf
Γ∈PX,U,Z

EPZ
EX∼P (X|Z) {`(f(X),C(Z))}

= inf
Γ∈PX,Z

E(X,Z)∼Γ {`(f(X),C(Z))}

= inf
Q:QZ=PZ

EPX
EQ(Z|X) {`(f(X),C(Z))} (6)

11
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Finally, since Y = f(X), it is easy to get

inf
Γ∈P(Y∼PY ,U∼PC)

E(Y,U)∼Γ {`(Y,U)}

= inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)} (7)

Now (3), (5) and (7) are proved and the three together prove Theorem 1.

Our proposed framework readily applies to non-deterministic case. If the classifier part is non-
deterministic, Lemma 1 provides only the inclusion of sets PX,U ⊆ P(PX , PU ), and we can get an
upper bound on the Wasserstein distance between the ground-truth and predicted label distributions:

inf
Γ∈P(X∼PX ,U∼PC)

E(X,U)∼Γ {`(f(X), U)} ≤ inf
Γ∈PX,U

E(X,U)∼Γ {`(f(X), U)}

≤
d∑
i=1

σ2
i + inf

Γ∈PX∼PX,Z∼PZ

E(X,Z)∼Γ

{
‖f(X)−C(Z)‖2

}
, (8)

where we assume the conditional distributions PC(U |Z = z) have mean values C(z) ∈ Rd and
marginal variances σ2

1 , ..., σ
2
d ≥ 0 for all z ∈ Z , where C : Z → X , and `(y, u) = ‖y − u‖2. The

above upper bound is derived by:

inf
Γ∈PX,U

E(X,U)∼Γ

{
‖f(X)− U‖2

}
= inf

Γ∈PX,U,Z

EPZ
EX∼P (X|Z)EU∼P (U |Z){‖f(X)− U‖2} (9)

and

EU∼P (U |Z){‖f(X)− U‖2} = EU∼P (U |Z){‖f(X)−C(Z) + C(Z)− U‖2}
= ‖f(X)−C(Z)‖2 + EU∼P (U |Z){< f(X)−C(Z),C(Z)− U >}+ EU∼P (U |Z){‖C(Z)| − U‖2}

= ‖f(X)−C(Z)‖2 +

d∑
i=1

σ2
i . (10)

In equation 10, the second term of the second last row becomes 0 since the optimization will drive
f(X)−C(Z) to zero.

HYPER-PARAMETER SELECTION

DIMENSION OF EMBEDDING SPACE

One important hyper-parameter for the ER-Classifier is the dimension of the embedding space. If
the dimension is too small, important features are “collapsed” onto the same dimension, and if
the dimension is too large, the projection will not extract useful information, which results in too
much noise and instability. The maximum likelihood estimation of intrinsic dimension proposed in
(Levina & Bickel, 2005)3 is used to calculate the intrinsic dimension of each image dataset, serving
as a guide for selecting the embedding dimension. The sample size used in calculating the intrinsic
dimension is 1, 000, and changing the sample size does not influence the results much. Based on the
intrinsic dimension calculated by (Levina & Bickel, 2005), we test several different values around
the suggested intrinsic dimension and evaluate the models against l∞-PGD attack. All models are
trained without min-max robust optimization, and the experimental results are shown in Figure 5.

The final embedding dimension is chosen based on robustness, number of parameters, and testing
accuracy when there is no attack. The final embedding dimensions and suggested intrinsic dimen-
sions are shown in Table 3.

Data Data dim. Intrinsic dim. Embedding dim.
MNIST 1× 28× 28 13 4

CIFAR10 3× 32× 32 17 16
STL10 3× 96× 96 20 16

Tiny Imagenet 3× 64× 64 19 20

Table 3: Pixel space dimension, intrinsic dimension calculated by (Levina & Bickel, 2005), and final
embedding dimension used.

3Code publicly available at https://github.com/OFAI/hub-toolbox-python3
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Figure 5: Testing accuracy of models with different embedding dimensions under l∞-PGD attack.
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Figure 6: Testing accuracy of models with different ε on MNIST, CIFAR10 and STL10.

