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ABSTRACT

Due to the lack of enough training data and high computational cost to train a deep
neural network from scratch, transfer learning has been extensively used in many
deep-neural-network-based applications. A commonly-used transfer learning ap-
proach involves taking a part of a pre-trained model, adding a few layers at the end,
and re-training the new layers with a small dataset. This approach, while efficient
and widely used, imposes a security vulnerability because the pre-trained model
used in transfer learning are usually available publicly to everyone, including po-
tential attackers. In this paper, we show that without any additional knowledge
other than the pre-trained model, an attacker can launch an effective and efficient
brute force attack that can craft instances of input to trigger each target class with
high confidence. We assume that the attacker does not have access to any target-
specific information, including samples from target classes, re-trained model, and
probabilities assigned by Softmax to each class, and thus called target-agnostic
attack. These assumptions render all previous attacks impractical, to the best of
our knowledge. To evaluate the proposed attack, we perform a set of experiments
on face recognition and speech recognition tasks and show the effectiveness of the
attack. Our work sheds light on a fundamental security challenge of the Softmax
layer when used in transfer learning settings.

1 INTRODUCTION

Deep learning has been widely used in various applications, such as image classification Parkhi et al.
(2015), image segmentation Chen et al. (2016), speech recognition Ji et al. (2018), machine trans-
lation Wu et al. (2016), network traffic classification Rezaei & Liu (2018b), etc. Because training
a deep model is expensive, time-consuming and requires a large amount of data to achieve a good
accuracy, it is often undesirable or impractical to train a model from scratch in many applications.
In such cases, transfer learning is often adopted to overcome such hurdles.

A typical approach for transfer learning is to transfer a part of the network that has already been
trained on a similar task, add one or a few layers at the end, and then re-train the model. Since the
part of the model has already been trained on a similar task, the weights are usually kept frozen
and only the new layers are trained on the new task. Hence, the number of training parameters
are considerably smaller than training the entire model, which allows us to train the model quickly
with a small dataset. Transfer learning has been used in practice, including applications such as
face recognition Parkhi et al. (2015), text-to-speech synthesis Jia et al. (2018), encrypted traffic
classification Rezaei & Liu (2018a), and skin cancer detection Esteva et al. (2017).

One security vulnerability of transfer learning is that pre-trained models are often publicly available
to everyone. For example, Google Cloud ML tutorial suggests using Google’s Inception V3 model
as a pre-trained model and Microsoft Cognitive Toolkit (CNTK) suggests using ResNet18 as a pre-
trained model for tasks such as flower classification Wang et al. (2018). This means that the part of
the model transferred from the pre-trained model is known to potential attackers.

In this paper, we show that an attacker can launch a target-agnostic attack and fool the network
when only the pre-trained model is available to the attacker. In our attack, the attacker only knows
the source (pre-trained) model used to re-train the target model. The attacker does not know the
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Figure 1: Example of activation vector and how the Softmax layer responses. The image on the left
shows the activation vector of a natural face in the training set. The Softmax layer performs Softmax
operation over the linear combination of such activation vectors and assigns high confidence to
the corresponding class. The target-agnostic image (the image on the right) is crafted such that it
activates one neuron in activation vector with extremely large value and all others are almost zero.
Such activation vector also fools the softmax layer to produce output with high confidence. Due to
the lack of space, we only show the first 400 neurons of the activation vector.

class labels, samples from any target class, the entire re-trained model, or probabilities the model
assigns to each class. That is why it is called target-agnostic. To the best of our knowledge, these
assumptions are more restrictive than any previously proposed attacks and none of them works under
such restrictive assumptions.

The target-agnostic attack can be adopted in scenarios where fingerprint, face, or voice is used for
authentication/verification. In such cases, the attacker usually do not have access to any instances
of fingerprint or voice samples, otherwise she could have used that instance to bypass authentica-
tion/verification. The aim of our attack is to craft an input that triggers any target class with high
confidence. The crafting process can also be continued to trigger all target classes. Such adversar-
ial examples can be used to easily bypass authentication/verification systems without having a true
sample of the target class. Our work develops a highly effective target-agnostic attack, exploiting the
intrinsic characteristic of Softmax in transfer learning settings. Our experiments on face recognition
and speech recognition demonstrate the effectiveness of our attack.

