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ABSTRACT

Graph-structured data is prevalent in many domains. Despite the widely celebrated
success of deep neural networks, their power in graph-structured data is yet to be
fully explored. We propose a novel network architecture that incorporates advanced
graph structural information. In particular, we leverage discrete graph curvature,
which measures how the neighborhoods of a pair of nodes are structurally related.
The curvature of an edge (x, y) defines the distance taken to travel from neighbors
of x to neighbors of y, compared with the length of edge (x, y). It is a much more
descriptive structural measure compared to previously ones that only focus on node
specific attributes or limited topological information such as degree. Our curvature
graph convolution network outperforms state-of-the-art on various synthetic and
real-world graphs, especially the larger and denser ones.

1 INTRODUCTION

Despite the huge success of deep neural networks, it remains challenging to fully exploit their power
on graph-structured data, i.e., data whose underlying structure is a graph, e.g., a social network, a
telecommunication network, a biological network and a brain connectome. Inspired by the power
of convolution on image data, convolutional networks have been proposed for graph-structured
data. Existing works can be roughly divided into two categories, depending on whether convolution
is applied to the spectral or spatial domain. Spectral approaches (Bruna et al., 2013; Defferrard
et al., 2016; Henaff et al., 2015; Veličković et al., 2017) apply convolution to eigen-decomposed
graph Laplacians and are generally efficient in both computation and memory. However, the learned
convolution filters are graph-specific and cannot generalize to different graphs.

Spatial approaches execute “convolution” directly on the graph and operate on the neighborhood
as defined by the graph topology. A spatial method iteratively updates the representation of each
graph node by aggregating representations from its neighbors, i.e., adjacent nodes (Xu et al., 2018).
Nonlinear transformations are applied to the representation passed from one node to another, called a
message. These transformations have the same input/output dimension, i.e., the dimension of the
node representation. They can be shared and learned across different nodes and even different graphs.

For spatial approaches, it is important to incorporate local structural information of the graph. Node
degree has been used to reparametrize the nonlinear transformation of messages (Monti et al., 2017)
or as an additional node feature (Hamilton et al., 2017). However, node degree is fairly limited; there
can be different graph topologies with the same degree distribution. The limitation is illustrated in
Figure 1. Nodes x and y have the same degree in three significantly different graphs: a tree, a grid
graph and a clique. To effectively make use of graph structural knowledge, one would need a feature
with more discriminative power; one that can distinguish these three scenarios in Figure 1.

In this paper, we propose a novel graph neural network that exploits advanced structural information.
Notice that node degree only describes the number of neighbors of each node, but does not say how
these neighbors are connected among themselves. We seek to use structural information characterizing
how neighborhoods of a pair of nodes relate to each other. In Figure 1, the neighborhoods of x and y
are well separated in a tree. In a grid graph, the two neighborhoods are within a parallel shift of each
other. In a clique, they completely overlap. To quantify such pairwise structural information, we draw
inspiration from recent study of graph curvature (Ollivier, 2009; Lin et al., 2011; Weber et al., 2016).

Similar to the curvature in the continuous domain, e.g., the Ricci curvature of a Riemannian manifold,
the discrete graph curvature measures how the geometry of a pair of neighborhoods deviates from a
“flat” case, namely, the case of a grid graph. There are several definitions of discrete curvature for
graphs. The most notable one is Ollivier’s Ricci curvature (Ollivier, 2009). The edges of a (infinite)

1



Under review as a conference paper at ICLR 2020

x y x y

x y
(a) Tree: κ(x, y) = −0.5 (b) Grid: κ(x, y) = 0 (c) Clique: κ(x, y) = +0.625

Figure 1: Illustration of structural information. In all three graphs, the degrees of x and y are the
same. However, the Ricci curvature of the edge (x, y) is negative, zero, and positive, respectively.
All edges have weight 1.
grid graph have zero curvature. The curvature of an edge (x, y) in a tree is negative and is positive
in a complete graph. Intuitively, the graph curvature measures how well two neighborhoods are
connected and/or overlap with each other. Such information is related to how information propagates
in the neighborhood, and should be leveraged by a graph convolutional network.

