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ABSTRACT

This work tackles the problem of characterizing and understanding the decision
boundaries of neural networks with piece-wise linear non-linearity activations.
We use tropical geometry, a new development in the area of algebraic geometry,
to provide a characterization of the decision boundaries of a simple neural net-
work of the form (Affine, ReLU, Affine). Specifically, we show that the decision
boundaries are a subset of a tropical hypersurface, which is intimately related to
a polytope formed by the convex hull of two zonotopes. The generators of the
zonotopes are precise functions of the neural network parameters. We utilize this
geometric characterization to shed light and new perspective on three tasks. In
doing so, we propose a new tropical perspective for the lottery ticket hypothesis,
where we see the effect of different initializations on the tropical geometric rep-
resentation of the decision boundaries. Also, we leverage this characterization as
a new set of tropical regularizers, which deal directly with the decision bound-
aries of a network. We investigate the use of these regularizers in neural network
pruning (removing network parameters that do not contribute to the tropical ge-
ometric representation of the decision boundaries) and in generating adversarial
input attacks (with input perturbations explicitly perturbing the decision bound-
aries geometry to change the network prediction of the input).

1 INTRODUCTION

Deep Neural Networks (DNNs) have recently demonstrated outstanding performance across several
research domains, including computer vision (Krizhevsky et al., 2012), speech recognition (Hin-
ton et al., 2012), natural language processing (Bahdanau et al., 2015; Devlin et al., 2018), quantum
chemistry (Schütt et al., 2017), and healthcare (Ardila et al., 2019; Zhou et al., 2019) to name a
few (LeCun et al., 2015). Nevertheless, a rigorous interpretation of their success remains evasive
(Shalev-Shwartz & Ben-David, 2014). For instance, and in an attempt to uncover the expressive
power of DNNs, Montufar et al. (2014) studied the complexity of functions computable by DNNs
that have piece-wise linear activations. They derived a lower bound on the maximum number of
linear regions. Several other works have followed to improve such estimates under certain assump-
tions (Arora et al., 2018). In addition, and in attempt to understand some of the subtle behaviours
DNNs exhibit, e.g. the sensitive reaction of DNNs to small input perturbations, several works di-
rectly investigated the decision boundaries induced by a DNN used for classification. The work of
Seyed-Mohsen Moosavi-Dezfooli (2019) showed that the smoothness of these decision boundaries
and their curvature can play a vital role in network robustness. Moreover, He et al. (2018) studied the
expressiveness of these decision boundaries at perturbed inputs and showed that these boundaries
do not resemble the boundaries around benign inputs.

More recently, and due to the popularity of the piece-wise linear ReLU as an activation function,
there has been a surge in the number of works that study this class of DNNs in particular. As a
result, this has incited significant interest in new mathematical tools that help analyze piece-wise
linear functions, such as tropical geometry. While tropical geometry has shown its potential in
many applications such as dynamic programming (Joswig & Schröter, 2019), linear programming
(Allamigeon et al., 2015), multi-objective discrete optimization (Joswig & Loho, 2019), enumerative
geometry (Mikhalkin, 2004), economics (Akian et al., 2009; Mai Tran & Yu, 2015), it has only been
recently used to analyze DNNs. For instance, Zhang et al. (2018) showed an equivalency between
the family of DNNs with piece-wise linear activations and integer weight matrices and the family
of tropical rational maps, i.e. ratio between two multi-variate polynomials in tropical algebra. The

1



Under review as a conference paper at ICLR 2020

work of Zhang et al. (2018) was mostly concerned about characterizing the complexity of a DNN
and specifically counting the number of linear regions, into which the function represented by the
DNN can divide the input space, by counting the number of vertices of some polytope representation.
This novel approach recovered the results of Montufar et al. (2014) with a much simpler analysis.

In this paper, we take the results of Zhang et al. (2018) some steps further and present a novel per-
spective on the decision boundaries of DNNs using tropical geometry. Specifically, for a neural
network in the form (Affine, ReLU, Affine), we give a concrete formulation of a super-set for its
decision boundaries as a convex hull of two zonotopes referred to as the decision boundaries poly-
tope. We then leverage this polytope formulation and the geometry that arises to analyze DNNs and
try to shed light on some of their interesting behavior. In particular, we provide a new scope to the
lottery ticket hypothesis (Frankle & Carbin, 2019), and we propose a new geometric perspective to
two classical applications for DNNs, namely network pruning and the design of adversarial attacks.

Contributions. Our contributions are three-fold. (i) We derive a geometric representation (con-
vex hull between two zonotopes) for a super set to the decision boundaries of a DNN in the form
(Affine, ReLU, Affine). (ii) We demonstrate support for the lottery ticket hypothesis (Frankle &
Carbin, 2019) using a geometric perspective. (iii) We leverage the geometrical representation of
the decision boundaries (the decision boundaries polytope) in two interesting applications: network
purning and adversarial attacks. In regards to tropical pruning, we provide a new geometric per-
spective in which one can directly compress the decision boundaries polytope efficiently resulting in
only minor perturbations to the decision boundaries. We conduct extensive experiments on AlexNet
(Krizhevsky et al., 2012) and VGG16 (Simonyan & Zisserman, 2014) on SVHN (Netzer et al.,
2011), CIFAR10, and CIFAR 100 (Krizhevsky & Hinton, 2009) datasets, in which 90% pruning rate
can be achieved with a marginal drop in testing accuracy. As for tropical adversarial attack, we
show that one can construct input adversaries that can change network predictions by perturbing the
decision boundaries polytope. We conduct extensive experiments on MNIST dataset (LeCun, 1998).

2 PRELIMINARIES TO TROPICAL GEOMETRY

We provide here some preliminaries to tropical geometry. For a thorough detailed review, we refer
the reader to the work of Itenberg et al. (2009); Maclagan & Sturmfels (2015).
Definition 1. (Tropical Semiring) The tropical semiring T is the triplet {R ∪ {−∞},⊕,�}, where
⊕ and � define tropical addition and tropical multiplication, respectively. They are denoted as:

x⊕ y = max{x, y}, x� y = x+ y, ∀x, y ∈ T.

It can be readily shown that −∞ is the additive identity and 0 is the multiplicative identity.

Given the previous definition, a tropical power can be formulated as x�a = x � x · · · � x = a.x,
for x ∈ T, a ∈ N, where a.x is standard multiplication. For ease of notation, we write x�a as xa.
Now, we are in a position to define tropical polynomials, their solution sets and tropical rationals.
Definition 2. (Tropical Polynomials) For x ∈ Td, ci ∈ R and ai ∈ Nd, a d-variable tropical
polynomial with n monomials. f : Td → Td can be expressed as:

f(x) = (c1 � xa1)⊕ (c2 � xa2)⊕ · · · ⊕ (cn � xan), ∀ ai 6= aj when i 6= j.

We use the more compact vector notation xa = xa11 � x
a2
2 · · · � x

ad
d where x,a ∈ Rd. Moreover

and for ease of notation, we will denote ci � xai as cixai throughout the paper.
Definition 3. (Tropical Rational Functions) A tropical rational function is a standard difference or
equivalently, a tropical quotient of two tropical polynomials: f(x)− g(x) = f(x) � g(x).

Algebraic curves or hypersurfaces in algebraic geometry, which are the solution sets to polynomials,
can be analogously extended to tropical polynomials too.
Definition 4. (Tropical Hypersurfaces) A tropical hypersurface of a tropical polynomial f(x) =
c1x

a1 ⊕ · · · ⊕ cnxan is the set of points x where f is attained by two or more monomials in f , i.e.

T (f) := {x ∈ Rd : cix
ai = cjx

aj = f(x), for some ai 6= aj}.

Thereafter, tropical hypersurfaces divide the domain of f into convex regions, where f is linear in
each region. Moreover, every tropical polynomial can be associated with a Newton polytope.
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Figure 1: Decision Boundaries as Geometric Structures. The decision boundaries B (in red) comprise two
linear pieces separating classes C1 and C2. As per Theorem 2, the dual subdivision of this single hidden neural
network is the convex hull between the zonotopes ZG1 and ZG2 . The normals to the dual subdivison δ(R(x))
are in one-to-one correspondence to the tropical hypersurface T (R(x)), which is a superset to the decision
boundaries B. Note that some of the normals to δ(R(x)) (in red) are parallel to the decision boundaries.

Definition 5. (Newton Polytopes) The Newton polytope of a tropical polynomial f(x) = c1x
a1 ⊕

· · · ⊕ cnxan is the convex hull of the exponents ai ∈ Nd regarded as points in Rd, i.e.

