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ABSTRACT

In this paper we propose a physics-aware neural network for inpainting fluid flow
data. We consider that flow field data inherently follows the solution of the Navier-
Stokes equations and hence our network is designed to capture physical laws. We
use a DenseBlock U-Net architecture combined with a stream function formu-
lation to inpaint missing velocity data. Our loss functions represent the relevant
physical quantities velocity, velocity Jacobian, vorticity and divergence. Obstacles
are treated as known priors, and each layer of the network receives the relevant
information through concatenation with the previous layer’s output. Our results
demonstrate the network’s capability for physics-aware completion tasks, and the
presented ablation studies show the effectiveness of each proposed component.

1 INTRODUCTION

Realistically modeling and predicting fluid phenomena is important to a large number of applica-
tions, which may range from optimizing objects’ aerodynamic properties to creating special effects
in movies. Fluids are commonly modelled by numerically solving the Navier-Stokes equations,
however computer generated solutions might be discrepant from real phenomena. This happens
possibly due to mismatches of the mathematical model, incorrect numerical discretization, poor
discrete resolution, or errors on the estimation of parameters. Thus, approaches such as Particle
Image Velocimetry or Doppler flow measurements directly measure fluid quantities in real-world
settings. Often though, these measurements cannot be performed densely due to missing sensors,
under-sampled domains or occluded and unreachable areas.

Thus, methods for prediction and augmentation of measured flow data are actively researched. Pre-
vious approaches are either based on a low-dimensional analysis of the flow field based on Principal
Component Analysis (PCA), e.g., (Saini et al., 2016), or are based on physically reconstructing
missing areas by solving the unsteady incompressible Navier-Stokes equations, e.g., (Sciacchitano
et al., 2012). A main challenge with these traditional techniques is to predict data in large occluded
or empty areas, e.g., where more than 50% of the data has to be predicted. In such challenging
scenarios, already approximate predictions are useful as they could, for example, optimize strategies
for sensor placement, guide procedures for human-based scanning, or improve workflows for digital
prototyping.

This goal of estimating missing flow field data has many similarities with image inpainting, as it is
essentially a scene completion process using partial observations. The recent success of data-driven
image inpainting algorithms (Pathak et al., 2016; Iizuka et al., 2017; Liu et al., 2018; Yu et al.,
2018a;b) demonstrates the capability of deep neural networks to complete large missing regions
in natural images in a plausible fashion. The major difference between flow field inpainting and
image inpainting lies in the fact that flow field data inherently follows the solution of the Navier-
Stokes equations, and hence existing image inpainting algorithms can easily fail in physics-aware
completion tasks as they never aim to capture the physical laws.

In this paper, we formulate the problem of flow data completion in large empty areas as an inpaint-
ing problem, but consider the mathematical equations that model the underlying fluid phenomena in
the design of the network architecture and loss functions. By synergistically combining deep learn-
ing with fluid dynamics, we are able to inpaint data in large and irregular areas. We evaluate our
proposed architectures and loss functions using thorough ablation studies both quantitatively and
qualitatively. The contributions of this paper can be summarized as:
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• A DenseBlocks U-Net network architecture based on a stream function formulation to in-
paint velocity values;

• A set of physics-derived loss functions representing velocity, velocity gradient, divergence
and vorticity;

• A simple but effective way of handling solid obstacles in the learning process.

2 RELATED WORK

Predicting missing data for incompressible Navier-Stokes equations has been studied in the Compu-
tational Fluid Dynamics (CFD) field. Sciacchitano et al. (2012) solves the unsteady Navier-Stokes
equations locally, and dimensionality reduction approaches such as proper orthogonal decompo-
sition are applied (Venturi & Karniadakis, 2004; Higham et al., 2016; Saini et al., 2016). Data
completion of large occluded and empty areas are difficult to handle with these methods, and their
running time might become prohibitively expensive depending on the application.