We propose Curvature Graph Network (CurvGN), the first graph convolutional network built on
advanced graph curvature information. In particular, we propose a novel network architecture that
efficiently computes graph curvature and fully leverages such information in graph convolution.
Using curvature information, CurvGN better adapts to different local structural scenarios and filter
messages passed between nodes differently. Notice that the curvature information captures how
easy information flows between the nodes. Within a well-connected community, neighborhoods of
adjacent nodes have large overlap and many shortcuts. The corresponding curvature is positive and
passing information between the nodes is easy. For edges bridging two clusters/cliques, the curvature
is negative and information is hard to pass. A key to our success is that we choose to be agnostic
on whether the curvature information should be used to block or accelerate the messages in graph
convolution. We exploit the curvature in a data-driven manner and learn how to use it to reweigh
different channels of the message.

To further investigate how curvature information affects graph convolution, we carried out extensive
experiments with various synthetic graphs and real-world graphs. Our synthetic data are generated
according to various well-established graph models, e.g., stochastic block model (Decelle et al., 2011),
Watts–Strogatz network (Watts & Strogatz, 1998), Newman–Watts network (Newman & Watts, 1999)
and Kleinberg’s navigable small world graph (Kleinberg, 2000). On these data, CurvGN outperforms
vanilla graph network and networks using node degree information and self attention, demonstrating
the benefit of curvature information in graph convolution. Such benefit is more apparent as the graph
size increases. We hypothesize that graph convolution alone can adapt to any graph topology, at the
cost of more convolutional layers and more training data. This is corroborated by our experiments on
real-world graph. CurvGN outperforms state-of-the-art graph neural networks, especially on larger
and denser graphs, which tend to have a large variation of local structures.

The success of CurvCN demonstrates how theoretical insights inspire better practical solutions. It
encourages us to continue the endeavor in applying principles mathematics and theory in successful
deployment of deep learning.

2 RELATED WORK

We briefly summarize previous works on graph convolution. In early works (Frasconi et al., 1998;
Sperduti & Starita, 1997), recursive neural networks were applied on data whose underlying structures
are directed acyclic graphs. In Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al.,
2009), the recursive network framework was extended to general graphs. Li et al. (2015) introduced
gated recurrent units into the framework in order to improve the performance. Since Convolutional
Neural Networks (CNNs) have demonstrated strong performance in grid-like-structured data, various
methods have been proposed to implement “convolution” on graph-structured data. The efforts can
be roughly divided into spectral approaches and spatial approaches. Below we will review both
categories in details.

Spectral approaches. Bruna et al. (2013) transformed the graph convolution into spectral domain
multiplication by graph Fourier transform. This method is expensive due to the matrix eigen-
decomposition. Furthermore, it cannot create spatially localized filters as in CNNs. Henaff et al.
(2015) applied smooth coefficients on spectral filters to make them spatially localized. Defferrard et al.
(2016) used Chebyshev expansion of the graph Laplacian to approximate the filters as a k-polynomial
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function. Kipf & Welling (2016) simplified those methods by reducing the polynomials to degree
1. Their method is essentially filtering the graph with a kernel whose receptive field is the 1-hop
neighborhood of each node. The common limitation of spectral approaches is that the convolution
filters depend on the Laplacian of each specific graph.

Spatial approaches. The main challenge of spatial approaches is to design an operator which applies
to neighborhoods with different topology and still maintains shared filters. Monti et al. (2017)
introduced a mixture model CNN (MoNet) that maps graph neighborhood into spatial neighborhood
(with pseudo-coordinates) for spatial convolution. Hamilton et al. (2017) proposed GraphSAGE
that samples fixed size neighbors and aggregates their representations. Veličković et al. (2017)
proposed Graph Attention Network (GAT), which uses self-attention mechanism to reweigh graph
convolution. Recently, there have been other methods which studied graph neural networks from
different perspectives, such as pooling (Gao & Ji, 2019; Ying et al., 2018).

Discrete graph curvature. Different proposals for discrete graph curvature have been introduced in
recent years, including Ollivier’s Ricci curvature and Forman curvature (Ollivier, 2009; Lin et al.,
2011; Forman, 2003). We focus on Ollivier’s Ricci curvature as it is more geometric in nature.
Meanwhile, Forman’s definition of discrete curvature (Forman, 2003) is more combinatorial and is
faster to compute. Both curvatures have been applied to real-world graphs. Ni et al. (2015) showed
that Ollivier’s Ricci curvature can be used to identify backbone edges of an Internet AS graph and is
closely related to network vulnerability. In Ni et al. (2018) it was shown that using Ollivier’s Ricci
flow, one can define a new metric that is more robust for network matching. Forman curvature is
shown to have similar effect (Weber et al., 2017; 2016). To the best of our knowledge, graph curvature
has not been used in graph neural networks.