∆(f) := ConvHull{ai ∈ Rd : i = 1, 2, . . . , n and ci 6= −∞}.

A tropical polynomial determines a dual subdivision, which can thus be constructed by projecting
the collection of upper faces (UF) in P(f) := ConvHull{(ai, ci) ∈ Rd × R : i = 1, . . . , n} to
Rd. That is to say, the dual subdivision determined by f is given as δ(f) := {π(p) ⊂ Rd : p ∈
UF(P(f))} where π : Rd × R → Rd. It has been shown by Maclagan & Sturmfels (2015) that the
tropical hypersurface T (f) is the (d-1)-skeleton of the polyhedral complex dual to δ(f). So, each
vertex of δ(f) corresponds to one region in Rd where f is linear. Zhang et al. (2018) showed an
equivalency between tropical rational maps and any neural network f : Rn → Rk with piece-wise
linear activations and integer weights through the following theorem.
Theorem 1. (Tropical Characterization of Neural Networks, Zhang et al. (2018)). A feedforward
neural network with integer weights and real biases with piece-wise linear activation functions is a
function f : Rn → Rk, whose coordinates are tropical rational functions of the input, i.e.,

f(x) = H(x) �Q(x) = H(x)−Q(x),

where H and Q are tropical polynomials.

While this result is new in the context of tropical geometry, it is not surprising, since any piece-wise
linear function can be represented as a difference of two max functions over a set of hyperplanes
Melzer (1986). Mathematically, that is to say if f is a piece-wise linear function, it can be written
as f(x) = maxi∈[m]{a>i x} − maxj∈[n]{b>j x}, where [m] = {1, . . . ,m} and [n] = {1, . . . , n}.
Thus, it is clear that each of the two maxima above is a tropical polynomial recovering Theorem 1.

3 DECISION BOUNDARIES OF DEEP NEURAL NETWORKS AS POLYTOPES

In this section, we analyze the decision boundaries of a network in the form (Affine, ReLU,
Affine) using tropical geometry. For ease, we use ReLUs as the non-linear activation, but any
other piece-wise linear function can also be used. The functional form of this network is: f(x) =
Bmax (Ax + c1,0) + c2, where max(.) is an element-wise operator. The outputs of the network f
are the logit scores. Throughout this section, we assume1 that A ∈ Zp×n, B ∈ Z2×p, c1 ∈ Rp and
c2 ∈ R2. For ease of notation, we only consider networks with two outputs, i.e. B2×p, where the
extension to a multi-class output follows naturally and it is discussed in the appendix. Now, since f
is a piece-wise linear function, each output can be expressed as a tropical rational as per Theorem 1.
If f1 and f2 refer to the first and second outputs respectively, we have f1(x) = H1(x) �Q1(x) and
f2(x) = H2(x) �Q2(x), where H1, H2, Q1 and Q2 are tropical polynomials. In what follows and
for ease of presentation, we present our main results where the network f has no biases, i.e. c1 = 0
and c2 = 0, and we leave the generalization to the appendix.
Theorem 2. For a bias-free neural network in the form of f(x) : Rn → R2 where A ∈ Zp×n and
B ∈ Z2×p, let R(x) = H1(x)�Q2(x)⊕H2(x)�Q1(x) be a tropical polynomial. Then:

• If set B = {x ∈ Rn : f1(x) = f2(x)} defines the decision boundaries of f , then B ⊆ T (R(x)).

1Without loss of generality, as one can very well approximate real weights as fractions by multiplying by
least common multiple of the denominators as discussed in Zhang et al. (2018).
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Figure 2: Effect of Different Initializations on the Decision Boundaries Polytope. From left to right:
training dataset, decision boundaries polytope of original network followed by the decision boundaries polytope
during several iterations of pruning with different initializations.

• δ (R(x)) = ConvHull (ZG1
,ZG2

). ZG1
is a zonotope in Rn with line segments

{(B+(1, j) + B−(2, j))[A+(j, :),A−(j, :)]}pj=1 and shift (B−(1, :) + B+(2, :))A−. ZG2
is

a zonotope in Rn with line segments {(B−(1, j) + B+(2, j))[A+(j, :),A−(j, :)]}pj=1 and shift
(B+(1, :) + B−(2, :))A−. Note that A+ = max(A, 0) and A− = max(−A, 0). The line seg-
ment (B+(1, j) + B−(2, j))[A+(j, :),A−(j, :)] has end points A+(j, :) and A−(j, :) in Rn and
scaled by (B+(1, j) + B−(2, j)).

The proof is left for the appendix. Before further discussion, we recap the definition of zonotopes.
Definition 6. Let u1, . . . ,up ∈ Rn. The zonotope formed by u1, . . . ,up is defined as
Z(u1, . . . ,up) := {

∑p
i=1 xiu

i : 0 ≤ xi ≤ 1}. Equivalently, the zonotope can be expressed with
respect to the generator matrix U ∈ Rp×n, where U(i, :) = ui

> as ZU := {U>x : ∀x ∈ [0, 1]p}.

Another common definition for zonotopes is the Minkowski sum of a set of line segments that
start from the origin with end points u1, . . . ,up ∈ Rn. It is also well known that the number of
vertices of a zonotope is polynomial in the number of line segments. That is to say, |vert (ZU) | ≤
2
∑n−1
i=0

(
p−1
i

)
= O

(
pn−1

)
(Gritzmann & Sturmfels, 1993).

Theorem 2 bridges the gap between the behaviour of the decision boundariesB, through the super-set
T (R(x)), and the polytope δ (R(x)), which is the convex hull of two zonotopes. It is worthwhile
to mention that Zhang et al. (2018) discussed a special case of the first part of Theorem 2 for a
neural network with a single output and a score function s(x) to classify the output. To the best
of our knowledge, this work is the first to propose a tropical geometric formulation of a super-set
containing the decision boundaries of a multi-class classification neural network. In particular, the
first result of Theorem 2 states that one can alter the network, e.g. by pruning network parameters,
while preserving the decision boundaries B, if one preserves the tropical hypersurface of R(x)
or T (R(x)). While preserving the tropical hypersurfaces can be equally difficult to preserving the
decision boundaries directly, the second result of Theorem 2 comes in handy. For a bias free network,
π becomes an identity mapping with δ(R(x)) = ∆(R(x)), and thus the dual subdivision δ(R(x)),
which is the Newton polytope ∆(R(x)) in this case, becomes a well structured geometric object
that can be exploited to preserve decision boundaries. Actually, since Maclagan & Sturmfels (2015)
(Proposition 3.1.6) showed that the tropical hypersurface is the skeleton of the dual to δ(R(x)), the
normal lines to the edges of the polytope δ(R(x)) are in one-to-one correspondence with the tropical
hypersurface T (R(x)). Figure 1 details this intimate relation between the decision boundaries,
tropical hypersurface T (R(x)), and normals to δ (R(x)).

While Theorem 2 presents a strong relation between a polytope (convex hull of two zonotopes)
and the decision boundaries, it remains unclear how such a polytope can be efficiently constructed.
Although the number of vertices of a zonotope is polynomial in the number of its generating line
segments, fast algorithms for enumerating these vertices are still restricted to zonotopes with line
segments starting at the origin (Stinson et al., 2016). Since the line segments generating the zono-
topes in Theorem 2 have arbitrary end points, we present the next result that transforms these line
segments into a generator matrix of line segments starting from the origin, as prescribed in Definition
6. This result is essential for the efficient computation of the zonotopes in Theorem 2.
Proposition 1. Consider p line segments in Rn with two arbitrary end points as follows
{[ui1,ui2]}pi=1. The zonotope formed by these line segments is equivalent to the zonotope formed
be the line segments {[ui1 − ui2,0]}pi=1 with a shift of

∑p
i=1 u

i
2.

The proof is left for the appendix. As per Proposition 1, the generator matrices of zonotopes
ZG1

,ZG2
in Theorem 2 can be defined as G1 = Diag[(B+(1, :)) + (B−(2, :))]A and G2 =

Diag[(B+(2, :))+(B−(1, :))]A, both with shift (B−(1, :) + B+(2, :) + B+(1, :) + B−(2, :))A−.

In what follows, we show several applications for Theorem 2. We begin by leveraging the geometric
structure to help in reaffirming the behaviour of the lottery ticket hypothesis.
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Figure 3: Tropical Pruning Pipeline. Pruning the 4th node, or equivalently removing the two yellow vertices
of zonotope ZG2 does not affect the decision boundaries polytope which will not lead to any change in accuracy.