We adapt the idea of image inpainting, which has been intensively studied in the field of learning, to
reconstruct missing flow data. (Pathak et al., 2016) used Context Encoders as one of the first attempts
for filling missing image data with a deep convolutional neural network. CNN-based methods are
attractive due their ability to reconstruct complex functions with only few sparse samples while
being highly efficient. The follow-up work by Iizuka et al. (2017) proposes a fully convolutional
network to complete rectangular missing data regions. The approach, however, still relies on Poisson
image blending as a post-processing step. Yu et al. (2018b) introduces contextual attention layer to
model long-range dependencies in images and a refinement network for post-processing, enabling
end-to-end training. Zeng et al. (2019) extends previous work by extracting context attention maps
in different layers of the encoder and skip connect attention maps to the decoder. These approaches
all include adversarial losses computed from a discriminator (Goodfellow et al., 2014) in order to
better reconstruct visually appealing high frequency details. However, high frequency details from
adversarial losses can result in mismatches from ground truth data (Huang et al., 2017), which can
potentially predict missing data that diverge from physical laws. Liu et al. (2018) designs partial
convolution operations for image inpainting, so that the prediction of the missing pixels is only
conditioned on the valid pixels in the original image. The operation enables high quality inpainting
results without adversarial loss.

Inpainting approaches have also been successfully used for scene completion and view path planning
using data from sparse input views. Song et al. (2017) uses an end-to-end network SSCNet for scene
completion and Guo & Tong (2018) a view-volume CNN that extracts geometric features from 2D
depth images. Zhang & Funkhouser (2018) presents an end-to-end architecture for depth inpainting,
and Han et al. (2019) uses multi-view depth completion to predict point cloud representations. A 3D
recurrent network has been used to integrate information from only a few input views (Choy et al.,
2016), and Xu et al. (2016) uses spatial and temporal structure of sequential observations to predict
a view sequence.

Neural networks have also recently been applied to fluid simulations. Applications include predic-
tion of the entire dynamics (Wiewel et al., 2019), reconstruction of simulations from a set of input
parameters (Kim et al., 2019b), interactive shape design (Umetani & Bickel, 2018), inferring hidden
physics quantities (Raissi et al., 2018), and artistic control for visual effects (Kim et al., 2019a). A
complete overview of machine learning for fluid dynamics can be found in Brunton et al. (2020).

3 LEARNING FLOW DATA

Our model is inspired by Liu et al. (2018) from image inpainting. The inpainting task in image
space can benefit from the capability of deep neural networks to learn semantic priors in an end-to-
end fashion. To reconstruct missing flow data, however, inherent laws of fluid dynamics should be
considered by the neural network. In this section we detail the proposed physically-derived architec-
ture and loss functions incorporated into our model, which results in improved fluid reconstruction
results.
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3.1 PHYSICS-AWARE NETWORK

Our goal is to train a network that can fill empty regions of incompressible velocity fields. The
input scheme is similar to standard image inpainting tasks. Given a 2D velocity field uin with a
missing fluid data region represented by a binary mask M (0 for empty and 1 for known regions),
the network predicts the velocity field with the same dimensionality as the input uout. We adapt the
U-Net (Ronneberger et al., 2015) by adding Dense Blocks (Huang et al., 2017) at the bottleneck and
replacing the normal convolution operations with modified partial convolutions (Liu et al., 2018).
We modified the original scaling factors of previous modified partial convolutions to the mean of
the binary mask M , which leads to sharper velocity profiles in the reconstructed field. The modified
partial convolution at every location is defined as

x′ =

{
WT (X �M)M + b if

∑
(M) > 0,

0 otherwise,
(1)

where W are the convolution filter weights, X are the feature values for the current convolution
window, b are biases and � denotes element-wise multiplication.