3 CURVATURE GRAPH NETWORK

We first formulate the node label prediction problem of a graph, and explain the mechanism of a
Graph Neural Network (GNN). Suppose we have an undirected graph G = (V,E) with features
on the vertices H = (h1, h2, · · · , hn), hi ∈ RF . Here n = |V | is the number of nodes in the
graph and F is the feature dimension of each node. Given labels of some nodes in V , we would
like to predict the labels of the remaining nodes. A GNN iteratively updates the graph G’s node
representation and eventually predicts node labels. A GNN consists of multiple hidden layers
that update node representation from lower level node representation Ht ∈ Rn×Ft to high level
representation Ht+1 ∈ Rn×Ft+1 . In particular, H0 is the input feature, H . Node representations of
the last layer, HT , are fed to a fully connected layer or a linear classifier to predict node labels. The
layers and their representations are illustrated in the top of Figure 2.

Now we explain how to construct hidden layers that update node representations from Ht to Ht+1.
We focus on spatial approaches and treat the convolution as a message passing scheme. The (t+1)-th
representation of node x is computed by aggregating messages passed from x’s neighbors. We also
include the message from x to itself. There are several aggregation methods, such as mean, max and
sum. We choose summation as it is a commonly used aggregation method (Kipf & Welling, 2016;
Veličković et al., 2017; Xu et al., 2018). Denote by N (x) = N (x) ∪ {x} the neighborhood of x
including itself. We have ht+1

x = σt

(∑
y∈N (x)M

t
y→x

)
, in which σt is the non-linear transformation.

A message passed from y to x is a linear transformation of y’s representation. We also introduce a
weight τ txy whose purpose will be clear later. Formally, we have M t

y→x = τ txyW
thty , in which W t is

the linear transformation matrix learned in training. Formally, we have the representation updating
equation

ht+1
x = σt

(∑
y∈N (x)

τ txyW
thty

)
(3.1)

It is crucial to obtain suitable reweighting parameter τ txy since it is directly affecting how neighboring
node information are passed to the node x. Some papers use node degree information as τ txy (Kipf
& Welling, 2016; Monti et al., 2017) and other work uses joint node features to compute the self
attention as τ txy (Veličković et al., 2017). We propose to use more advanced structural information,
i.e., the Ricci curvature, to compute τ txy. It is also known that the reweighting parameter τ txy is not
necessarily a scalar. It can also be anything between a scalar and a F t×F t matrix. In fact, we choose
F t later on because it has more expressive power than a scalar and it is easier to train than a matrix.
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Figure 2: An overview of our Curvature Graph Network.
To illustrate how we build curvature convolution layer in Equation (3.1), we define Ricci Curvature in
the context of graph (Section 3.1). We explain how to compute τ txy from the curvature in Section 3.2.

3.1 RICCI CURVATURE

In Riemannian geometry, curvature measures how a smooth object deviates from being flat, or
being straight in the case of a line. Similar concepts can be extended to non-smooth setting for
discrete objects. In particular, curvature has been studied for metric-measure space (Bonciocat, 2014;
Bonciocat & Sturm, 2009; Lott & Villani, 2009; Sturm et al., 2006), Markov chain (Ollivier, 2009)
and general graphs (Lin et al., 2011). The definitions of curvatures that are easier to generalize in a
discrete graph setting are sectional curvature and Ricci curvature.

For a point x on the surface, considers two tangent vectors v and wx. Let y be the end point of the
tangent vector v at x. Imagine transporting in parallel wx along v to a tangent vector wy at y. If the
surface is flat, any pair of points x′ and y′ which is ε away from x and y along wx and wy will have
the same distance as x and y. Its deviation from |v| defines the sectional curvature. Then averaging
it over all directions of wx gives the Ricci curvature which only depends on the tangent vector v.
Intuitively, instead of wx, we can think of Sx be the set of end points of all tangent vectors at x with
length ε. Again, if we map Sx to Sy using parallel transport along v, the distance between a point at
Sx and its corresponding image at Sy can be different from |v| if the surface is not flat.