4 TROPICAL VIEW TO THE LOTTERY TICKET HYPOTHESIS

The lottery ticket hypothesis was recently proposed by Frankle & Carbin (2019), in which the au-
thors surmise the existence of sparse trainable sub-networks of dense, randomly-initialized, feed-
forward networks that—when trained in isolation—perform as well as the original network in a
similar number of iterations. To find such sub-networks, Frankle & Carbin (2019) propose the fol-
lowing simple algorithm: perform standard network pruning, initialize the pruned network with the
same initialization that was used in the original training setting, and train with the same number of
epochs. They hypothesize that this should result in a smaller network with a similar accuracy to
the larger dense network. In other words, a subnetwork can have similar decision boundaries to the
original network. While in this section we do not provide a theoretical reason for why this proposed
pruning algorithm performs favorably, we utilize the geometric structure that arises from Theorem
2 to reaffirm such behaviour. In particular, we show that the orientation of the decision boundaries
polytope δ(R(x)), known to be a superset to the decision boundaries T (R(x)), is preserved after
pruning with the proposed initialization algorithm of Frankle & Carbin (2019). On the other hand,
pruning routines with a different initialization at each pruning iteration will result in a severe vari-
ation in the orientation of the decision boundaries polytope. This leads to a large change in the
orientation of the decision boundaries, which tends to hinder accuracy.

To this end, we train a neural network with 2 inputs (n = 2), 2 outputs, and a single hidden layer
with 40 nodes (p = 40). We then prune the network by removing the smallest x% of the weights.
The pruned network is then trained using different initializations: (i) the same initialization as the
original network (Frankle & Carbin, 2019), (ii) Xavier (Glorot & Bengio, 2010), (iii) standard Gaus-
sian and (iv) zero mean Gaussian with variance of 0.1. Figure 2 shows the evolution of the decision
boundaries polytope, i.e. δ(R(x)), as we perform more pruning (increasing the x%) with different
initializations. It is to be observed that the orientation of the polytopes δ(R(x)) vary much more for
all different initialization schemes as compared to the lottery ticket initialization. This gives an indi-
cation that lottery ticket initialization indeed preserves the decision boundaries throughout the evo-
lution of pruning. Another approach to investigate the lottery ticket could be by observing the poly-
topes representing the functional form of the network directly, i.e. δ(H{1,2}(x)) and δ(Q{1,2}(x)),
in lieu of the decision boundaries polytopes. However, this does not provide conclusive answers
to the lottery ticket, since there can exist multiple functional forms, and correspondingly multiple
polytopes δ(H{1,2}(x)) and δ(Q{1,2}(x)), for networks with the same decision boundaries. This is
why we explicitly focus our analysis on δ(R(x)), which is directly related to the decision boundaries
of the network. Further discussions and experiments are left for the appendix.

5 TROPICAL NETWORK PRUNING

Network pruning has been identified as an effective approach for reducing the computational cost
and memory usage during network inference time. While pruning dates back to the work of LeCun
et al. (1990) and Hassibi & Stork (1993), it has recently gained more attention. This is due to the fact
that most neural networks over-parameterize commonly used datasets. In network pruning, the task
is to find a smaller subset of the network parameters, such that the resulting smaller network has sim-
ilar decision boundaries (and thus supposedly similar accuracy) to the original over-parameterized
network. In this section, we show a new geometric approach towards network pruning. In particu-
lar, as indicated by Theorem 2, preserving the polytope δ(R(x)) preserves a superset to the decision
boundaries T (R(x)), and thus supposedly the decision boundaries themselves.

Motivational Insight. For a single hidden layer neural network, the dual subdivision to the decision
boundaries is the polytope that is the convex hull of two zonotopes, where each is formed by taking
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Figure 4: Results of Tropical Pruning. Pruning-accuracy plots for AlexNet (top) and VGG16 (bottom)
trained on SVHN, CIFAR10, and CIFAR100, pruned with our tropical method and three other pruning methods.

the Minkowski sum of line segments (Theorem 2). Figure 3 shows an example where pruning a
neuron in the neural network has no effect on the dual subdivision polytope and equivalently no
effect on the accuracy, since the decision boundaries of both networks remain the same.

Problem Formulation. Given the motivational insight, a natural question arises: Given an over-
parameterized binary neural network f(x) = Bmax (Ax,0), can one construct a new neural
network, parameterized by some sparser weight matrices Ã and B̃, such that this smaller network
has a dual subdivision δ(R̃(x)) that preserves the decision boundaries of the original network?

In order to address this question, we propose the following general optimization problem

min
Ã,B̃

d
(
δ(R̃(x)), δ(R(x))

)
= min

Ã,B̃
d
(

ConvHull
(
ZG̃1

,ZG̃2

)
,ConvHull (ZG1 ,ZG2)

)
. (1)

The function d(.) defines a distance between two geometric objects. Since the generators G̃1 and
G̃2 are functions of Ã and B̃ (as per Theorem 2), this optimization problem can be challenging to
solve. However, for pruning purposes, one can observe from Theorem 2 that if the generators G̃1

and G̃2 had fewer number of line segments (rows), this corresponds to a fewer number of rows in
the weight matrix Ã (sparser weights). To this end, we observe that if G̃1 ≈ G1 and G̃2 ≈ G2,
then ˜δ(R(x)) ≈ δ(R(x)), and thus the decision boundaries tend to be preserved as a consequence.
Therefore, we propose the following optimization problem as a surrogate to Problem (1)

minÃ,B̃
1
2

(∥∥∥G̃1 −G1

∥∥∥2
F

+
∥∥∥G̃2 −G2

∥∥∥2
F

)
+ λ1

∥∥∥G̃1

∥∥∥
2,1

+ λ2

∥∥∥G̃2

∥∥∥
2,1
. (2)

The matrix mixed norm for C ∈ Rn×k is defined as ‖C‖2,1 =
∑n
i=1 ‖C(i, :)‖2, which encourages

the matrix C to be row sparse, i.e. complete rows of C are zero. Note that G̃1 = Diag[ReLU(B̃(1, :

))+ReLU(−B̃(2, :))]Ã, G̃2 = Diag[ReLU(B̃(2, :))+ReLU(−B̃(1, :))]Ã, and Diag(v) rearranges
the elements of vector v in a diagonal matrix. We solve the aforementioned problem with alternating
optimization over the variables Ã and B̃, where each sub-problem is solved in closed form. Details
of the optimization and the extension to multi-class case are left for the appendix.

Extension to Deeper Networks. For deeper networks, one can still apply the aforementioned op-
timization for consecutive blocks. In particular, we prune each consecutive block of the form
(Affine,ReLU,Affine) starting from the input and ending at the output of the network.

Experiments on Tropical Pruning. Here, we evaluate the performance of the proposed pruning
approach as compared to several classical approaches on several architectures and datasets. In par-
ticular, we compare our tropical pruning approach against Class Blind (CB), Class Uniform (CU),
and Class Distribution (CD) methods Han et al. (2015); See et al. (2016), which perform pruning
by removing weights that are below some threshold. Since fully connected layers in deep neural
networks tend to have much higher memory complexity than convolutional layers, we restrict our
focus to pruning fully connected layers. We train AlexNet and VGG16 on SVHN , CIFAR10, and
CIFAR 100 datasets. We observe that we can prune more than 90% of the classifier parameters for
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Figure 5: Dual View of Tropical Adversarial Attacks. We show the effects of tropical adversarial attacks on
a synthetic binary dataset at two different input points (in black). From left to right: the decision regions of the
original and perturbed models, and decision boundaries polytopes (green for original and blue for perturbed).

both networks without affecting the accuracy. Moreover, we can boost the pruning ratio using our
method without affecting the accuracy by simply retraining the network biases only.

Setup. We adapt the architectures of AlexNet and VGG16, since they were originally trained on Ima-
geNet (Deng et al., 2009), to account for the discrepancy in the input resolution. The fully connected
layers of AlexNet and VGG16 have sizes of (256,512,10) and (512,512,10), respectively on SVHN
and CIFAR100 with the last layer replaced to 100 for CIFAR100. All networks were trained to
baseline test accuracy of (92%,74%,43%) for AlexNet on SVHN, CIFAR10 and CIFAR100, respec-
tively and (92%,92%,70%) for VGG16. To evaluate the performance of pruning, following previous
works (Han et al., 2015), we report the area under the curve (AUC) of the pruning-accuracy plot.
The higher the AUC is, the better the trade-off is between pruning rate and accuracy. For efficiency
purposes, we run the optimization in Problem (2) for a single alternating iteration to identify the
rows in Ã and elements of B̃ that will be pruned, since an exact pruning solution might not be
necessary. The algorithm and the parameters setup to solving (2) is left for the appendix.

