
Under review as a conference paper at ICLR 2020

LIPSCHITZ LIFELONG REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of reusing prior experience when an agent is facing a
series of Reinforcement Learning (RL) tasks. We introduce a novel metric between
Markov Decision Processes and focus on the study and exploitation of the optimal
value function’s Lipschitz continuity in the task space with respect to that metric.
These theoretical results lead us to a value transfer method for Lifelong RL, which
we use to build a PAC-MDP algorithm that exploits continuity to accelerate learning.
We illustrate the benefits of the method in Lifelong RL experiments.

1 INTRODUCTION

Lifelong Reinforcement Learning (RL) is a problem where an agent faces a series of RL tasks,
drawn sequentially. Transferring the knowledge of prior experience while solving new tasks is a key
question in that setting (see Lazaric (2012) or Taylor and Stone (2009) for surveys). We elaborate
on the intuitive idea that similar tasks should allow a large amount of transfer. Thus, an agent
able to measure this similarity online should be able to perform transfer from prior source tasks
accordingly. Measuring the amount of inter-task similarity is not new (Carroll and Seppi, 2005;
Fernández and Veloso, 2006; Lazaric et al., 2008; Mahmud et al., 2013; Brunskill and Li, 2013;
Ammar et al., 2014; Song et al., 2016). Following this idea, we present a novel method for value
transfer, practically deployable in the Lifelong RL setting. We prove that the transfer method is
guaranteed to be non-negative, meaning that the transfer cannot cause performance degradation.

Our contributions are as follows. First, we study theoretically the Lipschitz continuity of the optimal
value function in the task space (Section 3). Then, we use this continuity property to propose a
value-transfer method based on a local distance between MDPs (Section 4). Full knowledge of
both MDPs is not required and the transfer is non-negative, which makes the method practical and
safe. In Section 4.2, we build a PAC-MDP algorithm called Lipschitz RMax, applying this transfer
method online in the Lifelong RL setting. We provide sample and computational complexity bounds
accordingly and showcase the algorithm in Lifelong RL experiments (Section 5).

2 BACKGROUND AND RELATED WORK

Reinforcement Learning (RL) (Sutton and Barto, 1998) is a framework for sequential decision making.
The problem is typically modeled as a Markov Decision Process (MDP) (Puterman, 2014) consisting
in a 4-tuple 〈S,A, R, T 〉 where S is a state space, A an action space, Ras is the expected reward of
taking action a in state s and T ass′ is the transition probability of reaching state s′ when taking action
a in state s. Without loss of generality, we assume Ras ∈ [0, 1]. Given a discount factor γ ∈ [0, 1),
the expected cumulative return

∑
t γ

tRatst obtained along a trajectory starting with state s and action
a is noted Q(s, a) and called the Q-function. The optimal Q-function Q∗ is the highest attainable
expected return from s, a and V ∗(s) = maxa∈AQ∗(s, a) is the optimal value function in s.

Lifelong RL (Silver et al., 2013; Brunskill and Li, 2014; Abel et al., 2018) is the problem of
experiencing a series of MDPs drawn from an unknown distribution. Each time an MDP is sampled, a
classical RL problem takes place where the agent is able to interact with the environment to maximize
its expected return. In this setting, it is reasonable to think that knowledge gained on previous MDPs
could be re-used to improve the performance in new MDPs. In this paper, we provide a novel method
for such transfer by characterizing the way the optimal Q-function can evolve across tasks. We restrict
the scope of the study to the case where sampled MDPs share the same state-action space S ×A. For
brevity, we will refer indifferently to MDPs, models or tasks, and write them M = 〈R, T 〉.

1

Under review as a conference paper at ICLR 2020

Using a metric between MDPs has the appealing characteristic of quantifying the amount of similarity
between tasks, which intuitively should be linked to the amount of transfer achievable. Song et al.
(2016) define a metric based on the bi-simulation metric introduced by Ferns et al. (2004) and the
Wasserstein metric (Villani, 2008). Value transfer is performed between states with low bi-simulation
distances. However, this metric requires knowing both MDPs completely and is thus unusable in the
Lifelong RL setting where we expect to perform transfer before having learned the current MDP.
Further, the transfer technique they propose does allow negative transfer (see Appendix, Section A).
Carroll and Seppi (2005) also define a value-transfer method based on a measure of similarity
between tasks. However, this measure is not computable online and thus not applicable to the
Lifelong RL setting. Mahmud et al. (2013) and Brunskill and Li (2013) propose MDP clustering
methods respectively using a metric quantifying the regret of running the optimal policy of one MDP
in the other MDP and the L1 norm between the MDP models. An advantage of clustering is to prune
the set of possible source tasks. They use their approach for policy transfer, which differs from
the value-transfer method proposed in this paper. Ammar et al. (2014) use a Restricted Boltzmann
Machine to learn the model of a source MDP and view the prediction error on a target MDP as a
dissimilarity measure in the task space. Their method makes use of samples from both tasks and is
not readily applicable to the online setting considered in this paper. Lazaric et al. (2008) provide
a practical method for sample transfer, computing a similarity metric reflecting the probability of
the models to be identical. Their approach is applicable in a batch RL setting as opposed to our
online setting. The approach developed by Sorg and Singh (2009) is very similar to ours in the
sense that they prove bounds on the optimal Q-function for new tasks, assuming that both MDPs
are known and that a soft homomorphism exists between the state spaces. Brunskill and Li (2013)
also provide a method that can be used for Q-function bounding in the multi-task RL setting. Abel
et al. (2018) present the MaxQInit algorithm, providing transferred bounds on the Q-function with
high probability while preserving PAC-MDP guarantees. Given a set of previously solved tasks, they
derive the probability that the maximum over the Q-values of previous MDPs is indeed an upper
bound on the current task’s optimal Q-function. This results in a method that performs non-negative
transfer with high probability once enough tasks have been sampled.

3 LIPSCHITZ CONTINUITY OF Q-FUNCTIONS

The intuition we build on is that similar MDPs should have similar optimal Q-functions. Formally,
this insight can be translated into a continuity property of the optimal Q-functions over the MDP
spaceM. To that end, we introduce a local pseudo-metric characterizing the distance between the
models of two MDPs at a particular state-action pair. A reminder and a detailed discussion on the
metrics (and related objects) used herein can be found in the Appendix, Section B.

Definition 1. Given two tasks M = 〈R, T 〉 and M̄ = 〈R̄, T̄ 〉, and a function f : S → R+, we define
the pseudo-metric between models at (s, a) ∈ S ×A w.r.t. f as:

DMM̄
f (s, a) , |Ras − R̄as |+

∑
s′∈S

f(s′)|T ass′ − T̄ ass′ |. (1)

This pseudo-metric is relative to a positive function f . We implicitly cast this definition in the context
of discrete state spaces. The extension to continuous spaces is straightforward but beyond the scope
of this paper. Let Q∗M denote the optimal Q-function of MDP M ∈M.

Proposition 1 (Local pseudo-Lipschitz continuity). For two MDPs M,M̄ , for all (s, a) ∈ S ×A,

|Q∗M (s, a)−Q∗M̄ (s, a)| ≤ ∆MM̄ (s, a), (2)

with the MDPs local pseudo-metric ∆MM̄ (s, a) , min
{
dM̄M (s, a), dM

M̄
(s, a)

}
, and the local MDP

dissimilarity dM̄M : S ×A → R is the unique solution to the following fixed-point equation for d:

d(s, a) = DMM̄
γV ∗

M̄
(s, a) + γ

∑
s′∈S

T ass′ max
a′∈A

d(s′, a′). (3)

All the proofs of the paper can be found in the Appendix. This result establishes that the distance
between the optimal Q-functions of two MDPs at (s, a) ∈ S ×A is controlled by a local dissimilarity

2

Under review as a conference paper at ICLR 2020

between the MDPs. The latter follows a fixed-point equation (Equation 3), which can be solved by
Dynamic Programming (DP) (Bellman, 1957). Note that, although the local MDP dissimilarity dM̄M is
asymmetric, ∆MM̄ (s, a) is a pseudo-metric, hence the name pseudo-Lipschitz continuity. Similar
results for the value function of a fixed policy and the optimal value function V ∗M can easily be
derived (Appendix, Section D).

A consequence of Proposition 1 is a global pseudo-Lipschitz continuity:
Proposition 2 (Global pseudo-Lipschitz continuity). For two MDPs M , M̄ , for all (s, a) ∈ S ×A,

|Q∗M (s, a)−Q∗M̄ (s, a)| ≤ min
{
δM̄M , δ

M
M̄

}
, with δM̄M ,

1

1− γ
max

s,a∈S×A

{
DMM̄
γV ∗

M̄
(s, a)

}
. (4)

Despite being interesting from a theoretical perspective, we do not use this result for transfer because
it is impractical to compute. Indeed, estimating the maximum in Equation 4 might be as hard as
solving both MDPs (which, when it happens, is too late for transfer to be useful).