To generalize Ricci curvature to discrete spaces, Ollivier (2009) takes a coarse approach that represent
Sx as a probability measure mx of mass 1 around x. Thus the distance can be measured by
Wasserstein distance (or Earth Mover distance) which finds the optimal mass-preserving transportation
plan between two probability measures. Then the coarse Ricci curvature κ(x, y) on edge (x, y)
is defined by comparing the Wasserstein distance W (mx,my) to the distance d(x, y), formally,
κxy = 1− W (mx,my)/d(x, y).

The natural analogy of a small ball Sx at point x in the metric space is the 1-hop neighborhoodN(x) of
node x in a graph. This motivates the Ollivier-Ricci curvature on graph edges. For an undirected graph
G = (V,E), denotes the set of neighboring nodes of a node x ∈ V as N(x) = {x1, x2, . . . , xk}.
Then we can define a probability measure mα

x at x:

mα
x(xi) =


α if xi = x

(1− α)/k if xi ∈ N(x)

0 otherwise

where α is a parameter within [0, 1]. It is to keep probability mass of α at node x itself and distribute
the rest uniformly over the neighborhood. To compute the Wasserstein distanceW (mα

x ,m
α
y ) between

the probability measures around two end points x, y of the edge (x, y), the optimal transportation
plan can be solved by the following linear programming:

min
M

∑
i,j

d(xi, yj)M(xi, yj) s.t.
∑
j

M(xi, yj) = mα
x(xi),∀i;

∑
i

M(xi, yj) = mα
y (yj),∀j (3.2)

where M(xi, yj) is the amount of probability mass transported from node xi to yi along the shortest
path with length d(xi, yj). In the language of graph theory, if the Ollivier-Ricci curvature is negative
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(W (mα
x ,m

α
y ) > d(x, y)), the edge (x, y) serves as the bridge connecting the neighborhood around x

and y. This aligns with the intuition in the smooth setting where the small balls Sx and Sy are closer
to each other than their centers. Following existing work (Ni et al., 2018), we set α = 0.5.

3.2 CURVATURE-DRIVEN GRAPH CONVOLUTION

Next we present how Ricci curvature is used in our graph convolutional network. The usage of
curvature should depend on the problem and the data. Intuitively, curvature measures how easy a
message flows through an edge, and should be used to control messages in convolution. For example,
an edge with negative curvature is likely to be a bridge connecting two different communities. If
we assume different communities tend to have different representations/labels, a message should be
blocked on this edge. Meanwhile, an edge with positive curvature tends to be intra-community and
thus should have accelerated message flow. However, the intuition may be invalid if the community
structure is not correlated with node representation/labels.

We choose to be agnostic on how the knowledge of edge curvature should be used. We resort to
a data-driven strategy and learn a mapping function that maps Ricci curvature κxy to the weight
of messages, i.e., τ txy in Equation (3.1). We first explain how the mapping is learned end-to-end
(CurvGN-1). Next we expand the mapping to a multi-valued version, to incorporate more flexibility
in the model (CurvGN-n).

CurvGN-1. As mentioned before, τ txy can be anything between a scalar and a F t × F t matrix. We
first assume τ txy is a scalar. Then the mapping function can be defined as:

f t : κxy → τ txy (3.3)

We create a multi-layer perceptron (MLP) to approximate the mapping function f t since MLP is
proved to be a universal approximation machine and can be easily incorporated into our GNN model
for end-to-end training. Denote the MLP at the t-th layer as MLPt. As summation is used as the
aggregation function in Equation (3.1), the messages may accumulate to an arbitrarily large value. To
prevent a numerical explosion, we apply a softmax function, St, to MLPt(κxy) of all neighbors of x
including itself, y ∈ N (x) nodes.

τ txy = St(MLPt(κxy)) (3.4)

Figure 2 bottom shows how the MLP transforms a curvature and uses it to reweigh messages.

CurvGN-n. Messages M t
y→x are usually multi-channeled. In particular, they are F t+1-dimensional.

The scalar weight generated using curvature is not necessarily the same for different channels. To
improve the expressing power of τ txy, we create a similar mapping function as f t in Equation (3.3).
But the new mapping generates a reweighing vector T txy ∈ RF t+1

. In other words, we learn to
reweigh different message channels differently. In principle, we can even learn an RF t+1 × RF t+1

to
reweigh the message. However, a vector has significantly less parameters to train and is found to be
sufficient in practice.