Results. Figure 5 shows the pruning comparison between our tropical approach and the three afore-
mentioned popular pruning schemes on both AlexNet and VGG16 over the different datasets. Our
proposed approach can indeed prune out as much as 90% of the parameters of the classifier without
sacrificing much of the accuracy. For AlexNet, we achieve much better performance in pruning as
compared to other methods. In particular, we are better in AUC by 3%, 3%, and 2% over other
pruning methods on SVHN, CIFAR10 and CIFAR100, respectively. This indicates that the decision
boundaries can indeed be preserved by preserving the dual subdivision polytope. For VGG16, we
perform similarly on both SVHN and CIFAR10 CIFAR100. While the performance achieved here
is comparable to the other pruning schemes, if not better, we emphasize that our contribution does
not lie in outperforming state-of-the-art pruning methods, but rather in giving a new geometry based
perspective to network pruning. We conduct more experiments, where only the biases of the net-
work or the biases of the classifier are fine tuned after pruning . Retraining biases can be sufficient as
they do not contribute to the orientation of the decision boundaries polytope, thereafter the decision
boundaries, but only a translation. Discussion on biases and more results are left for the appendix.

6 TROPICAL ADVERSARIAL ATTACKS

DNNs are notoriously known to be susceptible to adversarial attacks. In fact, adding small im-
perceptible noise, referred to as adversarial attacks, at the input of these networks can hinder their
performance. In this work, we provide a tropical gemeotric view to this nuisance. where we show
how Theorem 2 can be leveraged to construct a tropical geometric based targeted adversarial attack.

Dual View to Adversarial Attacks. For a classifier f : Rn → Rk and input x0 that is classified as
c, a standard formulation for targeted adversarial attacks flips the classifier prediction to a particular
class t and it is usually defined as follows

minη D(η) s.t. arg maxi fi(x0 + η) = t 6= c. (3)

This objective aims at computing the lowest energy input noise η (measured by D) such that the the
new sample (x0 + η) crosses the decision boundaries of f to a new classification region. Here, we
present a dual view to adversarial attacks. Instead of designing a sample noise η such that (x0 + η)
belongs to a new decision region, one can instead fix x0 and perturb the network parameters to move
the decision boundaries in a way that x0 appears in a new classification region. In particular, let A1

be the first linear layer of f , such that f(x0) = g(A1x0). One can now perturb A1 to alter the
decision boundaries and relate the perturbation to the input perturbation as follows

g((A1 + ξA1
)x0) = g (A1x0 + ξA1

x0) = g(A1x0 + A1η) = f(x0 + η). (4)

From this dual view, we observe that traditional adversarial attacks are intimately related to per-
turbing the parameters of the first linear layer through the linear system: A1η = ξA1x0. To this
end, Theorem 2 provides explicit means to geometrically construct adversarial attacks by means of

7
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Figure 6: Effect of Tropical Adversarial Attacks on MNIST Dataset. We show qualitative examples of
adversarial attacks, produced by solving Problem (5), on two digits (8,9) from MNIST. From left to right,
images are classified as [8,7,5,4] and [9,7,5,4] respectively.

perturbing decision boundaries. In particular, since the normals to the dual subdivision polytope of
a given neural network generate a superset to the decision boundaries, ξA1

can be designed to result
in a minimal perturbation to the dual subdivision that is sufficient to change the network prediction
of x0 to the targeted class t. Based on this observation, we formulate the problem as follows

min
η,ξA1

D1(η) +D2(ξA1)

s.t. − loss(g(A1(x0 + η)), t) ≤ −1; −loss(g(A1 + ξA1
)x0, t) ≤ −1;

(x0 + η) ∈ [0, 1]n, ‖η‖∞ ≤ ε1; ‖ξA1
‖∞,∞ ≤ ε2; A1η − ξA1

x0 = 0.

(5)

The loss is the standard cross-entropy loss. The first row of constraints ensures that the network
prediction is the desired target class t when the input x0 is perturbed by η, and equivalently by
perturbing the first linear layer A1 by ξA1

. This is identical to f1 as proposed by Carlini & Wagner
(2016). Moreover, the third and fourth constraints guarantee that the perturbed input is feasible
and that the perturbation is bounded, respectively. The fifth constraint is to limit the maximum
perturbation on the first linear layer, while the last constraint enforces the dual equivalence between
input perturbation and parameter perturbation. The function D2 captures the perturbation of the
dual subdivision polytope upon perturbing the first linear layer by ξA1

. For a single hidden layer
neural network parameterized as (A1 + ξA1

) ∈ Rp×n and B ∈ R2×p for the 1st and 2nd layers
respectively, D2 can capture the perturbations in each of the two zonotopes discussed in Theorem 2.

D2(ξA1
) = 1

2

∑2
j=1

∥∥Diag
(
B+(j, :)

)
ξA1

∥∥2
F

+
∥∥Diag

(
B−(j, :)

)
ξA1

∥∥2
F
. (6)

The derivation, discussion, and extension of (6) to multi-class neural networks is left for the ap-
pendix. We solve Problem (5) with a penalty method on the linear equality constraints, A1η =
ξA1

x0, where each penalty step is solved with ADMM (Boyd et al., 2011) in a similar fashion to the
work of Xu et al. (2018). The details of the algorithm are left for the appendix.

Motivational Insight to the Dual View. This intuition is presented in Figure 5. We train a single
hidden layer neural network where the size of the input is 2 with 50 hidden nodes and 2 outputs
on a simple dataset as shown in Figure 5. We then solve Problem 5 for a given x0 shown in black.
We show the decision boundaries for the network with and without the perturbation at the first lin-
ear layer ξA1 . Figure 5 shows that indeed perturbing an edge of the dual subdivision polytope, by
perturbing the first linear layer, corresponds to perturbing the decision boundaries and results in
miss-classifying x0. Interestingly and as expected, perturbing different decision boundaries corre-
sponds to perturbing different edges of the dual subdivision. In particular, one can see from Figure 5
that altering the decision boundaries, by altering the dual subdivision polytope through perturbations
in the first linear layer, can result in miss-classifying a previously correctly classified input x0.

MNIST Experiment. Here, we design perturbations to misclassify MNIST images. Figure 6 shows
several adversarial examples that change the network prediction for digits 8 and 9 to digits 7, 5, and
4, respectively. In some cases, the perturbation η is as small as ε = 0.1, where x0 ∈ [0, 1]n. Several
other adversarial results are left for the appendix. We again emphasize that our approach is not
meant to be compared with (or beat) state of the art adversarial attacks, but rather to provide a novel
geometrically inspired perspective that can shed new light on work in this field.

7 CONCLUSION

In this paper, we leverage tropical geometry to characterize the decision boundaries of neural net-
works in the form (Affine, ReLU, Affine) and relate it to well-studied geometric objects such as
zonotopes and polytopes. We leaverage this representation in providing a tropical perspective to
support the lottery ticket hypothesis, network pruning and designing adversarial attacks. One natu-
ral extension for this work is a compact derivation for the characterization of the decision boundaries
of convolutional neural networks (CNNs) and graphical convolutional networks (GCNs).
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A FACTS AND PRELIMINARIES.

Fact 1. P +̃Q = {p+ q,∀p ∈ Pand q ∈ Q} is the Minkowski sum between two sets P and Q.
Fact 2. Let f be a tropical polynomial and let a ∈ N. Then

P(fa) = aP(f).

Let both f and g be tropical polynomials, Then
Fact 3.

P(f � g) = P(f)+̃P(g). (7)
Fact 4.

P(f ⊕ g) = ConvexHull
(
V (P(g)) ∪ V (P(g))

)
. (8)

Note that V(P(f)) is the set of vertices of the polytope P(f).
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B PROOF OF THEOREM 2

Theorem 3. For a bias-free neural network in the form of f(x) : Rn → R2 where A ∈ Zp×n and
B ∈ Z2×p, and let R(x) = H1(x)�Q2(x)⊕H2(x)�Q1(x) be a tropical polynomial, then

• If the decision boundaries of f is given by the set B = {x ∈ Rn : f1(x) = f2(x)}, then
we have B ⊆ T (R(x)).

• δ (R(x)) = ConvHull (ZG1
,ZG2

) where ZG1
is a zonotope in Rn with

line segments {(B(1, j)+ + B(2, j)−)[A(j, :)+,A(j, :)−]
p
j=1} with shift

(B(1, :)− + B(2, :)+)A− while ZG2 is a zonotope in Rn with line segments
{(B(1, j)− + B(2, j)+)[A(j, :)+,A(j, :)−]

p
j=1} with shift (B(1, :)+ + B(2, :)−)A−.

