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ABSTRACT

Biological intelligence can learn to solve many diverse tasks in a data efficient
manner by re-using basic knowledge and skills from one task to another. Further-
more, many of such skills are acquired through something called latent learning,
where no explicit supervision for skill acquisition is provided. This is in contrast
to the state-of-the-art reinforcement learning agents, which typically start learning
each new task from scratch and struggle with knowledge transfer. In this paper
we propose a principled way to learn and recombine a basis set of policies,
which comes with certain guarantees on the coverage of the final task space. In
particular, we construct a learning pipeline where an agent invests time to learn to
perform intrinsically generated, goal-based tasks, and subsequently leverages this
experience to quickly achieve a high level of performance on externally specified,
often significantly more complex tasks through generalised policy improvement.
We demonstrate both theoretically and empirically that such goal-based intrinsic
tasks produce more transferable policies when the goals are specified in a space
that exhibits a form of disentanglement.

1 INTRODUCTION

Natural intelligence is able to solve many diverse tasks by transferring knowledge and skills from one
task to another. For example, by knowing how to move objects in 3D space, it is possible to learn how
to stack them faster. However, many of the current state-of-the-art artificial reinforcement learning
(RL) agents struggle to do so. They are able to solve single tasks well, often beyond the ability of any
natural intelligence (Silver et al., 2016; Mnih et al., 2015; Jaderberg et al., 2017), however even small
deviations from the task that the agent was trained on can result in catastrophic failures (Lake et al.,
2016; Rusu et al., 2016). Typically deep RL agents start learning every task from scratch. This means
that each time they have to re-learn how to perceive the world (the mapping from a high-dimensional
observation to state), and also how to act (the mapping from state to action), with the majority of time
arguably spent on the former. The optimisation procedure naturally discards information that is irrele-
vant to the task, which means that the learnt state representation is often unsuitable for new tasks. Bio-
logical intelligence appears to operate differently. A lot of knowledge tends to be discovered and learnt
without explicit supervision, through a process of latent learning, first suggested by Tolman (1948).
This basic knowledge can then form the behavioural basis that can be used to solve new tasks faster. In
this paper we argue that such transferable knowledge and skills should be acquired in artificial agents
too (Barreto et al., 2018; Wulfmeier et al., 2019). In particular, we want to start by replicating the most
basic form of latent learning found in biological intelligence – the ability to discover stable entities that
make up the world and to learn basic skills to manipulate these entities. Compositional re-use of such
skills enables biological intelligence to find reasonable solutions to many naturally occurring tasks,
from goal-directed movement (controlling your own position), to food gathering (controlling the po-
sition of fruit and and nuts), or building a simple defence system (re-positioning multiple stones into a
fence or digging a ditch). Similarly, artificial systems have been demonstrated to benefit from solving
multiple tasks jointly, both in reinforcement learning (Torrey & Shavlik, 2010; Taylor & Stone, 2009)
as well as supervised learning (Thrun & Pratt, 2012; Caruana, 1997).

To this end, we propose a principled way to learn a basis set of policies which can help agents
quickly produce reasonable performance on the largest possible set of basic natural tasks within
an environment. We restrict the set of tasks to those that can be expressed in natural language, and
which do not rely on a particular execution ordering. We propose a method on how to discover these
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Figure 1: The idealised world state completely described by compositions of the following inde-
pendent transformations: changes in position x, y and colour. Such a state may be projected into a
high-dimensional observation, which may contain a lot of irrelevant detail, like the particular instan-
tiation of the Qbert, or the grassy background. Disentangled representations recover the meaningful
information about the independently transformable aspects of the world and disregard the irrelevant
details.

policies in the absence of external supervision, a setting we call endogenous reinforcement learning
(ERL), where the agent accumulates a transferable set of basic skills purely by intrinsic (endogenous)
rewards which later builds the foundation to solve extrinsically (exogenously) provided tasks. In
particular, we construct a learning pipeline where an agent invests time to learn to perform intrinsic,
goal-based tasks in the ERL stage, and subsequently leverages this experience to perform few-shot
learning of unseen tasks in the RL stage with certain guarantees on final task coverage. For this latter
phase of few-shot learning, we make use of Generalized Policy Improvement (GPI) (Barreto et al.,
2018) to leverage the behaviour learned in the intrinsic tasks. Moreover, we argue theoretically and
empirically that such goal-based intrinsic tasks are more transferable to novel situations when the
goals are specified via a representation that exhibits disentanglement.