Using the same strategy as CurvGN-1, the vector T txy is calculated by applying a MLPt with F t+1

outputs. Then, we apply a channel-wise softmax function, St, that normalizes the MLP outputs
separately on each message channel: T txy = St(MLPt(κxy))

Substituting Txy into Equation (3.1), we have the convolution of CurvGN-n:

ht+1
x = σt

(∑
y∈N (x)

diag(T txy)W thty

)
(3.5)

Here diag(T txy) is a matrix whose diagonal entries are entries of T txy. For details of MLPt, please
refer to Appendix A.1.

Design details of the network. In practice, we use a two-convolutional-layer CurvGN model. The
first layer is a linear transform layer that produces an output feature vector paired with a three layer
MLP that computes reweighing vector. The output feature is pushed into an exponential linear unit
layer to add non-linearity. The second layer is for classification, with the same structure as the first
layer except that the output feature is now at length of class number. The hyperparameters are similar
to GAT implemented in Veličković et al. (2017). For synthetic experiments, the hidden layer output
is reduced to 8 dimensions.
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4 EXPERIMENTS

We evaluate our method on both synthetic and real-world graphs. Our method outperforms the
state-of-the-art methods, especially on larger and denser graphs, which tend to have heterogeneous
topology. In addition to proving the prediction power, we use different graph theoretical models in
synthetic experiments and different parameter settings to gain insights of how curvature information
helps graph convolution. We focus on node classification task, while our method easily generalizes to
graph classification task.

4.1 SYNTHETIC EXPERIMENTS ON DIFFERENT GRAPH THEORETICAL MODELS

We generate synthetic data using different graph theoretical models. We start with the Stochastic
Block Model (SBM) (Holland et al., 1983), which assumes a partition of the graph into communities.
We create random graphs, each with 1000 nodes and equally partition the node set into five disjoint
communities. Nodes in the same community have the same class label. Edges are randomly sampled
with an intra-community probability, p, if they are within the same community. They are sampled
with an inter-community probability, q, if they are cross-community, e.g., bridges connecting different
communities. We randomly create 100 graphs with p ranging in {0.05, 0.07, · · · , 0.23} and q ranging
in {0.0, 0.005, · · · , 0.045}. For each generated graph, we randomly select 400 nodes as training set,
another 400 nodes as validation set and the remaining 200 nodes as test set. We assign each node with
a randomly generated feature of dimension 10 and use them as uninformative input of our CurvGN.

Baselines. We use five different methods. They include two popular state-of-the-arts: GCN (Kipf
& Welling, 2016) and GAT (Veličković et al., 2017). For these methods, we use the exact same
setting as for Cora dataset mentioned in Veličković et al. (2017); Kipf & Welling (2016), except that
the output of hidden layer is a vector of length 8. We also use a baseline method which aggregates
messages without reweighing Vanilla GN. We also apply the two proposed networks, CurvGN-1
and CurvGN-n. Compared with the Vanilla GN, GCN reweighs messages using node degrees. GAT
reweighs messages using self attention map computed using node representations. CurvGN-1 and
CurvGN-n reweigh messages using scalar and vector computed by Ricci curvature.

We run all the methods on 100 random graphs. For each graph, we run the training and inference task
for 10 times and take the average accuracy. For each training, we run 200 epochs and use validation
set for early stopping. Figure 3 shows the heat maps for all methods. The title of each heatmap also
includes the max and average performance over all parameter settings. In Figure 3(c), we run the
same experiments on graphs with different sizes and report the average accuracy.

Discussion. Looking at the heatmaps, we observe that Vanilla GN, GCN and GAT are not better than
random guessing. This implies that using node degree information is not enough. Meanwhile, we

Figure 3: Heat maps on synthetic data by SBM. Top-right is performance of Vanilla GN, CurvGN-1
and CurvGN-n over different graph sizes.
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observe improved performance by CurvGN-1, confirming the power of reweighing with curvature in
graph convolution. In addition, CurvGN-n outperforms CurvGN-1, suggesting that the multi-channel
reweighing based on curvature is beneficial. Furthermore, looking at the results with different graph
sizes, we observe that the benefit of curvature increases as the graph size increases. We hypothesize
that the graph convolution is sufficient in small graph setting to fully explore the graph structure. Only
with larger graph and more diverse topology, advanced structural information becomes significant.