Note that A+ = max(A, 0) and A− = max(−A, 0) where the max(.) is element-wise. The
line segment (B(1, j)+ + B(2, j)−)[A(j, :)+,A(j, :)−] is one that has the end points A(j, :)+ and
A(j, :)− in Rn and scaled by the constant B(1, j)+ + B(2, j)−.

Proof. For the first part, recall from Theorem1 that both f1 and f2 are tropical rationals and hence,

f1(x) = H1(x)−Q1(x) f2(x) = H2(x)−Q2(x)

Thus

B = {x ∈ Rn : f1(x) = f2(x)} = {x ∈ Rn : H1(x)−Q1(x) = H2(x)−Q2(x)}
= {x ∈ Rn : H1(x) +Q2(x) = H2(x) +Q1(x)}
= {x ∈ Rn : H1(x)�Q2(x) = H2(x)�Q1(x)}

Recall that the tropical hypersurface is defined as the set of x where the maximum is attained by
two or more monomials. Therefore, the tropical hypersurface of R(x) is the set of x where the
maximum is attained by two or more monomials in (H1(x) � Q2(x)), or attained by two or more
monomials in (H2(x)�Q1(x)), or attained by monomials in both of them in the same time, which
is the decision boundaries. Hence, we can rewrite that as

T (R(x)) = T (H1(x)�Q2(x)) ∪ T (H2(x)�Q1(x)) ∪ B.

Therefore B ⊆ T (R(x)). For the second part of the Theorem, we first use the decomposi-
tion proposed by Zhang et al. (2018); Berrada et al. (2016) to show that for a network f(x) =
Bmax (Ax,0), it can be decomposed as tropical rational as follows

f(x) =
(
B+ −B−

) (
max(A+x,A−x)−A−x

)
=
[
B+ max(A+x,A−x) + B−A−x

]
−
[
B−max(A+x,A−x) + B+A−x

]
.

Therefore, we have that

H1(x) +Q2(x) =
(
B+(1, :) + B−(2, :)

)
max(A+x,A−x) +

(
B−(1, :) + B+(2, :)

)
A−x,

H2(x) +Q1(x) =
(
B−(1, :) + B+(2, :)

)
max(A+x,A−x) +

(
B+(1, :) + B−(2, :)

)
A−x.

Therefore note that

δ(R(x)) = δ

((
H1(x)�Q2(x)

)
⊕
(
H2(x)�Q1(x)

))
(8)
= ConvexHull

(
δ
(
H1(x)�Q2(x)

)
, δ
(
H2(x)�Q1(x)

))
(7)
= ConvexHull

(
δ
(
H1(x)

)
+̃δ
(
Q2(x)

)
, δ
(
H2(x)

)
+̃δ
(
Q1(x)

))
.
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Now observe that H1(x) =
∑p
j=1

(
B+(1, j)+B−(2, j)

)
max

(
A+(j, :),A−(j, :)x

)
tropically is

given as follows H1(x) = �pj=1

[
xA+(j,:) ⊕ xA−(j,:)

]B+(1,j)�B−(2,j)
, thus we have that

δ(H1(x)) =
(
B+(1, 1) + B−(2, 1)

)
δ
(
xA+(1,:) ⊕ xA−(1,:)

)
+̃ . . .

+̃
(
B+(1, p) + B−(2, p)

)(
δ(xA+(p,:) ⊕ xA−(p,:))

)
=
(
B+(1, 1) + B−(2, 1)

)
ConvexHull

(
A+(1, :),A−(1, :)

)
+̃ . . .

+̃
(
B+(1, p) + B−(2, p)

)
ConvexHull

(
A+(p, :),A−(p, :)

)
.

The operator +̃ indicates a Minkowski sum between sets. Note that ConvexHull
(
A+(i, :),A−(i, :

)
)

is the convexhull between two points which is a line segment in Zn with end points that are

{A+(i, :),A+(i, :)} scaled with B+(1, i) + B−(2, i). Observe that δ(F1(x)) is a Minkowski sum
of line segments which is is a zonotope. Moreover, note that Q2(x) = (B−(1, :) + B+(2, :))A−x

tropically is given as follows Q2(x) = �pj=1x
A−(j,:)(B

+(1,j)�B−(2,j))

. Thus it is easy to see that
δ(Q2(x)) is the Minkowski sum of the points {(B−(1, j)−B+(2, j))A−(j, :)}∀j in Rn (which is a
standard sum) resulting in a point. Lastly, it is easy to see that δ(H1(x))+̃δ(Q2(x)) is a Minkowski
sum between a zonotope and a single point which corresponds to a shifted zonotope. A similar
symmetric argument can be applied for the second part δ(H2(x))+̃δ(Q1(x)).

It is also worthy to mention that the extension to network with multi class output is trivial. In that
case all of the analysis can be exactly applied studying the decision boundary between any two
classes (i, j) where B = {x ∈ Rn : fi(x) = fj(x)} and the rest of the proof will be exactly the
same.
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C DERIVATION WITH BIASES

In this section, we derive the statement of Theorem 2 for the neural network in the form of (Affine,
ReLU, Affine) with the consideration of non-zero biases. We show that the presence of biases does
not affect the obtained results as they only increase the dimension of the space, where the polytopes
live, without affecting their shape or edge-orientation. Starting with the first linear layer for x ∈ Rn,
we have

z1 = Ax + c1 = A+x + c1 −A−x = H1 � Q1,

with coordinates

z1i = A+(i, :)x + c1i −A−(i, :)x = (c1i � xA+(i,:)) � xA−(i,:) = H1i � Q1i .

Thus, ∆(H1i) is a point in (n+1) dimensions at (A+(i, :), c1i), and ∆(Q1i) is a point in (n + 1)
dimensions at (A−(i, :), 0), while under π projection, δ(H1i) is a point in n dimensions at (A+(i, :
)), and δ(Q1i) is a point in n dimensions at (A−(i, :)) . It can be seen that under projection π, the
geometrical representation of the output of the first linear layer does not change after adding biases.

Looking to the output after adding the ReLU layer, we get

z2 = max(z1,0) = max(A+x + c1,A
−x)−A−x = (H1 ⊕Q1)−Q1 = H2 � Q2.

Hence, ∆(H2i) is the line segment [(A+(i, :), c1i) , (A−(i, :),0)], and ∆(Q1i) is the point (A−(i, :
),0). Thus, δ(H2i) is the line segment [(A+(i, :)) , (A−(i, :))], and δ(Q1i) is the point (A−(i, :)).
Again, the biases does not affect the geometry of the output after the ReLU layer, since the line
segments now are connecting points in (n + 1) dimensions, but after projecting them using π, they
will be identical to the line segments of the network with zero biases.

Finally, looking to the output of the second linear layer, we obtain

z3 = Bz2 + c2 = (B+ −B−)(H2 −Q2) + c2

= (B+H2 + B−Q2 + c2)− (B−H2 + B+Q2)

= H3 � Q3

Therefore

∆(H3i) = +̃j(∆(B(i, j)H2(j, :)))+̃∆
(∑

j

B−(i, j)Q2(j, :), c2i

)
δ(H3i) = +̃j(δ(B(i, j)H2(j, :)))+̃δ

(∑
j

B−(i, j)Q2(j, :)
)

Similar arguments can be given for ∆(Q3i) and δ(Q3i). It can be seen that the first part in both
expressions is a Minkowski sum of line segments, which will give a zonotope in (n + 1), and n
dimensions in the first and second expressions respectively. While the second part in both expres-
sions is a Minkowski sum of bunch of points which gives a single point in (n+ 1) and n dimensions
for the first and second expression respectively. Note that the last dimension of the aforementioned
point in n + 1 dimensions is exactly the ith coordinate of the bias of the second linear layer which
is dropped under the π projection. Therefore, the shape of the geometrical representation of the
decision boundaries with non-zero biases will not be affected under the projection π, and hence the
presence of the biases will not affect any of the results of the paper.
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D PROOF OF PROPOSITION 1

Proposition 1. Consider p line segments in Rn with two arbitrary end points as follows
{[ui1,ui2]}pi=1. The zonotope formed by these line segments is equivalent to the zonotope formed
be the line segments {[ui1 − ui2,0]}pi=1 with a shift of

∑p
i=1 u

i
2.