In a typical transfer learning procedure, all neural networks layers up to the penultimate layer are
transferred to a new model and then a Softmax layer is added and trained on a new task. We call the
scores at the penultimate layer activation vector and the part of the model that produces the activation
vector feature extractor. Hence, the Softmax layer basically computes the softmax operation over
the linear combination of activation vector. The left side of Figure 1 presents a natural input and
a typical activation vector. Due to the use of linear combination of activation vectors in Softmax
layer, not only such patterns can trigger the corresponding classes, but also a large number of other
unrelated patterns can also trigger Softmax layer in the same way. In this paper, we show that if we
craft an image that produces an activation vector such that one neuron is large and others are almost
zero (the right side of Figure 1), it triggers the class for which the weight associated to that neuron
is higher in the linear combination. In other words, instead of finding all features that should be
activated by feature extractor, we assign very large value to only one neuron to compensate for other
neurons that we do not activate.

In summary, the contributions of this paper are:

1. presenting a target-agnostic attack in transfer learning settings. We show that if the pre-
trained model used during transfer learning is available, an attacker can craft a set of uni-
versal adversarial images that can effectively fool any model re-trained on the pre-trained
model. Our attack does not need any training sample from the target model or the target
model itself for crafting images. Such a target-agnostic attack has two consequences: I)
the crafting time is irrelevant because adversarial images are crafted only once and then
they can be used on any model (that is why the attack is called target-agnostic), and II) it
does not need to query the target model to craft images. Hence, an attack can craft a set of
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adversarial images on VGG face model, as an example, and then uses them effectively on
any re-trained model based on VGG face.

2. designing a simple approach to exploit the vulnerabilities of Softmax layer. We show that
both threshold-based approach, where the model only accept the classification result if the
confidence is high, and reject-class-based approach, where the model is trained with an
extra class, called reject/null class, to reject adversarial images are prone to our attack.

3. evaluation of our attack on face recognition and speech recognition tasks. We study the
effectiveness of our model in different scenarios and settings.

2 RELATED WORK

In general, there are two types of attacks on deep neural networks in literature: I) evasion and 2)
data poisoning.In the evasion attack, an attacker aims to craft or modify an input to fool the neural
network or force the model to predict a specific target class Elsayed et al. (2018). Various methods
have been developed to generate adversarial examples by iteratively modifying pixels in an image
using gradient of the loss function with respect to the input to finally fool the network Szegedy et al.
(2013); Carlini & Wagner (2017a;b). These attacks usually assume that the gradient of the loss
function is available to the attacker. In cases where the gradient is not available, it has been shown
than one can still generate adversarial examples if the top 3 (or any other number of) predicted
class labels are available Sharif et al. (2016). Interestingly, it has been shown that the adversarial
examples are often universal, that is, an adversarial example generated for a model can often fool
other models as well Carlini & Wagner (2017a). This allows an attacker to craft adversarial examples
from a model she trained and use it on the target model provided that the training set is available.

The second type of attacks on deep neural networks is called backdoor attack or data poisoning
Shafahi et al. (2018). In the data poisoning attack, an attacker modifies the training dataset to create
a backdoor that can be used later to trigger specific neurons which cause mis-classification. In some
papers, a specific pattern is generated and added to the training set to fool the network to associate
the pattern with a specific target class Sharif et al. (2016); Chen et al. (2017); Liao et al. (2018);
Liu et al. (2017). For instance, these patterns can be an eyeglass in a face recognition task Sharif
et al. (2016), randomly chosen patterns Chen et al. (2017), some specific watermarks or logos Liu
et al. (2017), specific patterns to fool malware classifiers Muñoz-González et al. (2017), etc. In
some extreme cases, it has been shown that by only modifying a single bit to have a maximum or
minimum possible value, one can create a backdoor Alberti et al. (2018). This happens due to the
operation of max pooling layer commonly used in convolutional neural networks. After the training
phase, the backdoor can be used to fool the network to predict the class label associated with these
patterns at inference time.