Intuitively, disentangled representations consist of the smallest set of features that represent those
aspects of the world state that are independently affected by natural transformations and together
explain the most of the variance observed in an environment (Higgins et al., 2018) (see Fig. 1).
Disentangled features, therefore, “carve the world at its joints” and provide a parsimonious repre-
sentation of the world state that also points to which aspects of the world are stable, and which can
in principle be transformed independently of each other. We conjecture that disentangled features
align well with the idealised state space in which natural tasks are defined. Hence, by learning a set
of policies that can control these features an agent will acquire a basis set of policies which spans a
large set of natural tasks defined in such an environment. Note that both disentangled features and
their respective control policies can be learnt without an externally specified task, purely in the ERL
setting. We provide both theoretical justification for this setup, as well as experimental illustrations
of the benefit of disentangled representations in a large set of tasks of varying difficulty.

Related work A number of past approaches share our motivation of discovering a diverse and useful
set of policies in the absence of externally specified tasks. The predominant approach is to optimise an
objective that encourages behaviours that are both diverse and distinguishable from each other (Gre-
gor et al., 2017; Eysenbach et al., 2019; Hansen et al., 2019). Several other approaches investigated
the idea of learning to solve intrinsic tasks specified in a learnt representation space (Nair et al., 2018;
Laversanne-Finot et al., 2018). Some of these approaches have been demonstrated to be useful for
solving downstream tasks, which could be either inferred (Eysenbach et al., 2019; Hansen et al., 2019)
or specified (Nair et al., 2018). However, no theoretical guarantees have been provided concerning the
downstream task coverage by the learnt set of policies. On the other hand, van Niekerk et al. (2018)
and Barreto et al. (2017; 2018) provide theoretical guarantees on how well a given set of policies can
be transferred to solve a wide range of downstream tasks. These papers, however, leave the question of
how to discover and learn these policies open. Hence, our work provides a unique perspective by ad-
dressing both the questions of what makes a good basis set of policies to get certain guarantees on final
task coverage, and how these policies may be learnt in the ERL setting. In general, shared training of
systems to jointly solve a range of tasks as well as transfer and adaptation of previously trained models
has provided strong performance gains across various domains. Work in supervised learning has build
on parallel multitask (Caruana, 1997; Thrun & Pratt, 2012) as well as sequential transfer of models
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trained on related tasks and data (Yosinski et al., 2014; Girshick et al., 2014). Similarly in reinforce-
ment learning, transfer across related tasks has been proven efficient in accelerating training and sim-
plifying exploration. Auxiliary tasks have been used to provide additional training signal (Jaderberg
et al., 2017), share transition data (Riedmiller et al., 2018), or to generate transferable policies (Barreto
et al., 2018; Wulfmeier et al., 2019). In particular, this work lies in the context of the latter but uses au-
tonomously discovered basis tasks rendering it more scalable than manually chosen task distributions.