We also visualize the prediction results on one particular graph generated at (p, q) = (0.21, 0.025)
in Figure 4. We observe that CurvGN-1 and CurvGN-n make high quality predictions except for a
small portion of data in a few communities. Meanwhile, other baselines can completely mix different
communities and results are unsatisfactory.

Figure 4: One SBM result. Small nodes are training set. Larger nodes are testing set.

Further studies on different graph theoretical models. To further examine the expressive power
of Ricci curvature, we run synthetic experiments using several well-accepted graph theoretical models:
Watts–Strogatz network (Watts & Strogatz, 1998), Newman–Watts network (Newman & Watts, 1999)
and Kleinberg’s navigable small world graph (Kleinberg, 2000). Watts-Strogatz network randomly
rewires edges of a ring graph. Newman-Watts network randomly adds new edges to the ring. The
Kleinberg’s model also adds random edges, but the probability of a new edge is inversely proportional
to the geodesic distance between the nodes. In all these settings, we partition the ring into different
communities and design experiments similar to the Stochastic Block Model. More details can be
found in the Appendix A.2.

We compare all five methods on these different graph models and report the average accuracy over
different parameter settings in Table 1. The standard deviations on these results are generally large as
we are averaging over all different parameter settings. We observe consistently better performance
of CurvGN-n than other methods. This confirms that curvature information is beneficial in a broad
spectrum of graphs. We also note that GCN and GAT are indeed doing well for Watts-Strogatz
and Newman-Watts models. This is because, in these networks, edge rewiring and addition create
difference in node degrees. Bridges crossing different communities tend to have higher node degree.
Therefore, node degrees carry useful structural information and can help with graph convolution. We
do not observe the same benefit of node degree information in SBM and Kleinberg’s model as in

Table 1: Average prediction accuracy on four different graph models.
GCN GAT Sum CurvGN-1 CurvGN-n

SBM 24% 23% 28% 31% 36%
Watts–Strogatz 32% 30% 26% 29% 32%
Newman-Watts 32% 30% 27% 29% 33%

Kleinberg 23% 22% 28% 27% 31%
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these models, node degree is not correlated with the locations of bridges. More heatmap results can
be found in the Appendix A.2.

4.2 REAL-WORLD BENCHMARKS

Our real-world benchmarks include two families of datasets: small sparse graphs and large dense
graphs. We compare our networks CurvGN-1 and CurvGN-n with several strong baselines. Aside
from GCN and GAT that have been used in the synthetic experiments, we also compare CurvGN-1
and CurvGN-n with multilayer perceptron (MLP), MoNet (Monti et al., 2017), WSCN (Morris et al.,
2019) and GraphSAGE with mean aggregation (GS-mean) (Hamilton et al., 2017). Our method is on
par with state-of-the-art methods on relatively small graphs and greatly outperforms state-of-the-art
methods on large and dense graphs, which tend to have heterogeneous topology.

Datasets. We use three popular citation network benchmark datasets: Cora, citetseer and PubMed
(Sen et al., 2008). We categorize Cora and citetseer into the first family since both Cora and citetseer
graphs are relatively small and sparse. They have thousands of nodes and edges with an average
node degree below 2. We also use four extra datasets: Coauthor CS and Coauthor Physics which are
co-authorship graphs based on the Microsoft Academic Graph from the KDD Cup 2016 challenge;
Amazon Computers and Amazon Photos which are segments of the Amazon co-purchase graph in
McAuley et al. (2015). These graphs, together with PubMed, are large and dense graphs. Those
graphs have more than 10 thousands node and 200 thousands edges with an average node degree
as high as 20. We use the exact data splitting as in semi-supervised learning setting used in Kipf
& Welling (2016); Veličković et al. (2017): using 20 nodes per class for training, 500 nodes for
validation and 1000 nodes for testing. Descriptions and statistics for all datasets in our experiments
can be found in the Appendix A.3.