There are a few studies specifically focused on attack in transfer learning scenarios Ji et al. (2018);
Wang et al. (2018). In Wang et al. (2018), the pre-trained model and an instance of target image
are assumed to be available. Assuming that the attacker knows that the first k layers of the pre-
trained model copied to the new model, the attacker perturb the source image such that the internal
representation of the source image becomes similar to the internal representation of the target image
at layer k, using pre-trained model. In Ji et al. (2018), first, a set of semantic neighbors are generated
for a given source and target input which are used to find the salient features of the source and
target class. Then, similar to Wang et al. (2018), the pre-trained feature extractor is used to perturb
the source image along the salient features such that their internal representation becomes close.
However, these attacks do not work when no instances of the target class is available.

In this paper, we propose a target-agnostic attack on transfer learning. We assume that only the pre-
trained model (e.g., VGG face or ResNet18) is available to the attacker. We assume the re-training
data and the re-trained model is unknown and not even a single target class sample is available.
Our attack model is more restrictive than the previous studies, and thus renders previous attacks
on transfer learning infeasible. Note that black-box attacks Sharif et al. (2016); Papernot et al.
(2017), where an attacker only have access to the model output, can theoretically be applied in our
transfer learning settings. However, a successful black-box attack often needs hundreds to millions
of queries to the model whereas the high effectiveness of our attack means it only needs a few query
to the target model to generate adversarial input.
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Figure 2: Transfer learning on VGG Face

3 SYSTEM MODEL

In this paper, we assume that the transferred model that is already trained on a source task is publicly
available. This is a reasonable assumption, which in fact is widely used in practice. For instance,
Liu et al. (2017) used the VGG face model Parkhi et al. (2015) trained to recognize 2622 identities to
recognize 5 new faces. The model is shown in Fig. 2. While our attack targets any transfer-learning-
based deep models, we use face recognition based on VGG face as an example for explanation.
Fig. 2 shows the typical transfer learning approach for face recognition Parkhi et al. (2015).

In transfer learning, the layers whose weights are transferred to the new model are called feature
extractor that outputs semantic (internal) representation of an input. The last few layers that are
re-trained on the new task are called classifier. In typical transfer learning attack scenarios, the
transferred model is publicly available, but the re-trained model is not known to an attacker. In other
words, the attacker only knows the feature extractor but not the classifier. The previous work on
transfer learning Wang et al. (2018); Ji et al. (2018) assumes that at least one sample image from
each target class is available because they aim to generate images that produce similar activation
vector as the target samples produce. These approaches do not work without samples from the
target class.

In this paper, we assume that the attacker does not have access to any samples of the new target
classes. Our motivation of the attack is to craft images for models used in systems, such as authenti-
cation/verification system, for which there is no target sample available, otherwise the attacker could
have just used those samples. In such cases, attackers do not have access to samples of the target
classes and, consequently, the previous attacks do not work.

4 ATTACK DESIGN

Design Principle. To launch an attack with these restrictive assumptions, we need to approach
the problem differently. Our attack exploits the key vulnerabilities of the Softmax layer which
assigns high confidence labels to vast area of input space that are not necessarily close to the training
manifold Gunther et al. (2017). Softmax layer basically performs Softmax operation on the linear
combination of activation vector. The activation vector of a real image often shows certain pattern
with several triggered neurons, as in Figure 1 (on the left). However, the linear combination of the
Softmax layer can also be triggered if only a single neuron in the activation vector has a large value.
In other words, each neuron of the activation vector has a direct and linear relation with one or few
target classes with different weights. Hence, the attacker can trigger these neurons one by one to see
which one is highly associated with each target class.

The main attack idea is to activate the ith neuron at the output of the feature extractor (n−1th layer),
denoted by xn−1i , with a high value and keep the other neurons at the same layer zero, similar to
the Figure 1 (on the right). After the feature extractor, the model has only a FC layer and a Softmax
that outputs the probability of each class. Because of the linear combination used before Softmax
operation, if there exists a neuron at layer nth that associated a large weight to xn−1i , it will become
large. Hence, the softmax will assign a high confidence to that class. In order to find an adversary
image, we can iteratively try to trigger each neuron at the (n−1)th layer to find an adversary image.