4 TRANSFER USING THE LIPSCHITZ CONTINUITY

We use the theoretical results from Section 3 to introduce a value transfer method, and build an
algorithm applying this method in the Lifelong RL setting. Value transfer allows to drive the
exploration in a new task and accelerate learning. From Proposition 1, one can naturally define a local
upper bound on the optimal Q-function of an MDP given the optimal Q-function of another MDP.
Definition 2. Given two tasks M and M̄ , for all (s, a) ∈ S ×A, the Lipschitz upper bound on Q∗M
induced by Q∗

M̄
is defined as UM̄ (s, a) ≥ Q∗M (s, a) with:

UM̄ (s, a) , Q∗M̄ (s, a) + ∆MM̄ (s, a). (5)

This upper bound allows shrinking the maximum upper bound 1
1−γ on the optimal Q-function of an

MDP. In Lifelong RL, we aim to exploit this property in a method guaranteeing three conditions:
C1. the resulting algorithm is PAC-MDP (Strehl et al., 2009); C2. the transfer accelerates learning;
C3. the transfer is non-negative. To that end, we build on the RMax algorithm (Brafman and
Tennenholtz, 2002), which satisfies condition C1. RMax is a model-based, online RL algorithm with
PAC-MDP guarantees (Strehl et al., 2009) which means that convergence to near-optimal policy is
guaranteed in a polynomial number of steps. It relies on an optimistic model initialization that yields
an optimistic Q-function, then explores greedily w.r.t. this Q-function. By default, it assigns the
maximum upper bound U(s, a) = 1

1−γ on long-term returns estimates Q but can take advantage
of any tighter admissible heuristic. Thus, shrinking the optimistic upper bound with Equation 5 is
expected to improve the learning speed for new tasks in Lifelong RL. In RMax, during the resolution
of a task M , S × A is split into a subset of known state-action pairs K and its complement Kc of
unknown pairs. A state-action pair is known if the number of collected reward and transition samples
allows estimating an ε-accurate model in L1-norm with probability higher than 1− δ. We refer to ε
and δ as the RMax precision parameters. This translates into a threshold nknown on the number of
visits n(s, a) to a pair s, a that are necessary to reach this precision. Given the experience of a set of
m MDPs M̄ = {M̄1, . . . , M̄m}, we define the total bound as the minimum over all the Lipschitz
bounds induced by each previous MDP.
Proposition 3. Given a partially known task M = 〈R, T 〉, the set of known state-action pairs K,
and the set of Lipschitz bounds on Q∗M induced by previous tasks

{
UM̄1

, . . . , UM̄m

}
, the function Q

defined below is an upper bound on Q∗M for all s, a ∈ S ×A.

Q(s, a) ,

{
Ras + γ

∑
s′∈S

T ass′ max
a′

Q(s′, a′) if (s, a) ∈ K,

U(s, a) otherwise,
(6)

with U(s, a) = min
{

1
1−γ , UM̄1

(s, a), . . . , UM̄m
(s, a)

}
.

Traditionally in RMax, Equation 6 is solved to a precision εQ via Value Iteration. This yields a
function Q that is a valid heuristic (provable upper bound on Q∗M) for the exploration of MDP M .

3

Under review as a conference paper at ICLR 2020

4.1 A TRACTABLE UPPER BOUND ON Q∗M

Consider two tasks M and M̄ , on which vanilla RMax has been applied, yielding the respective sets
of known state-action pairs K and K̄, along with the learned models M̂ = 〈T̂ , R̂〉 and ˆ̄M = 〈 ˆ̄T, ˆ̄R〉,
and the upper bounds Q and Q̄ respectively on Q∗M and Q∗

M̄
. Equation 6 allows the transfer of

knowledge from M̄ to M if UM̄ (s, a) can be computed. Unfortunately, the true optimal value
functions, transition and reward models are unknown. Thus, we propose to compute a looser upper
bound based on the learned models and value functions.
Proposition 4. Given two tasks M and M̄ , K and K̄ the respective sets of state-action pairs where
their models are known with accuracy ε in L1-norm with probability at least 1− δ,

Pr
(
D̂MM̄ (s, a) ≥ DMM̄

γV ∗
M̄

(s, a)
)
≥ 1− δ

with the following definition of the upper bound on the pseudo-metric between models D̂MM̄ :

D̂MM̄ (s, a) ,



DM̂ ˆ̄M
γV̄

(s, a) + 2B if (s, a) ∈ K ∩ K̄
max
µ̄∈M

DM̂µ̄

γV̄
(s, a) +B if (s, a) ∈ K ∩ K̄c

max
µ∈M

Dµ ˆ̄M

γV̄
(s, a) +B if (s, a) ∈ Kc ∩ K̄

max
µ,µ̄∈M2

Dµµ̄

γV̄
(s, a) if (s, a) ∈ Kc ∩ K̄c

(7)

where B = ε
(
1 + γmaxs′ V̄ (s′)

)
.

D̂MM̄ can be calculated analytically (see Appendix, Section H). The magnitude of the B term is
controlled by ε. In the case where no information is available on the maximum value of V̄ , B = ε

1−γ .
ε measures the accuracy with which the tasks are known: the smaller ε, the tighter the B bound.
Note that V̄ is used as an upper bound on the true V ∗

M̄
. In many cases, maxs′ V

∗
M̄

(s′)� 1
1−γ ; e.g.

for stochastic shortest path problems, which feature rewards only upon reaching terminal states,
maxs′ V

∗
M̄

(s′) = 1 and thus B = (1 + γ)ε is a tighter bound for transfer. Using D̂MM̄ and Equation
3, one can derive an upper bound d̂M̄M of dM̄M detailed in Proposition 5.
Proposition 5. Given two tasks M and M̄ , K the set of state-action pairs for which 〈R, T 〉 is known
with accuracy ε in L1-norm with probability at least 1− δ. If γ(1 + ε) < 1, the solution d̂M̄M of the
following fixed-point equation of d̂ is an upper bound on dM̄M with probability at least 1− δ:

d̂(s, a) = D̂MM̄ (s, a) +


γ

(∑
s′∈S

T̂ ass′ max
a′∈A

d̂(s′, a′) + ε max
s′,a′∈S×A

d̂(s′, a′)

)
if s, a ∈ K,

γ max
s′,a′∈S×A

d̂(s′, a′) otherwise.
(8)

Similarly as in Proposition 4, the condition γ(1 + ε) < 1 illustrates the fact that for a large return
horizon (large γ), a high accuracy (small ε) is needed for the bound to be computable. Finally, a
tractable upper bound on Q∗M given M̄ with high probability is given by

ÛM̄ (s, a) = Q̄(s, a) + min
{
d̂M̄M (s, a), d̂MM̄ (s, a)

}
. (9)

And the associated upper bound on U(s, a) (Equation 6) given previous tasks M̄ = {M̄i}mi=1 is

Û(s, a) = min
{

1
1−γ , ÛM̄1

(s, a), . . . , ÛM̄m
(s, a)

}
(10)

4.2 LIPSCHITZ RMAX

In Lifelong RL, MDPs are encountered sequentially. Applying RMax to task M yields the set of
known state-action pairs K, the learned models T̂ and R̂, and the upper bound Q on Q∗M . Saving
this information when the task changes allows to compute the upper bound of Equation 10 for the

4

Under review as a conference paper at ICLR 2020

Algorithm 1: Lipschitz RMax algorithm

Initialize M̂ = ∅.
for each newly sampled MDP M do

Initialize Q(s, a) = 1
1−γ ,∀s, a, and K = ∅

Initialize T̂ and R̂ (RMax initialization)
Q← UpdateQ(M̂, T̂ , R̂)
for t ∈ [1, max number of steps] do

s = current state, a = arg max
a′

Q(s, a′)

Observe reward r and next state s′
n(s, a)← n(s, a) + 1
if n(s, a) < nknown then

Store (s, a, r, s′)

if n(s, a) = nknown then
Update K, T̂ ass′ and R̂as
Q← UpdateQ(M̂, T̂ , R̂)

Save M̂ =
(
T̂ , R̂,K,Q

)
in M̂

Function UpdateQ(M̂, T̂ , R̂):
for M̄ ∈ M̄ do

Compute D̂MM̄ and D̂M̄M (Eq. 7)
Compute d̂M̄M and d̂M

M̄
(DP on Eq. 8)

Compute ÛM̄ (Eq. 9)

Compute Û (Eq. 10)
Compute and return Q (DP on Eq. 6 using Û)

new task, and to use it to shrink the optimistic heuristic of RMax. This effectively transfers value
functions between tasks based on task similarity. As the new task is explored, the task similarity is
assessed with better confidence, refining the values of D̂MM̄ , d̂M̄M and eventually Û , allowing for
more efficient transfer where the task similarity is appraised. The resulting algorithm, Lipschitz
RMax (LRMax), is presented in Algorithm 1. To avoid ambiguities with M̄, we use M̂ to store
learned features (T̂ , R̂, K and Q) about previous MDPs. In a nutshell, the behaviour of LRMax on
a given task M is precisely that of RMax, but with a tighter admissible heuristic Û that becomes
better as the new task is explored (while this heuristic remains constant in vanilla RMax). LRMax
is PAC-MDP (Condition C1) as stated in Properties 6 and 7 below. With S = |S| and A = |A|,
the sample complexity of vanilla RMax is Õ(S2A/(ε3(1− γ)3)), which is improved by LRMax in
Proposition 6 and meets Condition C2. Finally Û is a proved upper bound with high probability on
Q∗M , which avoids negative transfer and meets Condition C3.