During training stage, we set L2 regularization with λ = 0.0005 for all datasets. Also, all the models
are initialized by Glorot initialization and trained by minimizing cross-entropy loss using Adam SGD
optimizer with learning rate r = 0.005. We apply an early stopping strategy with the help of the
validation set based on the validation set’s accuracy with a patience of 100 epochs. We compute
curvature exactly following Eq. (3.2) for all datasets but one. For the Amazon Computer dataset, we
use an approximation scheme for efficiency (Ni et al., 2018). The linear programming problem is
solved using an interior point solver (ECOS).

We report the mean and standard deviation of classification accuracy on test nodes on 100 runs and
re-use the metrics reported by Monti et al. (2017); Shchur et al. (2018); Veličković et al. (2017)
for other state-of-the-art methods. The results are reported in Table 2. Our method is on par with
state-of-the-art performance for relatively small graph and achieves superior performance on large
and dense graphs. This is consistent with our conclusion from synthetic experiments: when graph
is large and has heterogeneous topology, advanced structural information becomes critical in graph
convolution.

Table 2: Performance on Real-World Benchmarks
Method Cora Citetseer PubMed Coauthor Coauthor Amazon Amazon

CS Physics Computer Photo
MLP 58.2 59.1 70.0±2.1 88.3±0.7 88.9±1.1 44.9±5.8 69.6±3.8
MoNet 81.7 71.2 78.6±2.3 90.8±0.6 92.5±0.9 83.5±2.2 91.2±1.3
GS-mean 79.2 71.2 77.4±2.2 91.3±2.8 93.0±0.8 82.4±1.8 91.4±1.3
WSCN 78.9±0.9 67.4±0.8 78.1±0.6 89.1±0.7 90.7±0.9 67.6±3.7 82.1±1.2
GCN 81.5±0.5 70.9±0.5 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.4 91.2±1.2
GAT 83.0±0.7 72.5±0.7 79.0±0.3 90.5±0.6 92.5±0.9 78.0±19.0 85.1±20.3
CurvGN-1 82.6±0.6 71.5±0.8 78.8±0.6 92.9±0.4 94.1±0.3 86.3±0.7 92.5±0.5
CurvGN-n 82.7±0.7 72.1±0.6 79.2±0.5 92.8±0.3 94.3±0.2 86.5±0.7 92.5±0.5

5 CONCLUSION

We introduce a novel graph convolution network to leverage advanced graph structural information,
namely, the graph curvature. The curvature information effectively helps achieve superior perfor-
mance on synthetic and real-world datasets, especially on larger and denser graphs. This shows
how principled mathematics and theory help the deployment of deep learning and encourages us to
continue the endeavor in bridging the gap between graph theoretical foundation and neural networks.
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A APPENDIX

A.1 THE DETAILS OF MLPT

We describe the details of MLPt for the t-th convolutional layer, which maps a curvature κxy to
the weight vector T txy ∈ RFt+1 . MLPt has three layers: an input layer, followed by a non-linear
transformation layer and an output layer. The input layer In linearly transforms the Ricci curvature
κxy into an output vector with same size of message M t

y→x ∈ RFt+1 . We use LeakyReLU function
in our non-linear layer. For output layer Out, we use a transformation matrix with size Ft+1 × Ft+1

to compute reweighing vector T txy . Formally,

MLPt = Out(LeakyReLU(In)) (A.1)

Recall a node also passes a message to itself. To generate its weight vector T txy , we set κxx = 0, as if
the edge (x, x) is a grid edge. For the case when we reweigh the message using a single scalar τxy
(e.g., CurvGN-1 network), we change the size of transformation matrix of output layer into F t+1 × 1.
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A.2 DIFFERENT NETWORK MODELS FOR SYNTHETIC EXPERIMENTS

All three models, Watts-Strogatz, Newman-Watts and Kleinberg’s model, are created by randomly
modifying/adding edges to a ring graph.1 A ring graph has n nodes embedded on a circle, with
each node connected to its k nearest neighbors. Figure 5(a) is an example ring graph with n = 20
and k = 4. To create communities, we partition the nodes into 5 equal-size sets according to their
locations on the circle. In addition, we remove the edges cross different communities. Next we
explain how edges of the ring graph are randomly changed for Watts-Strogatz, Newman-Watts and
Kleinberg’s model, respectively.

Watts-Strogatz Network. Watts-Strogatz Network (Watts & Strogatz, 1998) is created by randomly
rewiring edges of the ring graph with a predefined probability, p. See Figure 5(b) for an example of
Watts-Strogatz network.