Next, we further explain the attack intuition in more detail using a simple example. Let’s assume
that the output of feature extractor is layer (n − 1)th and we only have two target classes. Let’s
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keep all neurons at layer (n − 1)th zero except the ith neuron, denoted by xn−1i . Then, for the last
layer, nth, we have xn1 = Wn

1,ix
n−1
i and xn2 = Wn

2,ix
n−1
i , and other terms are zero. We omit b

for simplicity. Now, if Wn
1,i > Wn

2,i, increasing xn−1i increases the difference between xn1 and xn2 .
Although the difference increases linearly with xn−1i , the Softmax operation makes the difference
exponential. In other words, by increasing xn−1i , one can arbitrarily increase the confidence of the
target class whose Wn

i is higher, i.e., class 1 in this example. That is the motivation of the proposed
brute force attack.

Algorithm 1 The target-agnostic brute force attack
Input: M (number of neurons at the output of feature extractor), Iimg (initial input), K (number of

iteration), F (known feature extractor), α (step constant), T (the target model on attack):
1: procedure ATTACK(Iimg , F , T )
2: for i from 1 to M do
3: Y = 0m

4: Y [i] = 1000; . Any sufficiently large number
5: X = Iimg

6: for j from 1 to K do
7: L = γ(F (x)[i])− Y [i])2 + β(

∑
l 6=i relu(F (x)[l]− Y [l])

2)
8: δ = ∂L

∂x
9: X = X − αδ

10: if T (X) bypasses the authentication then return X
return ∅

Algorithm Design. The brute force algorithm is shown in Algorithm 1. We first iterate through all
neurons at the output of the feature extractor and set the target, Y , such that at each iteration only
one neuron is triggered. We set all elements of Y to zero except for the ith one which can be set
to any sufficiently large number, e.g., 1000, in Algorithm 1. Note that Y is a target of the feature
extractor, not that of the entire re-trained model. In the case of the VGG face, there are 4096 neurons
at this layer. So, we only try 4096 times at maximum. In fact, we will show in the next section that
we only need to try a few times to trigger any class and we need way fewer than 4096 attempts to
trigger all target classes at least once.

Inside the second loop, we use the derivative of the loss with respect to an input and change the
input gradually to decrease the loss. We find that typical MSE loss between Y and feature extractor
is very inefficient. For the target activation vector where ith neuron is large and all other neurons
are close to zero, the modified loss is defined as follows:

L = γ(F (x)[i])− Y [i])2 + β(
∑
l 6=i

relu(F (x)[l]− Y [l])
2
), (1)

where F (X) is the output of feature extractor (i.e. activation vector) and Y is the target activation
vector. It is similar to the regular MSE loss with two minor changes: I) Because the importance
of ith neuron is higher than all other 4095 neurons to our attack, we use γ and β to control the
influence of each part on the loss function. II) Because of the existence of relu function after each
fully connected layer to provide non-linearity, any value on the (−∞, 0] range becomes 0. Hence,
instead of crafting an image that has large value in ith neuron and zero value in all other neurons,
we aim to craft an image that has large value in ith neuron and any non-positive value in all other
neurons. Not only the original MSE might not be even achievable, our revised loss function defined
in (1) is much more efficient since the loss function only focuses on neurons that have positive value
at each step and ignores the ones that are already negative. This goal is acheived by adding the relu
function in the loss function.

Implication. We call this type of attack target-agnostic because it does not exploit any information
from target’s classes, model, or samples. In fact, if the same pre-trained model is used to re-train two
different target tasks (models), A and B, the proposed target-agnostic attack crafts similar adversarial
inputs for both A and B since it only uses the pre-trained model to craft inputs. The implication is
that the attacker can craft a set of adversarial inputs with the source model using the proposed
attack and use it effectively to attack all re-trained models that use the same pre-trained model. This
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Table 1: Attack performance on balanced and imbalanced re-training dataset. Acc, NoA, and Eff
stands for accuracy, number of attempts, and effectiveness, respectively.