Proposition 6 (Sample complexity (Strehl et al., 2009)). With probability 1− δ, the greedy policy
w.r.t. Q computed by LRMax achieves an ε-optimal return in MDP M for all but (when logarithmic
factors are ignored)

Õ

(
S|{s, a ∈ S ×A | Û(s, a) ≥ V ∗M (s)− ε}|

ε3(1− γ)3

)

time steps, with Û defined in Equation 10 a non-static, decreasing quantity, upper bounded by 1
1−γ .

Consequently from Proposition 6, the sample complexity of LRMax is no worse than that of RMax.

Proposition 7 (Computational complexity). The total computational complexity of Lipschitz RMax is

Õ
(
T +

S2A2(S + log(A))(2N + 1)

(1− γ)
log

1

εQ(1− γ)

)
with T the number of time steps, εQ the precision of value iteration and N the number of tasks.

4.3 REFINING LRMAX BOUNDS WITH MAXIMUM MODEL DISTANCE

LRMax relies on upper bounds on the local distances between tasks (Equation 8). The quality of
the Lipschitz bound on Q∗M greatly depends on the quality of those estimates and can be improved
accordingly. We discuss two methods to provide finer estimates.

5

Under review as a conference paper at ICLR 2020

First, from the definition of DMM̄
γV ∗

M̄
(s, a), it is easy to show that model pseudo-distances are always

upper bounded by 1+γ
1−γ . However, in practice, the tasks experienced in Lifelong RL might not

cover the full span of possible MDPs and may be systematically closer to each other than 1+γ
1−γ .

For instance, the distances between variations of the Breakout video game are much smaller than
1+γ
1−γ . More generally, the distance between two games in the Arcade Learning Environment (ALE)
(Bellemare et al., 2013), is also smaller than the maximum distance between any two MDPs defined
on the common state-action space of the ALE. Let Dmax(s, a) , maxM,M̄∈M2{DMM̄

γV ∗
M̄

(s, a)} be
the maximum model distance at a particular s, a pair. Prior knowledge might indicate a smaller upper
bound for Dmax(s, a) than 1+γ

1−γ . We will note such an upper bound Dmax. Solving Equation 8 boils

down to accumulating D̂MM̄ (s, a) values in d̂(s, a). Reducing a D̂MM̄ (s, a) estimate in a single
(s, a) pair actually reduces d̂(s, a) in all (s, a) pairs. Thus, replacing D̂MM̄ (s, a) in Equation 8 by
min{Dmax, D̂

MM̄ (s, a)}, provides a much smaller upper bound d̂M̄M on dM̄M , and thus a smaller Û
which allows transfer if it is lesser than 1

1−γ . Consequently, such an upper bound Dmax can make
a difference between successful and unsuccessful transfer, even if its value is of little importance.
Conversely, setting a value for Dmax quantifies the distance between MDPs where transfer is efficient.

Furthermore, one can estimate online the value of Dmax(s, a), lifting the previous hypothesis of
available prior knowledge. One can build an empirical estimate of the maximum model distance
at s, a: D̂max(s, a) , maxM,M̄∈M̂2{D̂MM̄ (s, a)}, M̂ being the set of explored tasks. The pitfall
being that, with few explored tasks, D̂max(s, a) could underestimate Dmax(s, a). Proposition 8
provides a lower bound on the probability that D̂max(s, a) does not underestimate Dmax(s, a),
depending on the number of sampled tasks. In turn this indicates when D̂max(s, a) is an upper
bound on Dmax(s, a) with high probability, which can be combined with Algorithm 1 to improve the
performance.

Proposition 8. Consider an algorithm producing ε-accurate in L1-norm model estimates with
probability at least 1− δ for a subset of S ×A after interacting with an MDP. For all s, a ∈ S ×A,
after sampling m tasks with pmin = minM∈M Pr(M), the following lower bound holds:

Pr
(
D̂max(s, a) ≥ Dmax(s, a)

)
≥ 1− 2(1− pmin)m + (1− 2pmin)m.

The assumption of a lower bound pmin on the sampling probability of a task implies thatM is finite
and is commonly seen as a non-adversarial task sampling strategy (Abel et al., 2018).

5 EXPERIMENTS

The experiments reported here1 illustrate how 1) LRMax allows for early performance increase
in Lifelong RL by efficiently transferring knowledge between tasks; 2) the Lipschitz bound of
Equation 9 improves the sample complexity compared to RMax by providing a tighter upper bound
on Q∗. Graphs are displayed with 95% confidence intervals. Information in line with the Machine
Learning Reproducibility Check-list (Pineau, 2019) is documented in the Appendix, Section O.

We evaluate different variants of LRMax in a Lifelong RL experiment. The RMax algorithm will
be used as a no-transfer baseline. LRMax(x) denotes Algorithm 1 with prior Dmax = x. MaxQInit
denotes the MAXQINIT algorithm from Abel et al. (2018), consisting in a state-of-the art PAC-MDP
algorithm achieving transfer in a non adversarial setting with PAC guarantees. Both LRMax and
MaxQInit algorithms achieve value transfer by providing a tighter upper-bound on Q∗ than 1

1−γ .
Computing both upper-bounds and taking the minimum results in combining the two approaches. We
include such a combination in our study with the LRMaxQInit algorithm. Similarly, LRMaxQInit(x)
consists in the latter algorithm, benefiting from prior knowledge Dmax = x.

The environment we used in all experiments is a variant of the “tight” environment used by Abel
et al. (2018). This is a 11× 11 grid-world, the initial state is in the centre, actions are the cardinal

1Link to open-source code omitted for anonymity.

6

Under review as a conference paper at ICLR 2020

2 4 6 8 10 12 14
Task number

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

R
el

at
iv

e
D

is
co

u
n
te

d
R

et
u

rn

RMax

LRMax

LRMax(0.2)

LRMax(0.1)

MaxQInit

LRMaxQInit

LRMaxQInit(0.1)

(a) Average discounted return vs. tasks

0 250 500 750 1000 1250 1500 1750 2000
Episode number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

R
el

at
iv

e
D

is
co

u
n
te

d
R

et
u

rn

(b) Average discounted return vs. episodes

0 250 500 750 1000 1250 1500 1750 2000
Episode number

0.0

0.5

1.0

R
el

at
iv

e
d

is
co

u
nt

ed
re

tu
rn

RMax Task = 1

LRMax(0.1) Task = 1

LRMax(0.1) Task = 2

MaxQInit Task = 11

MaxQInit Task = 12

(c) Discounted return for specific tasks

0.00.20.40.60.81.0
Prior knowledge (known upper-bound on maxs,a = DMM̄

γV ∗
M̄

(s, a))

0

20

40

60

80

100

120

140

160

%

% use Lipschitz bound

% convergence speed-up

% total return gain

(d) Algorithmic properties vs. Dmax

Figure 1: Experimental results

moves (Appendix, Section L). The reward is zero everywhere except for the three goal cells in the
upper-right corner. Each time a task is sampled, a new reward value is drawn from [0.8, 1] for each of
the three goal cells and a probability of slipping (performing a different action than the one selected)
is picked in [0, 0.1]. Hence, tasks have different reward and transition functions. We sample 15
tasks in sequence among a pool of 5 possible different sampled tasks. Each is run for 2000 episodes
of length 10. The operation is repeated 10 times to provide narrow confidence intervals. We used
nknown = 10, δ = 0.05 and ε = 0.01 (discussion in Appendix, Section N). We drew tasks from a
finite set of five MDPs. This allows the application of MaxQInit and the subsequent comparison
below. Note, however, that LRMax does not require the set of MDPs to be finite, which is a noticeable
advantage in applicability.

The results are reported in Figure 1. Figure 1a displays the discounted return for each task, averaged
across episodes. Similarly, Figure 1b displays the discounted return for each episode, averaged
across tasks (same color code as Figure 1a). Figure 1c displays the discounted return for five specific
instances, detailed below. To avoid inter-task disparities, all the aforementioned discounted returns
are displayed relatively to an estimator of the optimal expected return for each task. For readability
purposes, Figures 1b and 1c display a moving average over 100 episodes. Figure 1d reports the
benefits of various values of Dmax on the algorithmic properties.

In Figure 1a, we first observe that LRMax benefits from the transfer method, as the average discounted
return increases as more tasks are experienced. Moreover, this advantage appears as early as the
second task. Conversely, the MaxQInit algorithm needs to wait for task 12 before benefiting from
transfer. As suggested in Section 4.3, various amounts of prior allow the LRMax transfer method to
be more or less efficient: a smaller known upper-bound Dmax on D̂MM̄ causes a larger discounted
return gain. Combining both approaches in the LRMaxQInit algorithm outperforms all other methods.
Episode-wise, we observe in Figure 1b that the LRMax transfer method allows for faster convergence,
hence decreases the sample complexity. Interestingly, LRMax features three stages in the learning

7

Under review as a conference paper at ICLR 2020

process. 1) The first episodes are characterized by a direct exploitation of the transferred knowledge,
causing these episodes to yield high payoff. This is due to the combined facts that the Lipschitz
bound of Equation 9 is larger on promising regions of S × A seen on previous tasks and the fact
that LRMax acts greedily w.r.t. that bound. 2) This high performance regime is followed by the
exploration of unknown regions of S × A, in our case yielding low returns. Indeed, as promising
regions are explored first, the bound becomes tighter for the corresponding state-action pairs, enough
for the Lipschitz bound of unknown pairs to become larger, thus driving the exploration towards
low payoff regions. Such regions are quickly identified and never revisited thereafter. 3) Eventually,
LRMax stops exploring and converges to the optimal policy. Importantly, in all experiments, LRMax
never features negative transfer as supported by the provability of the Lipschitz upper-bound with
high probability. This is indeed demonstrated by the fact that it is at least as efficient in learning as
the no-transfer RMax baseline.