2 BACKGROUND

Basic Reinforcement Learning (RL) formalism. An RL agent interacts with its environment
through a sequence of actions in such a way as to maximise the expected cumulative discounted
rewards (Sutton & Barto, 1998). The RL problem is typically expressed using the formalism of
Markov Decision Processes (MDPs) (Puterman, 1994). An MDP is a tuple M = (S,A,P,R, γ),
where S and A are the sets of states and actions, P is the transition probability that predicts the
distribution over next states given the current state and action s′ ∼P(·|s,a), R is the distribution of
rewards r∼R(s,a,s′) received for making the transition s a7→ s′, and γ ∈ [0,1) is the discount factor
used to make future rewards progressively less valuable. Given an MDP, the goal of the agent is to
maximise the expected returnGt=

∑∞
i=0γ

irt+i. This is done by learning a policy π(a|s) that selects
the optimal action a∈A in each state s∈S. A typical RL problem attempts to find the optimal policy
π∗= argmax

π
E
[∑

t≥0γ
tr|π

]
, where the expectation is taken over all possible interaction sequences

of the agent’s policy with the environment. The optimal policy is learnt with respect to a particular
task operationalised through the choice of the reward functionR(s,a,s′).

GPI & GPE Generalised Policy Improvement (GPI) and Generalised Policy Evaluation (GPE)
(Barreto et al., 2017) can be used to transfer a set of existing policies to solve new tasks. The
framework is specified for a set of MDPs:

Mφ(S,A,P,γ)={Mφ(S,A,P,r,γ) | r(s,a,s′)=φ(s,a,s′)>w} (1)

induced by all possible choices of weights w that specify all possible rewards r, given a state space
S, action spaceA, transition probabilities P , discount factor γ and features φ(s,a,s′). Note that the
features are meant to be the same for all MDPs M ∈Mφ. Given a policy πi learnt to solve task i
specified by wi, we can evaluate its value under a different reward rj=φ(s,a,s′)⊥wj using GPE:

Qπi
j (s,a)=Eπi

[ ∞∑
k=0

γkφt+k+1(s,a,s′)|St=s,At=a

]>
wj=ψ(s,a)πi>wj . (2)

Hence, given a set of policies π1, π2, ..., πi induced by rewards r1, r2, ..., ri over a subset of the
MDPs M ′ ⊂Mφ, we can get a new policy πj for a new task induced by rj (note that Mj ∈Mφ,
Mj∩M ′=∅) according to:

πj(s)=argmax
a

max
i
ψ(s,a)πi>wj . (3)

3 ENDOGENOUS RL WITH GPE AND GPI

To illustrate the value of endogenous RL we propose the following three-part pipeline consisting of
(1) a representation learning phase, (2) an intrinsic reinforcement learning phase and (3) a few-shot
learning phase when a new task is presented, where steps 1-2 form the ERL stage, and step 3 forms
the RL stage (see Fig. 2). This section provides a general overview of the pipeline. In Sec. 4 we will
discuss why a particular version of the pipeline that uses features with the disentanglement property
is expected to perform well in the RL stage.
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Figure 2: Schematic illustration of the three steps of our method. First we use an existing method for
unsupervised disentangled feature discovery from observations obtained using an exploration policy.
We then learn control policies that learn to achieve certain uniformly spread values for the learnt
features. Finally, we use the feature control policies to solve tasks using the GPI framework. The first
two steps do not require any extrinsic rewards.

Representation learning. At the beginning of the pipeline our agents learn a parameterized
representation of the environment’s state: φ1:n(s) ∈ Φ ⊆ Rn. Each feature φi will be used as a
cumulant that gives rise to an RL task. Specifically, each feature φi will induce an associated optimal
policy πi that maximizes the expected discounted sum of φi.

As an illustration, we now describe a concrete way in which the features φi can be defined. Let
fi : S 7→ [0,1] be arbitrary continuous functions, with i = 1,2, ...,k. We define a discretization of
each fi(s) intom uniformly spaced bins: [0,1/m),[1/m,2/m),...,[(m−1)/m,1), denoted b1,...,bm
respectively. Using this notation, we can define a set of n=mk features as follows:

φij(s,a)=1{fi(s)∈bj}, (4)

where 1{·} is the indicator function. Note that, to facilitate the exposition, we use two indices to
refer to a specific feature; obviously, we can “flatten” these indices and treat the features as a vector if
needed. Intuitively, we can think of the task induced by φij(s,a) as setting the i-th feature to a value
in the interval bj .