Target Imbalanced dataset Balanced dataset
classes Acc NoA Eff(95%) Eff(99%) Acc NoA Eff(95%) Eff(99%)

5 99.21% 63.29 93.52% 90.23% 99.12% 48.25 91.68% 87.82%
10 98.47% 264.80 91.14% 86.28% 98.43% 149.97 88.87% 83.07%
15 98.01% 451.45 90.41% 85.31% 97.16% 323.36 87.79% 82.05%
20 97.07% 2836 88.72% 82.93% 96.87% 413 87.17% 79.16%

means that the attack crafting time is not important and one can create a database of likely-to-trigger
inputs for each popular pre-trained model, such as the VGG face or ResNet18. Given the simplicity,
remarkable effectiveness, and target-agnostic feature of the proposed algorithm, it poses a huge
security threat to transfer learning.

5 EVALUATION

In this section, we evaluate the effectiveness of our approach using two test cases: Face recognition
and speech recognition (Appendix A.2. We use Keras with Tensorflow backend and a server with
Intel Xeon W-2155 and Nvidia Titan Xp GPU using Ubuntu 16.04. We use two metrics to evaluate
the proposed attack model: 1) Number of attempts: Assuming that the number of target classes are
known, this metric shows how many adversarial input instances are queried, on average, to trigger all
target classes at least once with above 99% confidence. 2) Effectiveness (X%): This metric shows
the ratio of crafted inputs that trigger any target classes with X% confidence over the total number
of crafted inputs. We use 95% and 99% confidence for effectiveness in this paper.

5.1 CASE STUDY: FACE RECOGNITION

In this case study, we use the VGG face model Parkhi et al. (2015) as a pre-trained model. The
implementation is available in tar (2019). We remove the last FC layer and the softmax (SM) layer to
make a feature extractor. Then, we pair it with a new FC and SM layer, and re-train the model (while
fixing feature extractor) with labeled faces of vision lab at UMass LWF (2016). During re-training,
we train the model with Adam optimizer and cross entropy loss function. We set K = 50000,
α = 0.1, β = 0.01 , and γ = 1. In some experiments, we add more FC layers before the SM layer,
as explained later.

Number of Target Classes. Table 1 show the impact of number of target classes on the attack
performance. We use 20 classes with the highest number of samples from UMass dataset LWF
(2016). The largest class is George W Bush with 530 samples and the smallest one is Alejandro
Toledo with 39 samples. A blank image is used as an intial image. For 5, 10, and 15 classes, we
randomly choose a set from 20 classes and re-train and attack the model 50 times and average the
results. For 20 classes, we only re-train and attack once. Table 1 also shows the result when we
use five images from each class for test set and all other other images for training set. Hence, the
re-training dataset is imbalanced. To balance the dataset, we undersample all classes to have an
equal training size.

As it is shown, the effectiveness of the attack on an imbalanced model is higher. However, the
number of attempts is slightly worse. We find out that on average the weights of SM layer for
the class with larger training samples are slightly higher than the other classes. Hence, it is easier
to trigger that class with the proposed method which increases the effectiveness. However, it is
much harder to trigger the smallest class which makes the number of attempts larger. The impact
of imbalance re-training dataset is studied in more detail in Appendix A.1, where we show that the
probability of triggering a target class directly associated with the number of training samples of
that class during re-training. Moreover, the effectiveness and the number of attempts improve when
the number of target classes decreases, as expected. Note that in all scenarios, the effectiveness is
greater than 75%. It means that the first crafted image has more than 75% chance of bypassing the
authentication system (or any other application). It basically means that the traditional approach of
limiting the number of attempts to prevent brute-force-based attack does not work here.