Proof. Let Uj be a matrix with Uj(:, i) = uij , i = 1, . . . , p, w be a column-vector with w(i) =
wi, i = 1, . . . , p and 1p is a column-vector of ones of length p. Then, the zonotope Z formed by the
Minkowski sum of line segments with arbitrary end points can be defined as

Z =
{ p∑
i=1

wiu
i
1 + (1− wi)ui2;wi ∈ [0, 1], ∀ i

}
=
{
U1w −U2w + U21p, w ∈ [0, 1]p

}
=
{

(U1 −U2)w + U21p, w ∈ [0, 1]p
}

=
{

(U1 −U2)w, w ∈ [0, 1]p
}

+̃
{
U21p

}
.

Note that the Minkowski sum of any polytope with a point is a translation; thus, the result follows
directly from Definition 6.
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D.1 OPTIMIZATION OF OBJECTIVE EQUATION 2 OF THE BINARY CLASSIFIER

min
Ã,B̃

1

2

∥∥∥G̃1 −G1

∥∥∥2
F

+

∥∥∥∥1

2
G̃2 −G2

∥∥∥∥2
F

+ λ1

∥∥∥G̃1

∥∥∥
2,1

+ λ2

∥∥∥G̃2

∥∥∥
2,1
. (9)

Note that G̃1 = Diag
[
ReLU(B̃(1, :)) + ReLU(−B̃(2, :))

]
Ã, G̃2 = Diag

[
ReLU(B̃(2, :)) +

ReLU(−B̃(1, :))
]
Ã. Note that G1 = Diag

[
ReLU(B(1, :)) + ReLU(−B(2, :))

]
A and G2 =

Diag
[
ReLU(B(2, :)) + ReLU(−B(1, :))

]
A. For ease of notation we refer to ReLU(B̃(i, :)) and

ReLU(−B̃(i, :)) as B̃+(i, :) and B̃−(i, :), respectively. We solve the problem with co-rodinate
descent an alternate over variables.

Update Ã.

Ã← arg min
Ã

1

2

∥∥∥Diag (c1) Ã−G1

∥∥∥2
F

+
1

2

∥∥∥Diag(c2)Ã−G2

∥∥∥2
F

+ λ1

∥∥∥Diag(c1)Ã
∥∥∥
2,1

+ λ2

∥∥∥Diag(c2)Ã
∥∥∥
2,1
,

where c1 = ReLU(B(1, :)) + ReLU(−B(2, :)) and c2 = ReLU(B(2, :)) + ReLU(−B(1, :)). Note
that the problem is separable per-row of Ã. Therefore, the problem reduces to updating rows of Ã
independently and the problem exhibits a closed form solution.

Ã(i, :) = arg min
Ã(i,:)

1

2

∥∥∥ci1Ã(i, :)−G1(i, :)
∥∥∥2
2

+
1

2

∥∥∥ci2Ã(i, :)−G2(i, :)
∥∥∥2
2

+ (λ1

√
ci1 + λ2

√
ci2)
∥∥∥Ã(i, :)

∥∥∥
2

= arg min
Ã(i,:)

1

2

∥∥∥∥Ã(i, :)− ci1G1(i, :) + ci2G2(i, :)
1
2 (ci1 + ci2)

∥∥∥∥2
2

+
1

2

λ1
√
ci1 + λ2

√
ci2

1
2 (ci1 + ci2)

∥∥∥Ã(i, :)
∥∥∥
2

=

1− 1

2

λ1
√
ci1 + λ2

√
ci2

1
2 (ci1 + ci2)

1∥∥∥ci
1G1(i,:)+ci

2G2(i,:)
1
2 (c

i
1+ci

2)

∥∥∥
2

(ci1G1(i, :) + ci2G2(i, :)
1
2 (ci1 + ci2)

)
.

Update B̃+(1, :).

B̃+(1, :) = arg min
B̃+(1,:)

1

2

∥∥∥Diag
(
B̃+(1, :)

)
Ã−C1

∥∥∥2
F

+ λ1

∥∥∥Diag
(
B̃+(1, :)

)
Ã + C2

∥∥∥
2,1
, s.t. B̃+(1, :) ≥ 0.

Note that C1 = G1 − Diag
(
B̃−(2, :)

)
Ã and where Diag

(
B̃−(2, :)

)
Ã. Note the problem is

separable in the coordinates of B̃+(1, :) and a projected gradient descent can be used to solve the
problem in such a way as

B̃+(1, j) = arg min
B̃+(1,j)

1

2

∥∥∥B̃+(1, j)Ã(j, :)−C1(j, :)
∥∥∥2
2

+ λ1

∥∥∥B̃+(1, j)Ã(j, :) + C2(j, :)
∥∥∥
2
, s.t. B̃+(1, j) ≥ 0.

A similar symmetric argument can be used to update the variables B̃+(2, :), B̃+(1, :) and B̃−(2, :).

16



Under review as a conference paper at ICLR 2020

D.2 ADAPTING OPTIMIZATION EQUATION 2 FOR MULTI-CLASS CLASSIFIER

Note that Theorem 2 describes a superset to the decision boundaries of a binary classifier through
the dual subdivision R(x), i.e. δ(R(x)). For a neural network f with k classes, a natural extension
for it is to analyze the pair-wise decision boundaries of of all k-classes. Thus, let T (Rij(x)) be the
superset to the decision boundaries separating classes i and j. Therefore, a natural extension to the
geometric loss in equation 1 is to preserve the polytopes among all pairwise follows

min
Ã,B̃

∑
∀[i,j]∈S

d
(

ConvexHull
(
ZG̃(i+,j−)

,ZG̃(j+,i−)

)
,ConvexHull

(
ZG(i+,j−)

,ZG(j+,i−)

))
.

(10)
The set S is all possible pairwise combinations of the k classes such that S = {[i, j],∀i 6=
j, i = 1, . . . , k, j = 1, . . . , k}. The generator Z(G̃(i,j)) is the zonotope with the generator matrix

G̃(i+,j−) = Diag
[
ReLU(B̃(i, :)) + ReLU(−B̃(j, :))

]
Ã. However, such an approach is generally

computationally expensive, particularly, when k is very large. To this end, we make the following
observation that G̃(i

+, j−) can be equivalently written as a Minkowski sum between two sets zono-

topes with the generators G(i+) = Diag
[
ReLU(B̃(i, :)

]
Ã and Gj− = Diag

[
ReLU(B̃j−)

]
Ã.

That is to say, ZG̃(i+,j−)
= ZG̃i+

+̃ZG̃j−
. This follows from the associative property of Minkowski

sums given as follows:
Fact 5. Let {Si}ni=1 be the set of n line segments. Then we have that

S = S1+̃ . . . +̃Sn = P +̃V

where the sets P = +̃j∈C1
Sj and V = +̃j∈C2

Sj where C1 and C2 are any complementary parti-
tions of the set {Si}ni=1.

Hence, G̃(i+,j−) can be seen a concatenation between G̃(i
+) and G̃(j

−). Thus, the objective in 10
can be expanded as follows

min
Ã,B̃

∑
∀[i,j]∈S

d
(

ConvexHull
(
ZG̃(i+,j−)

,ZG̃(j+,i−)

)
,ConvexHull

(
ZG(i+,j−)

,ZG(j+,i−)

))
= min

Ã,B̃

∑
∀[i,j]∈S

d
(

ConvexHull
(
ZG̃i+

+̃ZG̃j−
,ZG̃+

j
+̃ZG̃i−

)
,ConvexHull

(
ZGi+

+̃ZGj− ,ZG+
j

+̃ZGi−

))
≈ min

Ã,B̃

∑
∀[i,j]∈S

∥∥∥(G̃i+

Gj−

)
−
(
G̃i+

Gj−

)∥∥∥2
F

+
∥∥∥(G̃i−

Gj+

)
−
(
G̃i−

Gj+

)∥∥∥2
F

= min
Ã,B̃

∑
∀[i,j]∈S

1

2

∥∥∥G̃i+ −Gi+

∥∥∥2
F

+
1

2

∥∥∥G̃i− −Gi−

∥∥∥2
F

+
1

2

∥∥∥G̃j+ −Gj+

∥∥∥2
F

+
1

2

∥∥∥G̃j− −Gj−

∥∥∥2
F

= min
Ã,B̃

k∑
i=1

1

2
(k − 1)

(∥∥∥G̃i+ −Gi+

∥∥∥2
F

+
∥∥∥G̃i− −Gi−

∥∥∥2
F

+
∥∥∥G̃j+ −Gj+

∥∥∥2
F

+
∥∥∥G̃j− −Gj−

∥∥∥2
F

)
.