Based on Figure 5, the embedding dimension close to the calculated intrinsic dimension usually
offers better results except on MNIST. One explanation may be that MNIST is a simple handwritten
digit dataset, so performing classification on MNIST may not require that many dimensions.

EPSILON SELECTION

Epsilon (ε) is an important hyper-parameter for adversarial training. When doing Madry’s adversar-
ial training, we test the model robustness with different ε and choose the best one. The experiment
results are shown in Figure 6.

Based on Figure 6, we use ε = 0.3, 0.03, 0.03 in Madry’s adversarial training on MNIST, CIFAR10
and STL10 respectively. For Tiny Imagenet, we use ε = 0.01. To make a fair comparison, we use
the same ε when training ER-Classifier.

EMBEDDING VISUALIZATION

In this section, we compare the embedding learned by Encoder+Classifier structure (E-CLA) and
the embedding learned by ER-Classifier on several datasets without min-max robust optimization.
We first generate embedding of testing data using the encoder (z̃ = Qφ(x)), then project the em-
bedding points (z̃) to 2-D space by tSNE(Maaten & Hinton, 2008). Then we generate adversarial
images (xadv) against E-CLA and ER-Classifier using l∞-PGD attack. The adversarial embedding
is generated by feeding the adversarial images into the encoder (z̃adv = Qφ(xadv)). Finally, we
project the adversarial embedding points (z̃adv) to 2-D space. The results are shown in Figure 7.
The plots in the first and second rows are embedding visualization plots for E-CLA, and the plots
in the third and last rows are the embedding visualization plots for ER-Classifier. In adversarial
embedding visualization plots, the misclassified point is marked as “down triangle”, which means
the PGD attack successfully changed the prediction, and the correctly classified point is marked as
“point”, which means the attack fails.

Based on Figure 7, we can see that E-CLA can learn a good embedding on legitimate images of
MNIST. Embedding points for different classes are separated on the 2D space, but under adversarial
attack, some embedding points of different classes are mixed together. However, ER-Classifier
can generate good separated embeddings on both legitimate and adversarial images. On CIFAR10,
the E-CLA can not generate good separated embeddings on either legitimate images or adversarial
images, while ER-Classifier can generate good separated embeddings for both.
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Original Embedding of E-CLA on MNIST Adversarial Embedding of E-CLA on MNIST
Classified Right
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Original Embedding of E-CLA on CIFAR10 Adversarial Embedding of E-CLA on CIFAR10
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Classified Wrong

Original Embedding of ER-classifier on MNIST Adversarial Embedding of ER-classifier on MNIST
Classified Right
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Original Embedding of ER-classifier on CIFAR10 Adversarial Embedding of ER-classifier on CIFAR10
Classified Right
Classified Wrong

Figure 7: 2D embeddings for E-CLA and ER-Classifier on MNIST and CIFAR10. See larger plots
in Supplementary.
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PSEUDO-CODE

Code for reproduction will be made available online at github later. The pseudocode for training
ER-Classifier is shown in Listing 1.

MODEL STRUCTURE

MNIST, STL10 and TinyImagenet classifier structures used for baseline methods are shown in Fig-
ure 8. We use VGG19 for the baseline methods on CIFAR10. Details of ER-Classifier structures on
the four benchmark datasets are shown in Figure 9-10.

Figure 8: Baseline Structure for MNIST
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1 d e f t r a i n e r c l a ( t r a i n l o a d e r , t e s t l o a d e r , encoder , d i s c r i m i n a t o r ,
2 c l a s s i f i e r , o t h e r h y p e r p a r a m e t e r s ) :
3 c r i t e r i o n = nn . C r o s s E n t r o p y L o s s ( )
4 e n c o d e r . t r a i n ( )
5 d i s c r i m i n a t o r . t r a i n ( )
6 c l a s s i f i e r . t r a i n ( )
7 # O p t i m i z e r s
8 e n c o p t i m = opt im . Adam( e n c o d e r . p a r a m e t e r s ( ) , l r = l r )
9 d i s o p t i m = opt im . Adam( d i s c r i m i n a t o r . p a r a m e t e r s ( ) , l r = 0 . 5 ∗ l r )