6



Under review as a conference paper at ICLR 2020

70%

75%

80%

85%

90%

95%

100%

F
C

-7

F
C

-6

C
o
n
v
-5

-3

C
o
n
v
-5

-1

C
o
n
v
-4

-3

C
o
n
v
-4

-1

C
o
n
v
-3

-3

C
o
n
v
-3

-1

Effectiveness(95%)
Effectiveness(99%)

Accuracy

(a) Effect of re-training more layers

 0

 100

 200

 300

 400

 500

 600

 700

 800

F
C

-7

F
C

-6

C
o
n
v
-5

-3

C
o
n
v
-5

-1

C
o
n
v
-4

-3

C
o
n
v
-4

-1

C
o
n
v
-3

-3

C
o
n
v
-3

-1

N
u
m

b
e
r 

o
f 
a
tt
e
m

p
ts

(b) Number of re-training layers vs attempts

Figure 3: Effect of number of re-training layers

Table 2: Effect of number of new layers in the re-trained model
# of new layers Accuracy Attempts Effectiveness(95%) Effectiveness(99%)

1 99.57% 48.25 91.68% 87.82%
2 98.24% 51.87 91.57% 87.45%
3 95.46% 257.26 87.45% 85.67%

Number of Layers to Re-train. In previous experiments, we assume that the weights of the feature
extractor transferred from the pre-trained model are fixed during re-training and only the last FC
layer is changed. One can tune more layers during re-training. Fig. 3(a) shows the impact of tuning
more layers on the effectiveness and accuracy. Note that we assume that attacker does not know
anything about the target model. Hence, in this experiment, the attacker still uses the pre-trained
feature extractor up until the last FC layer. That means the pre-trained feature extractor that the
attacker uses is slightly different from the re-trained model. In Fig. 3(a), X axis represents the layer
from which we start tuning up to the last FC layer. Due to the small re-training dataset, as the number
of tuning layers increases the accuracy drops. However, by tuning more layers, the pre-trained model
that the attacker has access to becomes more different from the re-trained model. That is why the
effectiveness of the attack decreases. Similarly, the number of attempts increases, as shown in Fig.
3(b). Despite the difference between the re-trained model and the model the attacker has access to,
the attack is still effective which means that the pre-trained model cannot be changed dramatically
during re-training process and re-training cannot be used as a defense mechanism.

Number of New Layers in the Re-trained Model. Next, we measure how adding and training more
layers (pair of FC + Relu) after feature extractor can affect the proposed attack effectiveness. In this
experiment, we use 5 balanced target classes. As shown in Table 2, adding more layers decreases
the accuracy of the re-trained model because the re-training dataset is small and not enough to train
more layers from scratch. The effectiveness of the attack decreases sightly as more new layers are
tuned. When adding more new layers, not all target classes are affected equally and some classes
may become harder to trigger. That is why the number of attempts increases. The goal of our attack
is to have an activation vector with only one large value. However, each extra layer, added after
feature extractor, smooths out the single large value and distributes it to more neurons in activation
vector. That is the reason the attack becomes less effective when more new layers are added.

Attack Effectiveness on A Classifier with Reject Class. It has been shown that relying on a
threshold to reject or accept the classification result is not accurate because for the vast space of
unknown inputs Softmax provides high confidence scores Nguyen et al. (2015). Hence, we add an
extra class to the softmax layer, similar to Hosseini et al. (2017), called reject/unknown class. During
re-training, we choose random sample images from entire UMass dataset, except the classes that we
choose for target faces, and label them as reject class. We vary the number training samples for
reject class to see its effect on accuracy and effectiveness. Figure 4 illustrates the trade-off between
the accuracy of the re-trained model and the effectiveness of our attack. The lowest effectiveness,
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for which the accuracy is 87.72%, is 41.40% which is still high. Hence, the classifier with a reject
class option is still prone to our target-agnostic attack.

6 DISCUSSION

In this paper, we show that the public information from transfer learning settings can be exploited to
fool Softmax-based classifier. The main vulnerabilities of the Softmax layer comes from the fact that
it assigns a high confidence output to inputs that are far away from the training input distribution.
This drawback has been shown in studies that investigate open-set problem Bendale & Boult (2016);
Gunther et al. (2017). In other words, Softmax-based models are vulnerable to inputs with different
distribution than their training set. To mitigate the problem and defeat our attack, we use a recent
novel classifier for open-set problem, called extreme value machine (EVM) Rudd et al. (2017), that
aims to fit a distribution to the activation vector (Figure 1) rather than a linear combination based
on Softmax operation. We follow the experimental setting similar to Gunther et al. (2017). The
accuracy of the EVM-based model is 95.60%, which is lower than the softmax-based model in our
experiments, and the model successfully defeat all our crafted images. The main reason that EVM
can be used as a defense mechanism is that the activation vector of our crafted images are far from
the activation vector of any image in the training set. However, EVM has its own vulnerability: we
find out that by feeding images of random faces (UMass dataset in our study), there is 7.38% chance
that the EVM-base model classifies the input as one of the target classes. Hence, more robust model
is needed to defend our attack and also work well in open-set scenarios.