Figure 1c displays the collected returns of RMax, LRMax(0.1), and MaxQInit for specific tasks. We
observe that LRMax benefits from the transfer as early as task 2, where the aforementioned 3-stages
behavior is visible. Again, MaxQInit needs to wait for task 12 to leverage the transfer method.
However, the bound it provides are tight enough to allow for almost zero exploration of the task.

In Figure 1d, we display the following quantities for various values of Dmax: ρLip, is the ratio of the
time the Lipschitz bound was tighter than the RMax bound 1

1−γ ; ρSpeed−up, is the relative gain of
time steps before convergence when comparing LRMax to RMax. This quantity is estimated based on
the last updates of the empirical model M̄ ; ρReturn, is the relative total return gain on 2000 episodes
of LRMax w.r.t. RMax. First, we observe an increase of ρLip as Dmax becomes tighter. This means
that the Lipschitz bound of Equation 9 becomes effectively smaller than 1

1−γ . This phenomenon
leads to faster convergence, indicated by ρSpeed−up. Eventually, this increased convergence rate
allows for a net total return gain, illustrated by the increase of ρReturn.

Overall, in this analysis, we have showed that LRMax benefits from an enhanced sample complexity
thanks to the used value transfer method. The knowledge of a priorDmax further increases this benefit.
The method is comparable to the MaxQInit method and has some advantages such as the early fitness
for use and the applicability to infinite sets of tasks. Moreover, the transfer is non-negative while
preserving the PAC-MDP guarantees of the algorithm. Additionally to the analysis performed here,
we show in the Appendix, Section M that, when provided with any prior knowledge Dmax, LRMax
increasingly stops using this prior as the task is explored. This confirms the claim of section 4.3 that
providing Dmax enables transfer even if it’s value is of little importance.

6 CONCLUSION

We have studied theoretically the Lipschitz continuity property of the optimal Q-function in the MDP
space. This led to a local Lipschitz continuity result, establishing that the distance between the optimal
Q-functions of two MDPs at the same state-action pair is upper bounded by a local (state-action
dependent) distance between MDPs. This local distance can be computed by dynamic programming.
A consequence of this result is a global Lipschitz continuity property of the optimal Q-function in
the MDP space w.r.t. a pseudo metric between MDPs. We then proposed a value-transfer method
using the local continuity property with the Lipschitz RMax algorithm, practically implementing this
approach in the Lifelong RL setting. The algorithm preserves PAC-MDP guarantees, accelerates
the learning in subsequent tasks and performs non-negative transfer. Potential improvements of the
algorithm were discussed in the form of prior knowledge introduction on the maximum distance
between models and online estimation with high probability of this distance. We showcased the
algorithm in lifelong RL experiments and demonstrated empirically its ability to accelerate learning.
The results also confirm that no negative transfer occurs, regardless of parameter settings. It should
be noted that our approach can directly extend other PAC-MDP algorithms (Szita and Szepesvári,
2010; Rao and Whiteson, 2012; Pazis et al., 2016; Dann et al., 2017) to the Lifelong setting.

ACKNOWLEDGEMENTS

Omitted for anonymity.

8

Under review as a conference paper at ICLR 2020

REFERENCES

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and Value
Transfer in Lifelong Reinforcement Learning. In International Conference on Machine Learning,
pages 20–29, 2018.

Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu, Kurt Driessens,
Gerhard Weiss, and Karl Tuyls. An automated measure of MDP similarity for transfer in rein-
forcement learning. In Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Richard Bellman. Dynamic programming. Princeton, USA: Princeton University Press, 1957.

Ronen I. Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Emma Brunskill and Lihong Li. Sample complexity of multi-task reinforcement learning. arXiv
preprint arXiv:1309.6821, 2013.

Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning. In
International Conference on Machine Learning, pages 316–324, 2014.

James L. Carroll and Kevin Seppi. Task similarity measures for transfer in reinforcement learning
task libraries. In Proceedings. 2005 IEEE International Joint Conference on Neural Networks,
2005., volume 2, pages 803–808. IEEE, 2005.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying PAC and regret: Uniform PAC bounds
for episodic reinforcement learning. In Advances in Neural Information Processing Systems, pages
5713–5723, 2017.

Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent.
In Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems, pages 720–727. ACM, 2006.

Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes.
In Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages 162–169.
AUAI Press, 2004.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement
Learning, pages 143–173. Springer, 2012.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforce-
ment learning. In Proceedings of the 25th international conference on Machine learning, pages
544–551. ACM, 2008.

MM Mahmud, Majd Hawasly, Benjamin Rosman, and Subramanian Ramamoorthy. Clustering
Markov decision processes for continual transfer. arXiv preprint arXiv:1311.3959, 2013.

Jerzy Neyman. X—outline of a theory of statistical estimation based on the classical theory of
probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 236(767):333–380, 1937.

Jason Pazis, Ronald E. Parr, and Jonathan P. How. Improving PAC exploration using the median of
means. In Advances in Neural Information Processing Systems, pages 3898–3906, 2016.

Joëlle Pineau. Machine learning reproducibility checklist. https://www.cs.mcgill.ca/
˜jpineau/ReproducibilityChecklist.pdf, 2019. Version 1.2, Mar.27 2019.

Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

9

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

Under review as a conference paper at ICLR 2020

Karun Rao and Shimon Whiteson. V-MAX: tempered optimism for better PAC reinforcement learning.
In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent
Systems, pages 375–382, 2012.

Daniel L. Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond learning
algorithms. In 2013 AAAI spring symposium series, 2013.

Jinhua Song, Yang Gao, Hao Wang, and Bo An. Measuring the distance between finite Markov
decision processes. In Proceedings of the 2016 international conference on autonomous agents
& multiagent systems, pages 468–476. International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 741–748.
International Foundation for Autonomous Agents and Multiagent Systems, 2009.

Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in finite MDPs:
PAC analysis. Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

Richard S. Sutton and Andrew G. Barto. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight exploration
complexity bounds. In Proceedings of the 27th International Conference on Machine Learning,
pages 1031–1038, 2010.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

10

Under review as a conference paper at ICLR 2020

APPENDIX

A A NEGATIVE TRANSFER EXAMPLE

In their paper, Song et al. (2016) propose two transfer methods based on the metric between MDPs
they introduce, stemming from the bi-simulation metric introduced by Ferns et al. (2004). The
intuition is that, for a new target task, the value function of the closest source task in terms of that
metric is used as an initialisation. However, if no similar source task is available, using the closest
task’s value function as an initialization can lead to negative transfer. We here understand negative
transfer as the fact that it prevents a learning algorithm to converge to the optimal policy while
interacting with a new task. We make the hypothesis that the learning algorithm acts greedily w.r.t.
the current Q-value function. This is for example the behaviour of the RMax algorithm (Brafman
and Tennenholtz, 2002). We now illustrate a negative transfer case with an example. Let us consider
the 2-states MDP of Figure 2. We assume that the transitions are deterministic and the initial state is

s0 s1a0 a0

a1

a1

Figure 2: 2-states MDP

always s0. In the first MDP M1 ∈M, the reward is 0 everywhere except for Ra0
s0 = 1. In the second

MDP M2 ∈ M, the reward is 0 everywhere except for Ra1
s1 = 1. With a discount factor γ = 0.9,

the value functions and Q-functions of both MDPs are summarized in Table 3 Using the weighted

V ∗M1
(·) Q∗M1

(·, a0) Q∗M1
(·, a1) V ∗M2

(·) Q∗M2
(·, a0) Q∗M2

(·, a1)
s0 10 10 8.1 4.74 4.26 4.74
s1 9 8.1 9 5.26 4.74 5.26

Figure 3: Value functions and Q-functions of MDPs M1 and M2

transfer technique from M1 to M2 proposed by Song et al. (2016) (Definition 4.1), the Q-function
described below is used as an initialization for the exploration of M2.

Qtransfer
M2

(s0, a0) = 2.03

Qtransfer
M2

(s0, a1) = 2.25

Qtransfer
M2

(s1, a0) = 2.5

Qtransfer
M2

(s1, a1) = 2.03

First, Qtransfer
M2

does not respect the principle of “optimism under the face of uncertainty” that often
results in sound and efficient exploration (Strehl et al., 2009; Brafman and Tennenholtz, 2002; Sutton
and Barto, 1998). Further, a greedy policy w.r.t. Qtransfer

M2
would never discover the state-action pair

s1, a1 in M2 which is the maximum-reward pair. Instead, the agent would go from s0 to s1 and
perform self-loops thereafter.

As a conclusion, this negative transfer example motivates the need for distance between MDPs not
only to account for the best-source task to use for transfer but also to discourage the transfer when
the distance is too high. The approach we develop in this paper used the distance to build optimistic
upper-bounds on the Q-function. Those upper-bounds are simply of no use when the distance is too
high which is equivalent as avoiding transfer.