Intrinsic RL As discussed above, each feature φij gives rise to an RL task. The second stage of our
pipeline consists of solving these tasks. Crucially, instead of computing the value function of policy
πij with respect to cumulant φij only, we will compute the successor features of πij with respect to
all cumulants:

ψ
πij

lh (s,a)=Eπij

[ ∞∑
t=0

γtφlh(st,at)|s0 =s,a0 =a

]
(5)

where πij(s) is one of the optimal policies induced by cumulant φij , that is, πij(s) ∈
argmaxπQ

π
ij(s,π(s)).

Collectively the successor features ψπij

lh (s,a) can be thought of as an n×nmatrix Ψ with cumulants
in one dimension and policies in the other dimension. The matrix Ψ represents the agent’s knowledge
of how to manipulate the features of the environment. We will also use our double-subscript notation
to refer to specific elements of Ψ(s,a): Ψ(lh),(ij)(s,a)=ψ

πij

lh (s,a).

Few-shot learning phase Provided our agent has invested an initial effort to accurately learn the
matrix Ψ, we can now leverage it to perform few-shot learning. First, note that any linear combination
of cumulants φ1:n, φw=

∑
iwiφi, is itself a cumulant. We can then define the set of cumulants

Φ=

φw(s,a)=
∑
i,j

wijφij(s,a) |w∈Rk×m
. (6)

Given an arbitrary task, we can find a cumulant φw∈Φ that approximates the task as well as possible.
One way to do so is to selectw∈Rk×m such that

w= argmin
w′∈Rk×m

E(s,a)∼D

||∑
ij

w′ijφij(s,a)−r(s,a)||

, (7)
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whereD is a distribution over S×A and ||·|| is a norm. Note that (7) is a linear regression.

Once we have computed w∈Rk×m, we can use the successor features of policy πij to evaluate it on
task φw (a process sometimes referred to as Generalized Policy Evaluation or GPE):

Qπij
w (s,a)=

∑
l,h

wlhψ
πij

lh (s,a), (8)

whereQπij
w (s,a) is the action-value function of πij under cumulant φw. Finally, by using GPI we can

directly compute a policy based on the known policies πij :

πGPI
w (s)=argmax

a
max
ij
Qπij
w (s,a). (9)

While φw is not guaranteed to be optimal with respect to φw, its performance on this task is at least
as good, and generally better, than that of the known policies πij (Barreto et al., 2017). Moreover, the
computation of πGPI

w is immediate given the matrix Ψ andw. Since we assume the matrix Ψ has been
pre-computed in the ERL phase, this essentially reduces an RL problem to the regression problem
shown in (7).

4 THEORETICAL RESULTS

In this section we highlight the importance of the choice of latent representation used in our learning
pipeline. Particularly, we show that when the agent’s latent representation exhibits a particular form
of disentanglement we can exploit this property to both accelerate the learning of our successor
feature matrix and guarantee that GPI finds solutions to certain families of tasks.

Disentangled representations have recently been connected to symmetry transformations (Higgins
et al., 2018), a powerful idea borrowed from physics. Roughly speaking, a symmetry transformation
for a system is a transformation that leaves some property of the system unchanged. Here we use a
specific definition of disentangled representation based on features that can be optimally controlled
without affecting other features. More formally, we propose the following definition:

Optimal independent controllability Let φ1:n be a set of features and let π∗i be the optimal policy
associated with the control task induced by the cumulant 1{φi(s) ∈ Ri}, with Ri ⊂ R. Let (st)

N
t=0

be a trajectory generated by following π∗i . We call φ1:n optimally independently controllable (OIC)
if φj(st)=φj(s0) for all j 6= i and t∈{1,N}.
Note that if we use the features defined in (4) we can have control tasks induced by
1{φij(s) = 1} = 1{fi(s) ∈ bj} for j = 1,2,...,m. In this case two features φij and φhl can be
OIC only if i 6=h. We will abuse the terminology slightly and say that f1:n are OIC if any pair of the
induced features φij ,φhl is OIC when i 6= h. Without loss of generality we will assume henceforth
that we are using features defined as in (4).