7 CONCLUSION

In this paper, we develop an efficient brute force attack on transfer learning for deep neural networks
that exploits the fundamental issue of Softmax layer. We assume that the attacker only knows the
transferred model and its weights, and does not have access to the re-trained model, the re-trained
dataset, and the re-trained model’s output. Our evaluations based on face recognition and speech
recognition show that with a handful of attempts, the attacker can craft adversarial samples that can
trigger all classes despite the fact that the attacker does not know the re-trained model and model’s
target classes. The target-agnostic feature of the attack allows the attacker to use the same set of
crafted images for different re-trained models and achieve high effectiveness when the models use
the same pre-trained model. The proposed target-agnostic attack reveals a fundamental challenge
of Softmax layer in transfer learning settings: because the Softmax layer assign high confidence
output to vast space of unseen inputs, a simple brute-force attack can operate surprisingly effective.
To defeat the target-agnostic attack, the model should consider the distribution of the activation
vector, like EVM method, not the linear combination alone, like Softmax layer. Nevertheless, there
is a fundamental trade-off between accuracy and robustness and it should be tuned based on the
sensitivity of the application.
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A APPENDIX

A.1 CASE STUDY: FACE RECOGNITION

Choice of Initial Image. To generate adversarial images using Algorithm 1, we need to start with
an initial image. To find out whether the initial image we start with has any impact on the brute force
attack, we conduct 3 different experiments. We use random input, blank image (with all pixel set to
one), and random images of celebrities. The results are shown in Fig. 5. First column shows crafted
images starting from the random input. Second column illustrates crafted images from blank image.
Third and fourth columns show the initial images and the crafted images from the initial image,
respectively. The fifth column illustrates a sample image from each class that is used for re-training.
In our experiment, the choice of initial image has negligible impact on effectiveness of our attack.
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(a) Class 0 with
random noise

(b) Class 0 with
blank image

(c) Intact initial
random face

(d) Class 0 with
random face

(e) Class 0 train-
ing sample

(f) Class 1 with
random noise

(g) Class 1 with
blank image

(h) Intact initial
random face

(i) Class 1 with
random face

(j) Class 1 train-
ing sample

(k) Class 2 with
random noise

(l) Class 2 with
blank image

(m) Intact initial
random face

(n) Class 2 with
random face

(o) Class 2 train-
ing sample

(p) Class 3 with
random noise

(q) Class 3 with
blank image

(r) Intact initial
random face

(s) Class 3 with
random face

(t) Class 3 train-
ing sample

(u) Class 4 with
random noise

(v) Class 4 with
blank image

(w) Intact initial
random face

(x) Class 4 with
random face

(y) Class 4 train-
ing sample

Figure 5: First column shows crafted images starting from the random input. Second column illus-
trates crafted images from blank image. Third and fourth columns show the initial images and the
crafted images from the initial image, respectively. The fifth column illustrates a sample image from
each class that is used for re-training.
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Figure 6: Target class distribution

Table 3 shows the result of using different initial images on the attack performance. We only re-train
a model once with 5 randomly chosen faces and we achieve 99.38% accuracy. Then, we launch the
attack on the same model 3 times, each with a different initial image. Although using a face image
marginally improves the attack performance, the impact is negligible and the other initial input cases
are still considerably effective.

Table 3: Impact of initial input on the attack
Initial input # of attempts Effectiveness(95%) Effectiveness(99%)

Blank 18 98.37% 98.37%
Random 19 98.37% 97.22%

A face image 18 99.83% 99.19%

Distribution of Target Classes. Fig. 6(a) illustrates a typical distribution of target classes triggered
by crafted images of the proposed method. It is clear that the distribution is far from Uniform. It
basically means that more neurons in layer n−1 are associated with class 1 and, hence, during brute
force attack, more crafted images will trigger that class.