11

Under review as a conference paper at ICLR 2020

B DISCUSSION ON METRICS AND RELATED NOTIONS

A metric on a set X is a function m : X × X → R which has the following properties for any
x, y, z ∈ X:

1. m(x, y) ≥ 0,
2. m(x, y) = 0⇔ x = y,
3. m(x, y) = m(y, x),
4. m(x, z) ≤ m(x, y) +m(y, z).

With only m(x, x) = 0 instead of property 2, m would be a pseudo-metric. Without property 3, one
has a quasi-metric. Without property 3 and 4, and when X is a set of probability measures, one has a
divergence.

In Definition 1, DM̄
M,f (s, a) is indeed a pseudo-metric over MDPs since the choice of f can lead to a

zero distance between different models.

The local MDP dissimilarity between MDPs dM̄M (s, a) of Proposition 1 does not respect properties 2

and 3, hence the name dissimilarity. The ∆M̄
M (s, a) , min

{
dM̄M (s, a), dM

M̄
(s, a)

}
quantity, however,

regains property 3 and is hence a pseudo-metric. An important consequence is that Proposition 1
is “in the spirit” of a Lipschitz continuity theorem but cannot be called as such, hence the name
pseudo-Lipschitz continuity.

The same goes for the global dissimilarity dM̄M = 1
1−γ maxs,a∈S×A

[
DM̄
M,γV ∗

M̄
(s, a)

]
. However,

using min
{
dM̄M , d

M
M̄

}
allows to regain property 3 and makes this quantity a pseudo-metric again

between MDPs.

C PROOF OF PROPOSITION 1

Lemma 1. Given two MDPs M and M̄ , this equation on d is a fixed-point equation admitting a
unique solution which we call dM̄M

d(s, a) = DM̄
M,γV ∗

M̄
(s, a) + γ

∑
s′

T ass′ max
a′

d(s′, a′),∀s, a ∈ S ×A.

Proof of Lemma 1. The proof follows closely that in Puterman (2014) that proves that the Bellman
operator over value functions is a contraction mapping. Let d1 and d2 be two functions from S ×A
to R and let L be the functional operator that maps any function d : S ×A → R to

Ld : s, a 7→ DM̄
M,γV ∗

M̄
(s, a) + γ

∑
s′

T ass′ max
a′

d(s′, a′).

Then Ld1(s, a) − Ld2(s, a) = γ
∑
s′ T

a
ss′ [maxa′ d1(s′, a′)−maxa′ d2(s′, a′)]. But

maxa′ d1(s′, a′) − maxa′ d2(s′, a′) ≤ maxa′ [d1(s′, a′)− d2(s′, a′)] ≤ ‖d1 − d2‖∞. And so
‖Ld1 − Ld2‖∞ ≤ γ‖d1 − d2‖∞. Since γ < 1, L is a contraction mapping in the metric space
(S ×A, ‖ · ‖∞). This metric space being complete and non-empty, it follows from Banach fixed
point theorem that d = Ld admits a single solution.

Lemma 1 guarantees the existence of dM̄M . Proposition 1 states that for any two MDPs M and M̄ and

for all (s, a) ∈ S ×A, |Q∗M (s, a)−Q∗
M̄

(s, a)| ≤ min
{
dM̄M (s, a), dM

M̄
(s, a)

}
.

Proof of Proposition 1. The proof is by induction. The Value Iteration sequence of iterates (QnM)n∈N
for task M is:

Q0
M (s, a) = 0,∀s, a ∈ S ×A

Qn+1
M (s, a) = Ras + γ

∑
s′∈S

T ass′ max
a′∈A

QnM (s′, a′),∀s, a ∈ S ×A.

12

Under review as a conference paper at ICLR 2020

It is obvious that Q0
M (s, a) − Q0

M̄
(s, a) ≤ dM̄M (s, a). Suppose that |QnM (s, a) − Qn

M̄
(s, a)| ≤

dM̄M (s, a). Then:

∣∣Qn+1
M (s, a)−Qn+1

M̄
(s, a)

∣∣ =

∣∣∣∣∣Ras − R̄as + γ
∑
s′∈S

[
T ass′ max

a′∈A
QnM (s′, a′)− T̄ ass′ max

a′∈A
QnM̄ (s′, a′)

]∣∣∣∣∣
≤
∣∣Ras − R̄as ∣∣+ γ

∑
s′∈S

∣∣∣∣T ass′ max
a′∈A

QnM (s′, a′)− T̄ ass′ max
a′∈A

QnM̄ (s′, a′)

∣∣∣∣
≤
∣∣Ras − R̄as ∣∣+ γ

∑
s′∈S

max
a′∈A

QnM̄ (s′, a′)
∣∣T ass′ − T̄ ass′ ∣∣

+ γ
∑
s′∈S

T ass′

∣∣∣∣max
a′∈A

QnM (s′, a′)−max
a′∈A

QnM̄ (s′, a′)

∣∣∣∣
≤
∣∣Ras − R̄as ∣∣+

∑
s′∈S

γV ∗M̄ (s′)
∣∣T ass′ − T̄ ass′ ∣∣

+ γ
∑
s′∈S

T ass′ max
a′∈A

∣∣QnM (s′, a′)−QnM̄ (s′, a′)
∣∣

≤ DM̄
M,γV ∗

M̄
(s, a) + γ

∑
s′∈S

T ass′ max
a′

dM̄M (s′, a′)

Since Q∗M and Q∗
M̄

are respectively the limits of the (QnM)n∈N and
(
Qn
M̄

)
n∈N sequences, the result

that |Q∗M (s, a)−Q∗
M̄

(s, a)| ≤ dM̄M (s, a) follows from passage to the limit.

By symmetry, on also has |Q∗M (s, a)−Q∗
M̄

(s, a)| ≤ dM
M̄

(s, a) and thus |Q∗M (s, a)−Q∗
M̄

(s, a)| ≤
min

{
dM̄M (s, a), dM

M̄
(s, a)

}
.

D SIMILAR RESULTS TO PROPOSITION 1

Similar results to Proposition 1 can be derived with a similar proof as in Section C. The first result is
for the value function and is stated below.

Proposition (Local bound on the distance between value functions). For any two MDPs M and M̄ ,
for all s ∈ S,

|V ∗M (s)− V ∗M̄ (s)| ≤ max
a∈A

∆M̄
M (s, a)

where the local MDP pseudo-metric ∆M̄
M (s, a) has the same definition as in Proposition 1.

Another result can be derived for any policy π that one wishes to evaluate in both MDPs. For the
sake of generality, we state the result for any stochastic policy mapping states to distributions over
actions. A deterministic policy is a stochastic policy choosing the selected action with probability 1
and the others with probability 0.

Proposition (Local bound on the distance between value and Q-value functions for any policy.). For
any two MDPs M and M̄ , for a stochastic policy π, for all s, a ∈ S ×A,

|V πM (s)− V πM̄ (s)| ≤ ∆π, M̄
M (s)

where dπ,M̄M (s) is defined with the following fixed-point equation:

dπ,M̄M (s) = Ea∼π

[
DM̄
M,γV ∗

M̄
(s, a) + γ

∑
s′∈S

T ass′d
π,M̄
M (s′)

]
,

and ∆π, M̄
M (s) = min

{
dπ,M̄M (s), dπ,M

M̄
(s)
}

.

13

Under review as a conference paper at ICLR 2020

E GLOBAL PSEUDO-LIPSCHITZ CONTINUITY RESULT

Recall that Proposition 1 states that for any two MDPsM and M̄ , for all (s, a) ∈ S×A, |Q∗M (s, a)−
Q∗
M̄

(s, a)| ≤ min
{
dM̄M , d

M
M̄

}
, with dM̄M , 1

1−γ maxs,a∈S×A
[
DM̄
M,γV ∗

M̄
(s, a)

]
.

Proof. The proof is by induction and reuses the notations introduced in the proof of Proposition 1. It
is immediate that ∣∣Q0

M (s, a)−Q0
M̄ (s, a)

∣∣ ≤ dM̄M , and∣∣Q0
M (s, a)−Q0

M̄ (s, a)
∣∣ ≤ dMM̄ .

Hence, the result holds for n = 0. Let us suppose that∣∣QnM (s, a)−QnM̄ (s, a)
∣∣ ≤ dM̄M , and∣∣QnM (s, a)−QnM̄ (s, a)
∣∣ ≤ dMM̄ .

Then,∣∣Qn+1
M (s, a)−Qn+1

M̄
(s, a)

∣∣ ≤ DM̄
M,γV ∗

M̄
(s, a) + γ

∑
s′∈S

T ass′ max
a′∈A

∣∣QnM (s′, a′)−QnM̄ (s′, a′)
∣∣

≤ max
s,a∈S×A

[
DM̄
M,γV ∗

M̄
(s, a)

]
+ γ

∑
s′∈S

T ass′
1

1− γ
max

s,a∈S×A

[
DM̄
M,γV ∗

M̄
(s, a)

]
≤ max
s,a∈S×A

[
DM̄
M,γV ∗

M̄
(s, a)

](
1 +

γ

1− γ

)
≤ dM̄M

F PROOF OF PROPOSITION 3

Proof. The result is clear for all s, a /∈ K since the Lipschitz bounds are provably greater than Q∗M .
For s, a ∈ K, the result is by induction. Let us consider the Dynamic Programming (Bellman, 1957)
sequences converging to Q∗M and U at rank n whose definitions follow:{

Q∗M,0(s, a) = 0

Q∗M,n(s, a) = Ras + γ
∑
s′ T

a
ss′ maxa′ Q

∗
M,n−1(s′, a′){

U0(s, a) = 0

Un(s, a) = Ras + γ
∑
s′ T

a
ss′ maxa′ Un−1(s′, a′)

Obviously, Q∗M,0(s, a) ≤ U0(s, a). Suppose the property true at rank n and consider rank n+ 1:

Q∗M,n+1(s, a)− Un+1(s, a) = γ
∑
s′

T ass′
(

max
a′

Q∗M,n(s′, a′)−max
a′

Un(s′, a′)
)

≤ γ
∑
s′

T ass′ max
a′

(
Q∗M,n(s′, a′)− Un(s′, a′)

)
≤ 0

Which concludes the proof by induction. The result holds by passage to the limit since the considered
Dynamic Programming sequences converge to the true functions.