An immediate consequence of a set of OIC features is that values under rewards and policies
associated with different features have a simple form:
Lemma 4.1. When f1:n are optimally independently obtainable the successor feature matrix, Ψ, has
the following form:

Ψ(lh),(ij)(s,a)=

{
1

1−γφlh(s,a) if i 6= l

Ψ
π∗ij
lh (s,a) else.

(10)

Proof. The proof follows directly from the definition of OIC features. If l 6= i then under π∗i,j
fl(st)=fl(s0), and thus φlh(st,at)=φlh(s0,at), giving:

Ψ
π∗ij
lh (s,a)=E

[ ∞∑
t=0

γtφlh(st,at)
∣∣π∗ij ,s0 =s,a0 =a

]
=E

[ ∞∑
t=0

γtφlh(s0,at)
∣∣π∗ij ,s0 =s,a0 =a

]

=
1

1−γ
φlh(s,a).

(11)
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Intuitively, Lemma 4.1 states that if the feature fi associated with policy πij is different from the cor-
responding feature fl used to define φlh the associated successor feature Ψ(lh),(ij)(s,a) =ψ

πij

lh (s,a)

reduces to (1−γ)−1φlh(s,a). This reduces learning the matrix Ψ to learning a subset of its entries.

Guarantees for conjunctions of goal-based tasks In addition to simplifying the process of learn-
ing the successor feature matrix Ψ, features with the OIC property come with guarantees under GPI
for certain goal-based tasks. We define a goal-based task as one whose reward function has the form

RG(s)=1{s∈G} (12)

where G⊂S . Given the above definition, we say that a policy π “achieves” G if V πRG
(s)> 0 for all

s∈S .

Our uniform discretization of features f1:k into bins b1:m naturally induces a partition over of the
state-space:

B(S)={Bi1,...,ik : i1,...ik∈ [m]} (13)

where

Bi1,...,ik =
k⋂
j=1

f−1j
(
bij
)
⊂S. (14)

Intuitively, we can think of each partition Bi1,...,ik as one of the possible mk configurations of the
features φij (note that there are fewer than 2mk configurations because some of them are impossible,
as two bins associated with the same feature cannot be active at the same time). We can then think of
these partitions as goal regions analogous to (12). We now show that for any goal g∈B(S) there exist
a linear combination of the cumulants φij that leads to a GPI policy that achieves g.

Theorem 4.1. If f1:k are OIC, then for any g ∈ B(S) there exists a w ∈ Rk×m such that πGPI
w as

defined in (8) and (9) achieves g. One suchw is given bywgij=1{fi(g)=bj}.

Proof. Recall that πGPI
wg = argmaxa Q

max
wg (s,a), where Qmax

wg
(s,a) = maxij

∑
lhw

g
lhΨ

π∗ij
lh (s,a). We

begin by rearranging terms inQmax
wg :

Qmax
wg (s,a)=max

ij

∑
lh

wglhΨ
π∗ij
lh (s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

m∑
h=1

∑
l 6=i

wglhΨ
π∗ij
lh (s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

1

1−γ

m∑
h=1

∑
l 6=i

wglhφlh(s,a)

=max
ij

m∑
h=1

wgihΨ
π∗ij
ih (s,a)+

1

1−γ

m∑
h=1

k∑
l=1

wglhφlh(s,a)− 1

1−γ
wihφih(s,a)

=C(s)+max
ij

m∑
h=1

wgih

[
Ψ
π∗ij
ih (s,a)− 1

1−γ
φih(s,a)

]

(15)

where the third equality follows from Lemma 4.1 and C(s) captures φlh(s,a) terms (which do not
depend on a or i).