To measure the impact of re-training set on the distribution of target classes, we use Jensen-Shannon
distance (JSD). Jensen-Shannon divergence measures the similarity between two distributions as
follows:

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (2)

where D(.) is Kullback-Leibler divergence and M = 1
2 (P + Q). Square root of JSD is a metric

that we use to compare the similarity between the distribution of data samples in re-training dataset
versus the distribution of triggered classes with adversarial inputs of our method.

We find that distribution of training samples during re-training can affect the target class distribu-
tion. Fig. 6(b) shows the JS distance of training set distribution and Uniform distribution versus JS
distance of target class distribution and Uniform distribution. For each data point, we pick 5 random
persons from UMass dataset and then re-train the VGG face model with. The line in Fig. 6(b) repre-
sents the linear regression of all data point. The figure shows that when the training set of re-training
phase becomes more non-Uniform, the target class distribution becomes even more non-Uniform.

A.2 CASE STUDY: SPEECH RECOGNITION

In Ji et al. (2018), a speech recognition model for digits were re-trained to detect speech commands.
Following the same experiment, a model first pre-trained on the Pannous Speech dataset dig (2017)
containing utterance of ten digits. Then, we randomly pick 5 classes from speech command dataset
com (2017) to re-train the model. 80% of the dataset is used for fine-tuning and 20% for inference.
Due to the lack of space and similarity of the results with previous case study, we omit most experi-
ments with similar results. We use a 2D CNN model with 3 building block, each of which contains
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Table 4: Effect of number of target classes on the proposed attack
# of target classes Accuracy Attempts Effectiveness(95%) Effectiveness(99%)

5 97.38% 37 100.00% 98.21%
10 93.30% 114 95.80% 93.75%
15 85.72% 812 92.22% 84.17%

Table 5: Effect of re-training set size
# of samples per class Accuracy Attempts Effectiveness(95%) Effectiveness(99%)

50 77.56% 13 97.48% 95.00%
100 82.46% 17 97.21% 95.23%
200 85.51% 21 98.25% 96.82%

1000 89.89% 17 98.60% 97.64%
2000 92.04% 17 98.60% 97.81%

convolutional layers, Relu activation, and pooling layer, followed by 2 FC layers and softmax layer
at the end. The input is the Mel-Frequency Cepstral Coefficients (MFCC) of the wave files. Similar
to the previous case study, we replace the SM layer and re-train the model by only tuning the last
FC and SM layer.

Number of Target Classes. Table 4 shows the impact of number of target classes on the accuracy
of the model and attack performance. Similar to the face recognition experiment, we start with a
blank input (a 2D MFCC with 0 for all elements) and we use 70 and 0.1 for k and α, respectively.
As expected, the accuracy drops when the number of target classes increases. Since ten classes
representing digits exist in both the pre-training dataset (Pannous dig (2017)) and the re-training
dataset (speech command com (2017)), these classes are much easier for the target model to re-train
with high accuracy in comparison with other classes, such as stop or left command. Hence, the
re-trained model has more neuron connections to help classify digit classes which makes it harder
for both the model to classify the other classes and the proposed attack to craft adversarial input
for the non-digit classes. That is why we observe more dramatic decrease in accuracy and attack
performance when the number of target classes increases.

Re-training Sample Size. Unlike face recognition case study in which most re-training classes have
fewer than 100 samples, speech command dataset com (2017) contains more than 2000 samples for
each class. Hence, we conduct an experiment to study the effect of re-training sample size on model
and attack performance. We choose six classes (commands) that the pre-trained model did not
trained on, i.e., left, right, down, up, go, and stop speech commands. Table 5 shows the impact of
re-training set size on the model and attack performance. As expected, increasing the re-training
set size improves the accuracy of the model. However, the accuracy of the re-trained model and the
re-training set size have a negligible effect on the performance of proposed attack. By comparing
Table 4 and Table 5, we realize that the attack performance is directly affected by the number of
target classes, but it is not significantly affected by the accuracy of the re-trained model.
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