G PROOF OF PROPOSITION 4

Consider two tasks M = 〈T,R〉 and M̄ = 〈T̄ , R̄〉, with K and K̄ the respective sets of state-action
pairs where their learned models M̂ = 〈T̂ , R̂〉 and ˆ̄M = 〈 ˆ̄T, ˆ̄R〉 are known with accuracy ε in

14

Under review as a conference paper at ICLR 2020

L1-norm with probability at least 1− δ, i.e. we have that,

Pr
(
|Ras − R̂as | ≤ ε

)
≥ 1− δ, ∀s, a ∈ K, (11)

Pr
(
‖T ass′ − T̂ ass′‖1 ≤ ε

)
≥ 1− δ, ∀s, a ∈ K, (12)

and the same goes for M̄ and its learned model ˆ̄M . We state the result for each one of the three
cases 1) s, a ∈ K ∩ K̄, 2) s, a ∈ K ∩ K̄c and 3) s, a ∈ Kc ∩ K̄c, the case s, a ∈ Kc ∩ K̄ being the
symmetric of case 2).

1) If s, a ∈ K ∩ K̄, then properties 11 and 12 hold for both 〈R, T 〉 with 〈R̂, T̂ 〉 and 〈R̄, T̄ 〉 with
〈 ˆ̄R, ˆ̄T 〉. We have by definition:

DMM̄
γV ∗

M̄
(s, a) = |Ras − R̄as |+ γ

∑
s′∈S

V ∗M̄ (s′)|T ass′ − T̄ ass′ |. (13)

The first term of the RHS of Equation 13 respects the following sequence of inequalities with
probability at least 1− δ:

|Ras − R̄as | ≤ |Ras − R̂as |+ |R̂as − ˆ̄Ras |+ |R̄as − ˆ̄Ras |

≤ |R̂as − ˆ̄Ras |+ 2ε. (14)

The second term of the RHS of Equation 13 respects the following sequence of inequalities with
probability at least 1− δ:

γ
∑
s′∈S

V ∗M̄ (s′)|T ass′ − T̄ ass′ | ≤ γ
∑
s′∈S

V̄ (s′)
(
|T ass′ − T̂ ass′ |+ |T̂ ass′ − ˆ̄T ass′ |+ |T̄ ass′ − ˆ̄T ass′ |

)
≤ γmax

s′
V̄ (s′)

∑
s′∈S
|T ass′ − T̂ ass′ |+ γ

∑
s′∈S

V̄ (s′)|T̂ ass′ − ˆ̄T ass′ |+

γmax
s′

V̄ (s′)
∑
s′∈S
|T̄ ass′ − ˆ̄T ass′ |

≤ γ
∑
s′∈S

V̄ (s′)|T̂ ass′ − ˆ̄T ass′ |+ 2εγmax
s′

V̄ (s′). (15)

Summation of Equations 14 and 15 reveals D̂MM̄ (s, a) = |R̂as − ˆ̄Ras |+ γ
∑
s′∈S V̄ (s′)|T̂ ass′ − ˆ̄T ass′ |

on the RHS of the inequality. Remarking this, we can upper-bound the model pseudo-distance of
Equation 13 by the expected quantity with probability at least 1− δ, proving the Proposition for case
1):

DMM̄
γV ∗

M̄
(s, a) ≤ D̂MM̄ (s, a) + 2ε

(
1 + γmax

s′
V̄ (s′)

)
.

2) If s, a ∈ K ∩ K̄c, then properties 11 and 12 hold for 〈R, T 〉 with 〈R̂, T̂ 〉 only. Similarly to the
proof of case 1), we upper bound sequentially the two terms of the RHS of Equation 13. With
probability at least 1− δ, we have the following:

|Ras − R̄as | ≤ |Ras − R̂as |+ |R̂as − R̄as |
≤ ε+ max

R̄
|R̂as − R̄|. (16)

Similarly, with probability at least 1− δ, we have:

γ
∑
s′∈S

V ∗M̄ (s′)|T ass′ − T̄ ass′ | ≤ γ
∑
s′∈S

V̄ (s′)
(
|T ass′ − T̂ ass′ |+ |T̂ ass′ − T̄ ass′ |

)
≤ γmax

s′
V̄ (s′)ε+ γmax

T̄

∑
s′∈S

V̄ (s′)|T̂ ass′ − T̄s′ |. (17)

Combining inequalities 16 and 17, we get the following with probability at least 1 − δ, noticing
DMM̄
γV ∗

M̄
(s, a) on the LHS:

DMM̄
γV ∗

M̄
(s, a) ≤ max

µ̄∈M
DM̂µ̄
γV̄

(s, a) + ε
(

1 + γmax
s′

V̄ (s′)
)
,

15

Under review as a conference paper at ICLR 2020

which is the expected result.

3) If s, a ∈ Kc ∩ K̄c, then properties 11 and 12 do not hold. In such a case, the result

DMM̄
γV ∗

M̄
(s, a) ≤ max

µ,µ̄∈M2
Dµµ̄
γV̄

(s, a)

is straightforward by remarking that V ∗
M̄

(s) ≤ V̄ (s) with probability at least 1− δ.

H ANALYTICAL CALCULATION OF D̂MM̄ IN PROPOSITION 4

Consider two tasks M = 〈T,R〉 and M̄ = 〈T̄ , R̄〉, with K and K̄ the respective sets of state-action
pairs where their learned models M̂ = 〈T̂ , R̂〉 and ˆ̄M = 〈 ˆ̄T, ˆ̄R〉 are known with accuracy ε in
L1-norm with probability at least 1 − δ. We note Vmax, a known upper-bound on the maximum
achievable value. In the worst case where one does not have any information on the value of Vmax,
one can always set Vmax = 1

1−γ . We recall the definition of the upper bound on the pseudo-metric
between models:

D̂MM̄ (s, a) =



DM̂ ˆ̄M
γV̄

(s, a) + 2B if (s, a) ∈ K ∩ K̄,
max
µ̄∈M

DM̂µ̄

γV̄
(s, a) +B if (s, a) ∈ K ∩ K̄c,

max
µ∈M

Dµ ˆ̄M

γV̄
(s, a) +B if (s, a) ∈ Kc ∩ K̄,

max
µ,µ̄∈M2

Dµµ̄

γV̄
(s, a) if (s, a) ∈ Kc ∩ K̄c.

(18)

with B = ε
(
1 + γmaxs′ V̄ (s′)

)
and DMM̄

f defined as in Equation 13. We detail the computation
of D̂MM̄ (s, a) for each cases 1) s, a ∈ K ∩ K̄, 2) s, a ∈ K ∩ K̄c (the s, a ∈ Kc ∩ K̄ is symmetric
to this one), and 3) s, a ∈ Kc ∩ K̄c. Recall that we consider a finite, countable, state-action space
S ×A.

1) If s, a ∈ K ∩ K̄, we have

D̂MM̄ (s, a) = DM̂ ˆ̄M
γV̄ (s, a) + 2B

= |R̂as − ˆ̄Ras |+ γ
∑
s′∈S

V̄ (s′)|T̂ ass′ − ˆ̄T ass′ |+ 2ε
(

1 + γmax
s′

V̄ (s′)
)
.

Since s, a is a known state-action pair, everything is known and computable in this last equation. Note
that maxs′ V̄ (s′) can be tracked along the updates of V̄ and thus its computation does not induce any
additional complexity.

2) If s, a ∈ K ∩ K̄c, we have

D̂MM̄ (s, a) = max
µ̄∈M

DM̂µ̄

γV̄
(s, a) +B

= max
R̄a

s ,T̄
a
ss′

(
|R̂as − R̄as |+ γ

∑
s′∈S

V̄ (s′)|T̂ ass′ − T̄ ass′ |

)
+ ε
(

1 + γmax
s′

V̄ (s′)
)
,

= max
r∈[0,1]

|R̂as − r|+ γ max
t∈[0,1]|S|∑

t=1

(∑
s′∈S

V̄ (s′)|T̂ ass′ − ts′ |

)
+ ε
(

1 + γmax
s′

V̄ (s′)
)
.

First, we have
max
r∈[0,1]

|R̂as − r| = max
{
R̂as , 1− R̂as

}
.