First note that, from the form of wg , for each i there is exactly one j such that wgij = 1 with all other
entries being 0. Denote this j as b(i). We can then rewrite:

Qmax
wg (s,a)=C(s)+max

ij

[
Ψ
π∗ij
ib(i)(s,a)− 1

1−γ
φib(i)(s,a)

]
=C(s)+max

i

[
Ψ
π∗ib(i)
ib(i) (s,a)− 1

1−γ
φib(i)(s,a)

] (16)
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Next notice that Ψ
π∗ib(i)
ib(i) (s,a)− 1

1−γφib(i)(s,a) is 0 if fi(s)∈bb(i) and Ψ
π∗ib(i)
ib(i) (s,a) otherwise, giving:

Qmax
wg (s,a)=C(s)+ max

i∈W(s)
Ψ
π∗ib(i)
ib(i) (s,a) (17)

where W(s)={i :fi(s) /∈bb(i)} or, more plainly, the set of feature indices that have not been achieved
yet. This gives

πGPIwg (s)=argmax
a

Qmax
wg (s,a)=argmax

a
max
i∈W(s)

Ψ
π∗ib(i)
ib(i) (s,a), (18)

implying that πGPI
wg will persistently pursue the “unachieved” feature (φlh = 0) that is easiest to

“achieve” (that is, to be set to φlh = 1) among the features associated with nonzero elements in wg .
This means that eventually all such features will be set to 1, which in turn implies that goal g has been
achieved.

5 SPRITEWORLD EXPERIMENTS

In this section we experimentally validate that an agent can effectively use task-free interactions with
an environment to gain a boost data efficiency across a wide range of subsequent tasks. In particular,
we test whether an agent that uses GPI to transfer a set of feature control policies discovered in
the ERL setting has a boost in performance over a baseline DQN agent that learns each task from
scratch. We also validate whether disentangled feature control policies form a better basis for transfer
compared to entangled feature control policies, and whether our pipeline outperforms DIAYN
(Eysenbach et al., 2019), a state of the art approach for discovering a diverse set of policies in the
absence of external tasks.

agent

Figure 3:
Spriteworld en-
vironment. The
agent can move
up/down, left/right
and drag objects
when it steps on
them.

We validate our ideas on a toy Spriteworld environment (Watters et al., 2019)
(see Fig. 3). The environment contains an agent and two sprites. The action
space is 8-dimensional and consists of moving the agent up/down or left/right,
as well as the same four actions but for dragging objects. It is only possible
to drag objects if the agent is standing on them. Furthermore, dragging ac-
tions move the agent slower than the standard move actions. This environment
makes it easy to define a wide range of diverse natural tasks of different dif-
ficulty level that can be easily expressed through language. The easiest tasks
are specified in terms of the final position of the agent (“top”, “bottom”, “left”
or “right”). The next difficulty level makes the locations more specific (e.g.
“top left corner” or “bottom right corner”). We also specify equivalent tasks
but in terms of the final object position (e.g. “square at the bottom”, “circle at
the top right corner”). Note that the object-based tasks are more difficult than
the agent-based tasks, because agent’s position can be controlled directly and
independently in the action space, while controlling object position requires
more elaborate policies that are also dependent on the agent’s position. Finally,
we also specify a set of tasks in terms of disjunctions of single agent or ob-
ject properties (e.g. “agent to the left and square to the top”), conjunctions of object properties (e.g.
“square at bottom right and circle at top left”) or a combination of conjunctions and disjunctions (e.g.
“circle at bottom right or top left”). The agent receives a reward of 1 if the relevant aspects of the envi-
ronment state are within d distance of their respective goal locations, otherwise the reward is 0. Each
episode terminates immediately if the goal is achieved. The agent and the objects are initialised in
random positions sampled uniformly within the environment at the start of each episode. We evaluate
the performance of our agent and the baselines on 3 tasks sampled from each of the 7 difficulty levels.
Given the structure of our tasks, the average reward corresponds to the average number of episodes on
which the agent solves the task.