In our experiments, we generate 100 random Watts-Strogatz graphs of size n = 1000 using different
parameter combinations of k and p: k ∈ {5, 10, · · · , 50} and p ∈ {0.02, 0.04, · · · , 0.2}. For each
graph, the 5 communities correspond to nodes with 5 different labels. We randomly generate a
10-dimensional feature for each node, as in Stochastic Block Model experiments. The training set is
created by randomly sampling 400 nodes in one graph. The validation set and testing set are create in
the same way with size 400 and 200, respectively. For each graph, we run the experiment 10 times
with 200 epochs each time and report the average.

Figure 6(a) shows the results of all five methods (GCN, GAT, Vanilla GN, CurvGN-1 and CurvGN-n).
We observe that CurvGN-n has the best performance compared with others. It suggests that edge
curvature information is crucial in prediction: a rewired edge has a high probability to be a bridge with
negative curvature. Curvature information can effectively distinguish bridges and intra-community
edges, and therefore help graph convolution. It is also worth mentioning that GCN also has good
performance. We hypothesize that this is because rewired edges (likely bridges) tend to have higher
degrees on adjacent nodes, and thus can be distinguished using degree information alone.

Newman-Watts Network. The Newman-Watts network (Newman & Watts, 1999) is similar to the
Watts-Strogatz model except that it adds random edges on the ring graph with probability p, instead
of rewiring existing edges. We run the experiments in the same setting as Watts-Strogatz model. The
results are shown in Figure 6(b). We observe similar effects as Watts-Strogatz.

Kleinberg’s Navigable Small World Graph. Instead of randomly generating edges with a fixed
probability p, Kleinberg’s model (Kleinberg, 2000) adds a fixed number of additional long-range
edges to the ring graph. For each node u, add el random edges (u, v) with v picked with a probability
proportional to 1/d(u, v), in which d(u, v) is the distance between u and v in the circle.2 We slightly
modify the original definition by making all edges undirected and removing self-loops. Figure 5(c)
shows an example graph of Kleinberg’s model with 100 nodes. We observe much fewer long range
(cross-community) connections and more intra-community connections than the other models.

We generate 100 different graphs using different combinations of parameters es and el. Here
es ∈ {floor(2.5),floor(5), · · · floor(25)} controls the distance upperbound for short-range neighbors;
any nodes within distance es of x is connected with x. es is very similar to k in Wattz-Strogatz graph.
Similar to previous models, we run experiments on each graph 10 times and use the validation set for
early stopping.

Since the added edge has a probability proportional to 1/d(u, v), there can be long distance inter-
community edges. And the node degree can no longer capture the structural information introduced
by the added edges. The GCN behaves similar to random guessing in this case. However, the Ricci
Curvature is still negative on those inter community edges and it can still predict communities. Figure
6(c) shows the heat maps of five different algorithms. CurvGN-n outperforms other methods by a
large margin.

A.3 STATISTICAL DETAIL OF BENCHMARKS

We describe the statistical details of all datasets in Table 3. Cora and Citeseer are considered as small
and sparse graphs while PubMed, Coauthors and Amazons are considered as large and dense graphs.

1Note these models can be built on any d-dimensional grid. Ring is a special case when d = 1.
2In general, the probability could be proportional to 1/d(u, v)m. We choose m to be 1.
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(a) An example ring graph with
n = 20, k = 4.

(b) An example Watts-Strogatz network with 100 nodes.

(c) An example Kleinberg’s graph model demonstration with 100 nodes.

Figure 5: Example graphs.

12



Under review as a conference paper at ICLR 2020

(a) Heatmaps of Watts-Strogatz Network

(b) Heatmaps of Newman-Watts Network

(c) Heatmaps of Kleinberg’s navigable small world graph

Figure 6: Results on different graph models.
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Table 3: Statistic details of all datasets.
Datasets #Classes #Nodes #Edges #Features #Training #Edges/#Nodes
Cora 7 2708 5429 1433 140 2.0
Citeseer 6 3327 4732 3703 120 1.42

PubMed 3 19717 44338 500 60 2.25
Coauthor CS 15 18333 100227 6805 300 5.47
Coauthor Physics 5 34493 282455 8415 100 8.19
Amazon Computers 10 13381 259159 767 200 19.37
Amazon Photo 8 7487 126530 745 160 16.90
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