Maximizing the maxt∈[0,1]|S| term is maximizing a convex combination of V̄ (whose values are all
positive) whose terms are not independent (since the ts′ terms should sum to one). This is easily cast
as a linear programming problem. A straightforward (simplex-like) resolution procedure consists in
progressively adding mass on the terms that will maximize the convex combination as follows:

• ts′ = 0,∀s′ ∈ S

16

Under review as a conference paper at ICLR 2020

• l = Sort states by decreasing value of V̄

• While
∑
s∈S t(s) < 1

– s′ = pop first state in l

– Assign t(s′)← arg maxt∈[0,1] |T̂ ass′ − t| to s′ (note that ts′ ∈ {0, 1})
– If

∑
s∈S ts > 1, then ts′ ← 1−

∑
s∈S\s′ t(s)

This allows calculating the maximum over transition models.

There is however a simpler computation that almost always yields the same result (when it does not,
it provides an upper bound) and does not require the burden of the previous procedure. Consider the
subset of states for which V̄ (s′) = maxs V̄ (s) (often these are states in K̄c). Among those states, let
us suppose there exists s+ unreachable from s, a, according to T̂ , that is T̂ ass+ = 0. If M̄ has not been
fully explored, as is often the case in RMax, there may be many such states. Then the distribution t
with all its mass on s+ is a maximizer of the maxt∈[0,1]|S| term. Conversely, if such a state does not
exist (that is, if for all such states T̂ ass+ > 0), then maxs V̄ (s) is an upper bound on the maxt∈[0,1]|S|

term. Therefore:

max
t∈[0,1]|S|

(∑
s′∈S

V̄ (s′)|T̂ ass′ − ts′ |

)
≤ max

s
V̄ (s), with equality in many cases.

3) If s, a ∈ Kc ∩ K̄c, the resolution is trivial and we have

D̂MM̄ (s, a) = max
µ,µ̄∈M2

Dµµ̄

γV̄
(s, a)

= max
Ra

s ,T
a
ss′ ,R̄

a
s ,T̄

a
ss′

(
|Ras − R̄as |+ γ

∑
s′∈S

V̄ (s′)|T ass′ − T̄ ass′ |

)
= max
r,r̄∈[0,1]

|r − r̄|+ γ max
t,t̄∈[0,1]|S|∑

t=1∑
t̄=1

∑
s′∈S

V̄ (s′)|ts′ − t̄s′ |

= 1 + γmax
s
V̄ (s).

I PROOF OF PROPOSITION 5

Lemma 2. Given two tasks M and M̄ , K the set of state-action pairs for which 〈R, T 〉 is known
with accuracy ε in L1-norm with probability at least 1− δ. If γ(1 + ε) < 1, this equation on d̂ is a
fixed-point equation admitting a unique solution which we call d̂M̄M

d̂(s, a) =


D̂MM̄ (s, a) + γ

(∑
s′∈S

T̂ ass′ max
a′∈A

d̂(s′, a′) + ε max
s′,a′∈S×A

d̂(s′, a′)

)
if s, a ∈ K,

D̂MM̄ (s, a) + γ max
s′,a′∈S×A

d̂(s′, a′) otherwise.

Proof of Lemma 2. The proof is similar to the proof of Lemma 1. Let d1 and d2 be two functions
from S ×A to R and let L be the functional operator that maps any function d : S ×A → R to

Ld : s, a 7→


D̂MM̄ (s, a) + γ

(∑
s′∈S

T̂ ass′ max
a′∈A

d(s′, a′) + ε max
s′,a′∈S×A

d(s′, a′)

)
if s, a ∈ K,

D̂MM̄ (s, a) + γ max
s′,a′∈S×A

d(s′, a′) otherwise.

17

Under review as a conference paper at ICLR 2020

If s, a ∈ K, we have

Ld1(s, a)− Ld2(s, a) = γ
∑
s′

T ass′
(

max
a′

d1(s′, a′)−max
a′

d2(s′, a′)
)

+

γε

(
max
s′,a′

d1(s′, a′)−max
s′,a′

d2(s′, a′)

)
≤ (γ + γε)

(
max
s′,a′

d1(s′, a′)−max
s′,a′

d2(s′, a′)

)
≤ γ(1 + ε) max

s′,a′
(d1(s′, a′)− d2(s′, a′))

≤ γ(1 + ε)‖d1 − d2‖∞.

If s, a /∈ K, we have

Ld1(s, a)− Ld2(s, a) = γ

(
max
s′,a′

d1(s′, a′)−max
s′,a′

d2(s′, a′)

)
≤ γmax

s′,a′
(d1(s′, a′)− d2(s′, a′))

= γ(1 + ε)‖d1 − d2‖∞.

In both cases, ‖Ld1 − Ld2‖∞ ≤ γ(1 + ε)‖d1 − d2‖∞. If γ(1 + ε) < 1, L is a contraction mapping
in the metric space (S ×A, ‖ · ‖∞). This metric space being complete and non-empty, it follows
from Banach fixed point theorem that d = Ld admits a single solution.

Proof of Proposition 5. The proof is done by induction, by calculating the values of dM̄M and d̂M̄M
following the value iteration algorithm. Those values can respectively be computed via the sequences
of iterates (dn)n∈N and (d̂n)n∈N defined as follows:

d0(s, a) = 0,∀s, a ∈ S ×A

dn+1(s, a) = DMM̄
γV ∗

M̄
(s, a) + γ

∑
s′∈S

T ass′ max
a′∈A

dn(s′, a′)

and,

d̂0(s, a) = 0,∀s, a ∈ S ×A,

d̂n+1(s, a) =


D̂MM̄ (s, a) + γ

(∑
s′∈S

T̂ ass′ max
a′∈A

d̂n(s′, a′) + ε max
s′,a′∈S×A

d̂n(s′, a′)

)
if s, a ∈ K,

D̂MM̄ (s, a) + γ max
s′,a′∈S×A

d̂n(s′, a′) otherwise.

The proof at rank n = 0 is trivial. Let us assume the proposition dn ≤ d̂n,∀s, a ∈ S ×A true at rank
n and consider rank n+ 1. There are two cases, depending on the fact that s, a is in K or not.

If s, a ∈ K, we have

dn+1(s, a)− d̂n+1(s, a) = DMM̄
γV ∗

M̄
(s, a)− D̂MM̄ (s, a)+

γ
∑
s′∈S

(
T ass′ max

a′∈A
dn(s′, a′)− T̂ ass′ max

a′∈A
d̂n(s′, a′)

)
+

− γε max
s′,a′∈S×A

d̂n(s′, a′).

Using Proposition 4, we have that D̂MM̄ (s, a) is an upper bound on DMM̄
γV ∗

M̄
(s, a) with probability at

least 1− δ. Hence

Pr
(
DMM̄
γV ∗

M̄
(s, a)− D̂MM̄ (s, a) ≤ 0

)
≥ 1− δ.

18

Under review as a conference paper at ICLR 2020

This plus the fact that dn ≤ d̂n by induction hypothesis, we have that

dn+1(s, a)− d̂n+1(s, a) ≤ γ
∑
s′∈S

max
a′∈A

d̂n(s′, a′)
(
T ass′ − T̂ ass′

)
+

− γε max
s′,a′∈S×A

d̂n(s′, a′)

≤ γ max
s′,a′∈S×A

d̂n(s′, a′)
∑
s′∈S

(
T ass′ − T̂ ass′

)
+

− γε max
s′,a′∈S×A

d̂n(s′, a′)

Since Pr
(
‖T − T̂‖1 ≤ ε

)
≥ 1− δ, we have with probability at least 1− δ,

dn+1(s, a)− d̂n+1(s, a) ≤ γ max
s′,a′∈S×A

d̂n(s′, a′)ε− γε max
s′,a′∈S×A

d̂n(s′, a′)

= 0,

which concludes the proof in this case.

Conversely, if s, a /∈ K, we have

dn+1(s, a)− d̂n+1(s, a) = DMM̄
γV ∗

M̄
(s, a)− D̂MM̄ (s, a)+

γ
∑
s′∈S

T ass′ max
a′∈A

dn(s′, a′)− γ max
s′,a′∈S×A

d̂n(s′, a′).

Using the same reasoning than in case s, a ∈ K, we have with probability higher than 1− δ

dn+1(s, a)− d̂n+1(s, a) ≤ γ
∑
s′∈S

T ass′ max
a′∈A

d̂n(s′, a′)− γ max
s′,a′∈S×A

d̂n(s′, a′)

≤ γ max
s′,a′∈S×A

d̂n(s′, a′)− γ max
s′,a′∈S×A

d̂n(s′, a′)

≤ 0,

which concludes the proof in the second case.

J PROOF OF PROPOSITION 7

Proof. We follow the proof of the computational complexity of RMax proposed by Strehl et al.
(2009). The cost of Lipschitz RMax is constant on most time steps since the action is greedily chosen
w.r.t. the upper-bound on the optimal Q-value function which is a lookup table. When updating a
new state-action pair (labelling it as a known pair), the algorithm performs 2N DP computations to
update the Lipschitz bounds plus one DP computation to update the total-bound. The cost of one DP
computation is given by (Strehl et al., 2009):

Õ
(
SA(S + log(A))

1

1− γ
log

1

ε(1− γ)

)
The result comes out by remarking that at most SA state-action pairs are updated, each resulting in
(N + 1) DP computations.

K PROOF OF PROPOSITION 8

Proof. Consider a fixed state-action pair s, a ∈ S × A. For two sampled tasks M, M̄ ∈ M̂2, we
assume our algorithm to provide an upper-bound on DMM̄

γV ∗
M̄

(s, a) with probability at least 1− δ. This
assumption is actually guaranteed by Proposition 4 while running Algorithm 1. With probability at
least 1− δ,

D̂MM̄ (s, a) ≥ DMM̄
γV ∗

M̄
(s, a),∀M, M̄ ∈ M̂2.