10 c l a o p t i m = opt im . Adam( c l a s s i f i e r . p a r a m e t e r s ( ) , l r = 0 . 0 5 ∗ l r )
11 e n c s c h e d u l e r = StepLR ( enc op t im , s t e p s i z e =30 , gamma = 0 . 5 )
12 d i s s c h e d u l e r = StepLR ( d i s o p t i m , s t e p s i z e =30 , gamma = 0 . 5 )
13 c l a s c h e d u l e r = StepLR ( c l a o p t i m , s t e p s i z e =30 , gamma = 0 . 5 )
14 one = t o r c h . Tensor ( [ 1 ] )
15 mone = one ∗ −1
16 f o r epoch i n r a n g e ( num epoch ) :
17 s t e p = 0
18 f o r images , l a b e l s i n tqdm ( t r a i n l o a d e r ) :
19 e n c o d e r . z e r o g r a d ( )
20 d i s c r i m i n a t o r . z e r o g r a d ( )
21 c l a s s i f i e r . z e r o g r a d ( )
22 # ======== Min−Max Robus t O p t i m i z a t i o n ======== #
23 images = a d v g e t ( images , c l a s s i f i e r , e n c o d e r )
24 # ======== T r a i n D i s c r i m i n a t o r ======== #
25 f r o z e n p a r a m s ( e n c o d e r )
26 f r o z e n p a r a m s ( c l a s s i f i e r )
27 f r e e p a r a m s ( d i s c r i m i n a t o r )
28 z f a k e = s a m p l e z ( p r i o r , n z , b a t c h s i z e , s igma )
29 d f a k e = d i s c r i m i n a t o r ( t o v a r ( z f a k e ) )
30 z r e a l = e n c o d e r ( images )
31 d r e a l = d i s c r i m i n a t o r ( t o v a r ( z r e a l ) )
32 d i s c f a k e = LAMBDA ∗ d f a k e . mean ( )
33 d i s c r e a l = LAMBDA ∗ d r e a l . mean ( )
34 d i s c f a k e . backward ( one )
35 d i s c r e a l . backward ( mone )
36 d i s s l o s s = d i s c f a k e − d i s c r e a l
37 d i s o p t i m . s t e p ( )
38 c l i p p a r a m s ( d i s c r i m i n a t o r )
39 # ======== T r a i n C l a s s i f i e r and Encoder ======== #
40 f r e e p a r a m s ( e n c o d e r )
41 f r e e p a r a m s ( c l a s s i f i e r )
42 f r o z e n p a r a m s ( d i s c r i m i n a t o r )
43 p r e d l a b e l s = c l a s s i f i e r ( e n c o d e r ( t o v a r ( images ) ) )
44 c l a s s l o s s = LAMBDA0 ∗ c r i t e r i o n ( p r e d l a b e l s , l a b e l s )
45 c l a s s l o s s . backward ( )
46 c l a o p t i m . s t e p ( )
47 e n c o p t i m . s t e p ( )
48 # ======== T r a i n Encoder ======== #
49 f r e e p a r a m s ( e n c o d e r )
50 f r o z e n p a r a m s ( c l a s s i f i e r )
51 f r o z e n p a r a m s ( d i s c r i m i n a t o r )
52 z r e a l = e n c o d e r ( images )
53 d r e a l = d i s c r i m i n a t o r ( e n c o d e r ( V a r i a b l e ( images . d a t a ) ) )
54 d l o s s = LAMBDA1 ∗ ( d r e a l . mean ( ) )
55 d l o s s . backward ( one )
56 e n c o p t i m . s t e p ( )
57 s t e p += 1
58 s a v e f i l e ( f i l e n a m e , encoder , d i s c r i m i n a t o r , c l a s s i f i e r , d a t a s e t =

d a t a s e t )
59 r e t u r n c l a s s i f i e r , e n c o d e r

Listing 1: Pseudocode for training ER-Classifier
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Figure 9: Details of Embedding Regularized Classifier Structures

Figure 10: Details of Embedding Regularized Classifier Structures
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