Ground truth features We evaluated how well our approach works in the scenario where disen-
tangled features are the true x and y positions of the agent and the objects, and the entangled features
are rotations of the disentangled features. Fig. 4 demonstrates that GPI over feature control policies
provides an almost immediate boost in performance over the DQN baseline. This effect gets more
prominent as the task difficulty increases, whereby the number of steps before DQN reaches the same
performance as the GPI agent increases with task difficulty, whereby the GPI agent is able to solve the
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Agent tasks Single obj tasks 
Single Conj Single Conj Disj Conj Disj + Conj

DQNDisent EntDisent + trick DIAYN

Figure 4: Average reward over all tasks for (left to right): 1) getting the agent to a location specified
in terms of x or y; 2) getting the agent to a location specified in terms of a conjunction of x and y; 3-4)
same for the agent; 5) getting two objects or an object and an agent to a disjunction of two locations
specified in terms of an x or a y position; 6) same as before but now to a conjunction of locations
specified in terms of an x or a y position; 7) same as before, but now the location is specified as a
disjunction of two conjunctions. Note that GPI over disentangled features with the “off-diagonal”
trick is able to solve all tasks (note that the average reward indicates the proportion of episodes on
which tasks are solves), incluing the hardest disjunction of conjunctions tasks that even DQN could
not solve.

tasks most of the time within around 50k learning steps, while the DQN baseline typically requires
> 150k steps. We also see that GPI over disentangled features provides a significantly bigger jump
in performance compared to GPI over entangled features. Finally, it is clear that the “off-diagonal”
trick works well for the disentangled GPI, but not for the entangled version, which suggests an ad-
ditional benefit of better computational efficiency during ERL learning for the former version of our
pipeline. Moreover in our comparisons against DIAYN, we found that the competing method could
only learned to perform tasks involving the agent, failing to learn to interact with other objects.

6 CONCLUSIONS

We have proposed a principled way to learn and recombine a basis set of policies that guarantees
achievability for a large set of natural conjunctive tasks in an environment. We have demonstrated that
these policies can be learnt in the ERL setting, where the agent has no access to external rewards and
has to learn by setting its own tasks. We theoretically justified and experimentally verified the three-
stage pipeline, where the agent discovers useful features, learns to achieve endogenously specified
tasks of setting these features to particular values, and then used GPI over these policies to bootstrap
reasonable performance on a wide range of natural tasks which can be expressed in language and
which do not rely on a particular execution ordering. We demonstrated that disentangled features pro-
duce better task coverage and learning efficiency, since they reflect those aspects of the environment
that can in principle be transformed independently of each other.
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A APPENDIX

A.1 SPRITEWORLD ENVIRONMENT

The Spriteworld environment consists of a room without obstacles with an agent and two objects: a
circle and a square. The agent can take 8 agents consisting of 4 regular movements (up, down, left,
right) and 4 “dragging movements” which mirror the regular movements but move the agent half as
far. Objects in the environment can overlap and pass through each other. When the agent overlaps with
an object and executes a dragging movement, both the agent and the object are moved together. For
our experiments we use a vectorized version of our environment state as observations to our models,
consisting of 6 scalars representing the the x and y positions of the agent and each object. When the
environment is reset, both the agent and objects are randomly positioned.

A.2 LEARNING THE SUCCESSOR FEATURE MATRIX

For all experiments involving learning the successor feature matrix Ψ we trained a parameterized
Q network. This network takes a state and target policy as input and outputs a vector of successor
features under the target policy. The entire vector of successor features under a policy are updated at
once for each transition sampled from that policy. We generate behavior through a collection of 128
actors, each of which commits to pursuing a single cumulant φij and follows an epsilon greedy policy
with respect to that policy.

Our parameterized Q network consists of one fully connected layer of width 1024 applied to the obser-
vation and policy representations before combining taking their product to combine them. Following
this product, we apply two more fully connected layers of size 1024 before outputting our final vector
of successor features. All network activations are leaky relus with α=0.1.
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