19

Under review as a conference paper at ICLR 2020

Hence, with probability at least 1− δ,

max
M,M̄∈M̂2

D̂MM̄ (s, a) ≥ max
M,M̄∈M̂2

DMM̄
γV ∗

M̄
(s, a)

i.e. D̂max(s, a) ≥ Dmax(s, a).

In turn, the event of underestimatingDmax(s, a) occurs only if the two tasks, that we note M∗1 ,M
∗
2 ∈

M2, maximizing M,M̄ 7→ DMM̄
γV ∗

M̄
(s, a), are not sampled, i.e. do not belong to M̄ . M∗1 and M∗2 are

not necessarily unique, but they could be. Since we aim at deriving a lower bound on the probability
of sampling M∗1 and M∗2 , we consider the worst case where they are unique. The probability P̃
of sampling one particular task, whose sampling probability is p, after i samples, is given by the
cumulative distribution function of the geometric distribution and is p(1− p)i−1. Consequently, if
the sampling probability p of this task is lower bounded by pmin, the quantity pmin(1 − pmin)i−1

lower bounds P̃ . Let us write X the random variable of the number of samples required for sampling
either M∗1 or M∗2 for the first time. By considering that the sampling probability of either sampling
M∗1 or M∗2 is lower bounded by 2pmin, we follow the same reasoning as for P̃ and obtain that :

Pr(X = i) ≥ 2pmin(1− 2pmin)i−1

Let us write Y the random variable of the number of samples required for sampling the remaining task
for the first time. We have the following result using the geometric distribution for the conditional
Pr(Y = k|X = i):

Pr(Y = k) =

k−1∑
i=1

Pr(Y = k,X = i)

=

k−1∑
i=1

Pr(Y = k|X = i)Pr(X = i)

≥ 2

k−1∑
i=1

(1− pmin)k−i−1(1− 2pmin)i−1p2
min (19)

Pr(Y = k) is the probability of first success at step k. For D̂max(s, a) to estimate Dmax(s, a) in m
steps, we require that this success occurs any time during the first m steps, so we have:

Pr(D̂max(s, a) ≥ Dmax(s, a)) =

m∑
k=2

Pr(Y = k)

Using Equation 19, we can deduce our result when remarking that necessarily pmin ≤ 1/2:

Pr(D̂max(s, a) ≥ Dmax(s, a)) ≥ 2p2
min

m∑
k=2

k−1∑
i=1

(1− pmin)k−i−1(1− 2pmin)i−1

≥ 2p2
min

m−2∑
k=0

k∑
i=0

(1− pmin)k−i(1− 2pmin)i

≥ 2p2
min

m−2∑
k=0

(1− pmin)k
k∑
i=0

(
1− 2pmin

1− pmin

)i

≥ 2p2
min

m−2∑
k=0

(1− pmin)k
1

p

(
1− pmin −

(1− 2pmin)k+1

(1− pmin)k

)

≥ 2pmin

m−2∑
k=0

(
(1− pmin)k+1 − (1− 2pmin)k+1

)
≥ 2pmin(1− pmin)

1− (1− pmin)m−1

1− (1− pmin)

− 2pmin(1− 2pmin)
1− (1− 2pmin)m−1

1− (1− 2pmin)

≥ 1− 2(1− pmin)m + (1− 2pmin)m

20

Under review as a conference paper at ICLR 2020

L THE “TIGHT” ENVIRONMENT USED IN EXPERIMENTS OF SECTION 5

The tight environment is a 11× 11 grid-world illustrated in Figure 4. The initial state of the agent
is the central cell displayed with an “S”. The actions are moving 1 cell in one of the four cardinal
directions. The reward is 0 everywhere, except for executing an action in one of the three teal cells in
the upper-right corner. Each time a task is sampled, a slipping probability of executing another action
as the one selected is drawn in [0, 1] and the reward received in each one of the teal cells is picked in
[0.8, 1.0].

S

Figure 4: The tight grid-world environment.

M PRIOR Dmax USE EXPERIMENT

Each time an s, a pair is updated, we compute the local distance upper bound D̂ (Equation 7) for all
(s, a) ∈ S ×A. In this computation, one can leverage knowledge of Dmax to select min{D̂,Dmax}.
We show that LRMax relies less and less on Dmax as knowledge on the current task increases. For
this experiment, we used the two grid-worlds environments displayed in Figures 5 and 6.

The rewards collected with any actions performed in the teal cells of both tasks are defined as:

Rsa = exp

(
− (sx − gx)2 + (sy − gy)2

2σ2

)
,∀s = (sx, sy) ∈ S, a ∈ A,

where (sx, sy) are the coordinates of the current state, (gx, gy) the coordinate of the goal cell
labelled with a G and σ is a span parameter equal to 1 in the first environment and 1.5 in the second
environment. The agent starts at the cell labelled with the S letter. Black cells represent unreachable
cells (walls). We run LRMax twice on the two different maze grid-worlds and record for each model
update the proportion of times Dmax is smaller than D̂ in Figure 7 via the % use of Dmax.

S

G

Figure 5: 4 times 4 heat-map grid-world.
Slipping probability is 10%.

S

G

Figure 6: 4 times 4 heat-map grid-world.
Slipping probability is 5%.

21

Under review as a conference paper at ICLR 2020

0 6 12 18 24 30 36 42 48
Computation Number

0

20

40

60

80

100

%
P

ri
or

U
se

LRMax-prior19.0

LRMax-prior17.0

LRMax-prior15.0

LRMax-prior10.0

LRMax-prior0.0

Figure 7: Proportion of times where Dmax ≤ D̂MM̄ , i.e. use of the prior, vs computation of the
Lipschitz bound. Each curve is displayed with 95% confidence intervals.

With maximum value Dmax = 19, D̂ is systematically lesser than Dmax, resulting in 0% use.
Conversely, with minimum value Dmax = 0, the use expectedly increases to 100%. The in-between
value of Dmax = 10 displays a linear decay of the use. This suggests that, at each update, D̂ ≤ Dmax

is only true for one more unique s, a pair, resulting in a constant decay of the use. With fewer prior
(Dmax = 15 or 17), updating one single s, a pair allows D̂ to drop under Dmax for more than one
pair, resulting in less use of the prior knowledge. The conclusion of this experiment if that Dmax is
only useful at the beginning of the exploration, while LRMax relies more on its own bound D̂ when
partial knowledge of the task has been acquired.

N DISCUSSION ON RMAX PRECISION PARAMETERS ε, δ, nknown

We used nknown = 10, δ = 0.05 and ε = 0.01. Theoretically, nknown should be a lot larger (≈ 105)
in order to reach an accuracy ε = 0.01 according to Strehl et al. (2009). However, it is common
practice to assume such small values of nknown are sufficient to reach an acceptable model accuracy ε.
Interestingly, empirical validation did not confirm this assumption for any RMax-based algorithm. We
keep these values nonetheless for the sake of comparability between algorithms and consistency with
the literature. Despite such absence of accuracy guarantees, RMax-based algorithms still perform
surprisingly well and are robust to model estimation uncertainties.

O INFORMATIONS ABOUT THE MACHINE LEARNING REPRODUCIBILITY
CHECKLIST

For the experiments run in Section 5, the computing infrastructure used was a laptop using a single
64-bit CPU (model: Intel(R) Core(TM) i7-4810MQ CPU @ 2.80GHz). The collected samples sizes
and number of evaluation runs for each experiment is summarized in Table 1.

22

Under review as a conference paper at ICLR 2020

Task
Number of
experiment
repetitions

Number of
sampled tasks

Number of
episodes

Maximum
length

of episodes

Total number of
collected transition
samples (s, a, r, s′)

“Tight” task
of Figures 1a 1b

and 1c
10 15 2000 10 3,000,000

“Tight” task
of Figure 1d 100 2 2000 10 4,000,000

Heat-map
Section M 100 2 100 30 600,000

Table 1: Summary of the number of experiment repetition, number of sampled tasks, number of
episodes, maximum length of episodes and upper bounds on the number of collected samples.

The displayed confidence intervals for any curve presented in the paper is the 95% confidence
interval (Neyman, 1937) on the displayed mean. No data were excluded neither pre-computed.
Hyper-parameters were determined to our appreciation, they may be sub-optimal but we found the
results convincing enough to display interesting behaviours.

23

	Introduction
	Background and related work
	Lipschitz continuity of Q-functions
	Transfer using the Lipschitz continuity
	A tractable upper bound on Q*M
	Lipschitz RMax
	Refining LRMax bounds with maximum model distance

	Experiments
	Conclusion
	A negative transfer example
	Discussion on metrics and related notions
	Proof of Proposition 1
	Similar results to Proposition 1
	Global pseudo-Lipschitz continuity result
	Proof of Proposition 3
	Proof of Proposition 4
	Analytical calculation of M in Proposition 4
	Proof of Proposition 5
	Proof of Proposition 7
	Proof of Proposition 8
	The ``tight'' environment used in experiments of Section 5
	Prior Dmax use experiment
	Discussion on RMax precision parameters , , nknown
	Informations about the Machine Learning reproducibility checklist