The approximation follows in a similar argument to the binary classifier case where approximating
the generators. The last equality follows from a counting argument. We solve the objective for
all multi-class networks in the experiments with alternating optimization in a similar fashion to the
binary classifier case. Similarly to the binary classification approach, we introduce the ‖‖2,1 to
enforce sparsity constraints for pruning purposes. Therefore the overall objective has the form

min
Ã,B̃

k∑
i=1

1

2

(∥∥∥G̃i+ −Gi+

∥∥∥2
F

+
∥∥∥G̃i− −Gi−

∥∥∥2
F

+
∥∥∥G̃j+ −Gj+

∥∥∥2
F

+
∥∥∥G̃j− −Gj−

∥∥∥2
F

)
+ λ

(∥∥∥G̃i+

∥∥∥
2,1

+
∥∥∥G̃i−

∥∥∥
2,1

+
∥∥∥G̃j+

∥∥∥
2,1

+
∥∥∥G̃j−

∥∥∥
2,1

)
.

For completion, we derive the updates for Ã and B̃.
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Update Ã.

Ã = arg min
Ã

k∑
i=1

1

2

(∥∥∥Diag
(
B̃+(i, :)

)
Ã−Gi+

∥∥∥2
F

+
∥∥∥Diag

(
B̃−(i, :)

)
Ã−Gi−

∥∥∥2
F

+
∥∥∥Diag

(
B̃+(j, :)

)
Ã−Gj+

∥∥∥2
F

+
∥∥∥Diag

(
B̃−(j, :)

)
Ã−Gj−

∥∥∥2
F

)
+ λ

(∥∥∥Diag
(
B̃+(i, :)

)
Ã
∥∥∥
2,1

+
∥∥∥Diag

(
B̃−(i, :)

)
Ã
∥∥∥
2,1

+
∥∥∥Diag

(
B̃+(j, :)

)
Ã
∥∥∥
2,1

+
∥∥∥Diag

(
B̃−(j, :)

)
Ã
∥∥∥
2,1

)
.

Similar to the binary classification, the problem is seprable in the rows of Ã. and a closed form
solution in terms of the proximal operator of `2 norm follows naturally for each Ã(i, :).

Update B̃+(i, :).

B̃+(i, :) = arg min
B̃+(i,:)

1

2

∥∥∥Diag
(
B̃+(i, :)

)
Ã− G̃i+

∥∥∥2
F

+ λ
∥∥∥Diag

(
B̃+(i, :)

)
Ã
∥∥∥
2,1
, s.t. B̃+(i, :) ≥ 0.

Note that the problem is separable per coordinates of B+(i, :) and each subproblem is updated as:

B̃+(i, j) = arg min
B̃+(i,j)

1

2

∥∥∥B̃+(i, j)Ã(j, :)− G̃i+(j, :)
∥∥∥2
2

+ λ
∥∥∥B̃+(i, j)Ã(j, :)

∥∥∥
2
, s.t. B̃+(i, j) ≥ 0

= arg min
B̃+(i,j)

1

2

∥∥∥B̃+(i, j)Ã(j, :)− G̃i+(j, :)
∥∥∥2
2

+ λ
∣∣∣B̃(i, j)

∣∣∣ ∥∥∥Ã(j, :)
∥∥∥
2
, s.t. B̃+(i, j) ≥ 0

= max

(
0,

Ã(j, :)>G̃i+(j, :)− λ‖Ã(j, :)‖2
‖Ã(j, :)‖22

)
.

A similar argument can be used to update B̃−(i, :) ∀i. Finally, the parameters of the pruned network
will be constructed A← Ã and B← B̃+ − B̃−.
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Algorithm 1: Solving Problem (5)

Input : A1 ∈ Rp×n,B ∈ Rk×p,x0 ∈ Rn, t, λ > 0, γ > 1,K > 0, ξA1 = 0p×n, η
1 = z1 =

w1 = z1 = u1 = w1 = 0n.
Output: η, ξA1

Initialize: ρ = ρ0
while not converged do

for k ≤ K do
η update: ηk+1 = (2λA>1 A1 + (2 + ρ)I)−1(2λA>1 ξ

k
A1

x0 + ρzk − uk)

w update: wk+1 =


min(1− x0, ε1) : zk − 1/ρvk > min(1− x0, ε1)

max(−x0,−ε1) : zk − 1/ρvk < max(−x0,−ε1)

zk − 1/ρvk : otherwise
z update: zk+1 = 1

ηk+1+2ρ
(ηk+1zk + ρ(ηk+1 + 1/ρuk + wk + 1/ρvk)−∇L(zk + x0))

ξA1
update:

ξk+1
A1

= arg minξA ‖ξA1‖2F + λ‖ξA1x0 −A1η
k+1‖22 + L̄(A1) s.t. ‖ξA1

‖∞,∞ ≤ ε2
u update: uk+1 = uk + ρ(ηk+1 − zk+1)
v update: vk+1 = vk + ρ(wk+1 − zk+1))
ρ← γρ

end
λ← γλ
ρ← ρ0

end

E ALGORITHM FOR SOLVING 5.

In this section, we are going to derive an algorithm for solving the following problem.

min
η,ξA1

D1(η) +D2(ξA1
)

s.t. − loss(g(A1(x0 + η)), t) ≤ −1, −loss(g(A1 + ξA1)x0, t) ≤ −1,

(x0 + η) ∈ [0, 1]n, ‖η‖∞ ≤ ε1, ‖ξA1‖∞,∞ ≤ ε2, A1η − ξA1x0 = 0.

(11)

The function D2(ξA) captures the perturbdation in the dual subdivision polytope such that the
dual subdivion of the network with the first linear layer A1 is similar to the dual subdivion of
the network with the first linear layer A1 + ξA1

. This can be generally formulated as an ap-
proximation to the following distance function d

(
ConvHull

(
ZG̃1

,ZG̃2

)
,ConvHull (ZG1

,ZG2
)
)

,

where G̃1 = Diag
[
ReLU(B̃(1, :)) + ReLU(−B̃(2, :))

] (
Ã + ξA1

)
, G̃2 = Diag

[
ReLU(B̃(2, :

)) + ReLU(−B̃(1, :))
] (

Ã + ξA1

)
, G1 = Diag

[
ReLU(B̃(1, :)) + ReLU(−B̃(2, :))

]
Ã and G2 =

Diag
[
ReLU(B̃(2, :)) + ReLU(−B̃(1, :))

]
Ã. In particular, to approximate the function d, one can

use a similar argument as in used in network pruning 5 such that D2 approximates the generators of
the zonotopes directly as follows

D2(ξA1
) =

1

2

∥∥∥G̃1 −G1

∥∥∥2
F

+
1

2

∥∥∥G̃2 −G2

∥∥∥2
F

=
1

2

∥∥∥Diag
(
B+(1, :)

)
ξA1

∥∥∥2
F

+
1

2

∥∥∥Diag
(
B−(1, :)

)
ξA1

∥∥∥2
F

+
1

2

∥∥∥Diag
(
B+(2, :)

)
ξA1

∥∥∥2
F

+
1

2

∥∥∥Diag
(
B−(2, :)

)
ξA1

∥∥∥2
F
.

This can thereafter be extended to multi-class network with k classes as follows D2(ξA1
) =

1
2

∑k
j=1

∥∥∥Diag
(
B+(j, :)

)
ξA1

∥∥∥2
F

+
∥∥∥Diag

(
B−(j, :)

)
ξA1

∥∥∥2
F

. Following Xu et al. (2018), we take

D1(η) = 1
2 ‖η‖

2
2. Therefore, we can write 11 as follows
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min
η,ξA

D1(η) +

k∑
j=1

∥∥∥Diag
(
B+(j, :)

)
ξA

∥∥∥2
F

+
∥∥∥Diag

(
B−(j, :)

)
ξA

∥∥∥2
F
.

s.t. − loss(g(A1(x0 + η)), t) ≤ −1, −loss(g((A1 + ξA1
)x0), t) ≤ −1,

(x0 + η) ∈ [0, 1]n, ‖η‖∞ ≤ ε1, ‖ξA1
‖∞,∞ ≤ ε2, A1η − ξA1

x0 = 0.

To enforce the linear equality constraints A1η − ξA1x0 = 0, we use a penalty method, where each
iteration of the penalty method we solve the sub-problem with ADMM updates. That is, we solve
the following optimization problem with ADMM with increasing λ such that λ → ∞. For ease
of notation, lets denote L(x0 + η) = −loss(g(A1(x0 + η)), t), and L̄(A1) = −loss(g((A1 +
ξA1

)x0), t).

min
η,z,w,ξA1

‖η‖22 +

k∑
j=1

∥∥∥Diag
(

ReLU(B(j, :)
)
ξA1

∥∥∥2
F

+
∥∥∥Diag

(
ReLU(−B(j, :))

)
ξA1

∥∥∥2
F

+ L(x0 + z) + h1(w) + h2(ξA1) + λ‖A1η − ξA1 x0‖22 + L̄(A1).

s.t. η = z z = w.

where

h1(η) =

{
0, if (x0 + η) ∈ [0, 1]n, ‖η‖∞ ≤ ε1
∞, else

h2(ξA1) =

{
0, if ‖ξA1

‖∞,∞ ≤ ε2
∞, else

.

The augmented Lagrangian is thus given as follows

L(η,w, z, ξA1
,u,v) := ‖η‖22 + L(x0 + z) + h1(w) +

k∑
j=1

∥∥Diag(B+(j, :))ξA1

∥∥2
F

+
∥∥Diag(B−(j, :))ξA1

∥∥2
F

+ L̄(A1) + h2(ξA1
) + λ‖A1η − ξA1

x0‖22 + u>(η − z) + v>(w − z)

+
ρ

2
(‖η − z‖22 + ‖w − z‖22).

Thereafter, ADMM updates are given as follows

{ηk+1,wk+1} = arg min
η,w

L(η,w, zk, ξkA1
,uk,vk),

zk+1 = arg min
z
L(ηk+1,wk+1, z, ξkA1

,uk,vk),

ξk+1
A1

= arg min
ξA1

L(ηk+1,wk+1, zk+1, ξA1
,uk,vk).

uk+1 = uk + ρ(ηk+1 − zk+1), vk+1 = vk + ρ(wk+1 − zk+1).

Updating η:

ηk+1 = arg min
η

‖η‖22 + λ‖A1η − ξA1
x0‖22 + u>η +

ρ

2
‖η − z‖22

=
(

2λA>1 A1 + (2 + ρ)I
)−1(

2λA>1 ξ
k
A1

x0 + ρzk − uk
)
.

Updating w:
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wk+1 = arg min
w

vk
>
w + h1(w) +

ρ

2
‖w − zk‖22

= arg min
w

1

2

∥∥∥∥w − (zk − vk

ρ

)∥∥∥∥2
2

+
1

ρ
h1(w).

It is easy to show that the update w is separable in coordinates as follows

wk+1 =


min(1− x0, ε1) : zk − 1/ρvk > min(1− x0, ε1)

max(−x0,−ε1) : zk − 1/ρvk < max(−x0,−ε1)

zk − 1/ρvk : otherwise

Updating z:

zk+1 = arg min
z
L(x0 + z)− uk

>
z− vk

>
z +

ρ

2

(
‖ηk+1 − z‖22 + ‖wk+1 − z‖22

)
.

Liu et al. (2019) showed that the linearized ADMM converges for some non-convex problems.
Therefore, by linearizing L and adding Bergman divergence term ηk/2‖z−zk‖22, we can then update
z as follows

zk+1 =
1

ηk + 2ρ

(
ηkzk + ρ

(
ηk+1 +

1

ρ
uk + wk+1 +

1

ρ
vk
)
−∇L(zk + x0)

)
.

It is worthy to mention that the analysis until this step is inspired by Xu et al. (2018) with modifica-
tions to adapt our new formulation.

Updating ξA:

ξk+1
A = arg min

ξA

‖ξA1
‖2F + λ‖ξA1

x0 −A1η‖22 + L̄(A1) s.t. ‖ξA1
‖∞,∞ ≤ ε2.

The previous problem can be solved with proximal gradient method.
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F EXPERIMENTAL DETAILS AND MORE RESULTS

In this section, we are going to describe the settings and the values of the hyper-parameters that we
used in the experiments. Moreover, we will show more results since we have limited space in the
main paper.

F.1 TROPICAL VIEW TO THE LOTTERY TICKET HYPOTHESIS.

We begin by throwing the following question. Why investigating the tropical geometrical perspec-
tive of the decision boundaries is more important than investigating the tropical geometrical repre-
sentation of the functional form of the network ? In this section, we show one more experiment that
differentiate between these two views. In the following, we can see that variations can happen to the
tropical geometrical representation of the functional form (zonotopes in case of single hidden layer
neural network), but the shape of the polytope of the decision boundaries is still unchanged and con-
sequently, the decision boundaries. For this purpose, we trained a single hidden layer neural network
on a simple dataset like the one in Figure 2, then we do several iteration of pruning, and visualise
at each iteration both the polytope of the decision boundaries and the zonotopes of the functional
representation of the neural network. It can be easily seen that changes in the zonotopes may not
change the shape of the decision boundaries polytope and consequently the decision boundaries of
the neural network.

Figure 7: Changes in Functional Zonotopes and Decision Boundaries Polytope. First column:
decision boundaries polytope, rest of the columns are the geometrical representation of the func-
tional form of the network. Under different pruning iterations using class blind, we can spot the
changes that affected the tropical geometric representation of the functional form of the network
(zonotopes) while the shape of the decision boundaries polytope is unaffected.

And thus it can be clearly seen that our formulation, which is looking at the decision boundaries
polytope is more general, precise and indeed more meaningful.

Moreover, we conducted the same experiment explained in the main paper of this section on another
dataset to have further demonstration on the favour that the lottery ticket initialization has over other

22



Under review as a conference paper at ICLR 2020

Figure 8: Effect of Different Initializations on the Decision Boundaries Polytope. From left to right:
training dataset, decision boundaries polytope of original network followed by the decision boundaries polytope
during several iterations of pruning with different initializations.

initialization when pruning and retraining the pruned model. It is clear that the lottery initializations
is the one that preserves the shape of the decision boundaries polytope the most.

F.2 TROPICAL PRUNING

In the tropical pruning, we have control on two hyper-parameters only, namely the number of iter-
ations and the regularizer coefficient λ which controls the pruning rate. In all of the experiments,
we ran the algorithm for 1 iteration only and we increase λ starting from 0.02 linearly with a factor
of 0.01 to reach 100% pruning. It is also worthy to mention that the output of the algorithm will
be new sparse matrices Ã, B̃, but the new network parameters will be the elements in the original
matrices A,B that have indices correspond to the indices of non-zero elements in Ã, B̃. By that,
the algorithm removes the non-effective line segments that do not contribute to the decision bound-
aries polytope, without changing the non-deleted segments. Above all, more results of pruning of
AlexNet and VGG16 on various datasets are shown below.

Figure 9: Results of Tropical Pruning with Fine Tuning the Biases of the Classifier. Tropical
pruning applied on AlexNet and VGG16 trained on SVHN, CIFAR10, CIFAR100 against different
pruning methods with fine tuning the biases of the classifier only.
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Figure 10: Results of Tropical Pruning with Fine Tuning the Biases of the Network. Tropical
pruning applied on AlexNet and VGG16 trained on SVHN, CIFAR10, CIFAR100 against different
pruning methods with fine tuning the biases of the network.

Figure 11: Dual View of Tropical Adversarial Attacks. Effect of tropical adversarial attack on
a synthetic dataset with two classes in two different scenarios for the black input point. From left
to right: decision boundaries of Original model, perturbed model and decision boundaries poly-
topes(green for original model and blue for perturbed model).

F.3 TROPICAL ADVERSARIAL ATTACK

For the tropical adversarial attack, we control five different hyper parameters which are

ε1 : The upper bound for the infinite norm of δ.
ε2 : The upper bound for the‖.‖∞,∞of the perturbation on the first linear layer.
λ : Regularizer to enforce the equality between input perturbation and first layer perturbation
η : Bergman divergence constant.
ρ : ADMM constant.

For all of the experiments, {ε2, λ, η, ρ} had the values {1, 10−3, 2.5, 1} respectively. the value of ε1
was 0.1 when attacking the -fours- images, and 0.2 for the rest of the images. Finally, we show extra
results of attacking the decision boundaries of synthetic data in R2 and MNIST images by tropical
adversarial attacks.
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Figure 12: Effect of Tropical Adversarial Attacks on MNIST Images. First row from the left:
Clean image, perturbed images classified as [7,3,2,1,0] respectively. Second row from left: Clean
image, perturbed images classified as [9,8,7,3,2] respectively. Third row from left: Clean image,
perturbed images classified as [9,8,7,5,3] respectively. Fourth row from left: Clean image, perturbed
images classified as [9,4,3,2,1] respectively. Fifth row from left: Clean image, perturbed images
classified as [8,4,3,2,1] respectively.
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