Additionally to the velocity prediction network (velocity branch), we implement a second network
that directly predicts stream function values (stream function branch). This formulation can help
to enforce incompressibility of the predicted velocity field and thus guide the network to predict
velocities in a physically-aware manner, since ∇ · (∇ × Ψ) = 0. The curl operator is also fully
differentiable. This formulation is therefore suitable to become an output layer for reconstructing
incompressible flow data. Thus, the stream function branch takes feature maps from the last and
second last layers of the velocity branch as well as the inpainting mask and passes them through 4
densely connected convolution layers with swish activation functions (Ramachandran et al., 2017),
outputting a stream function Ψ(x, y) field. The velocity field can then be reconstructed through
predicted stream functions by applying the curl operator:

u = ∇×Ψ. (2)

In 2D, the stream function becomes a scalar field, and the resulting velocity components are:

ux =
∂ψ

∂y
,uy = −∂ψ

∂x
. (3)

Both velocities from velocity branch and stream function branch are concatenated together and
passed through a final prediction layer along with the inpainting mask. The final prediction layer is
a single convolution layer that mixes velocity predictions from both branches. A detailed illustration
of our architecture is shown in Figure 1. The exact parameters of the network can be found in
Appendix A.

Figure 1: Our architecture for fluid data inpainting consists of a velocity branch using Dense Blocks
and a stream function branch to predict incompressible velocities. Our method supports different
occlusion and obstacle masks to mimic different real-world settings.
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3.2 LOSS FUNCTIONS

For incompressible flow data it is important to define a new set of supervised loss functions that
model physical properties and constraints. For detailing the employed loss functions, we use û
for predicted and u for ground-truth velocities.The L1 velocity loss efficiently reconstructs low-
frequency information and is defined as

Lvel = ||û− u||1. (4)

Inspired by Kim et al. (2019b), we additionally minimize the difference of the velocity field Ja-
cobian between ground-truth and predicted velocity fields. With a sufficiently smooth flow-field
dataset, high-frequency features of the CNN are potentially on the null space of the L1 distance
minimization (Kim et al., 2019b). Thus, matching the Jacobians helps the network to recover high-
frequency spectral information, while it also regularizes the reconstructed velocity to match ground-
truth derivatives. The velocity Jacobian J(u) is defined in 2D as

J(u) =

(
∂ux

∂x
∂ux

∂y
∂uy

∂x
∂uy

∂y

)
, (5)

and the corresponding loss function is simply given as the L1 of vectorized Jacobian between pre-
dicted and ground-truth velocities:

Ljacobian = ||J(û)− J(u)||1. (6)

Additionally, we compute a loss function that matches the vorticity of predicted and ground-truth
velocities. The vorticity field describes the local spinning motion of the velocity field. Similarly
to the Jacobian loss, our vorticity loss acts as a directional high-frequency filter that helps to match
shearing derivatives of the original data, enhancing the capability of the model to properly match the
underlying fluid dynamics. The vorticity loss is given by

Lvort = ||∇ × û−∇× u||1. (7)

Incompressible flows should have zero divergence, however, numerical simulations often produce
results that are not strictly divergence-free due to discretization errors. As we combine predictions
from velocity and stream function branches, we are able to match the divergence on the original and
predicted fields by minimizing

Ldiv = ||∇ · û−∇ · u||1. (8)

Similarly to previous works, each loss function is applied both on the known and unknown regions
with potentially different weights. The weight selection is illustrated in Appendix A. We exclude the
perceptual Lperceptual, style Lstyle and total variation Ltv losses from the image inpainting model
of Liu et al. (2018). Although these losses successfully improve the visual quality of predicted
images, they are not suited for completing flow-field data, since they match pre-learned filters from
image classification architectures.

3.3 ENCODING OBSTACLES

The interaction between fluid and solid obstacles is crucial for fluid dynamics applications. To in-
corporate solid obstacle information as prior knowledge to the network, we concatenate a binary
mask O indicating whether a solid obstacle occupies a cell as an extra input channel. In order to
properly propagate the obstacle information to all network layers, the obstacle occupancy informa-
tion is concatenated to previous layers’ output. To accomplish that, we downsample the obstacle
map O to match a specific layer dimensions, similarly to the empty region mask M .

4 EXPERIMENTS AND RESULTS

4.1 DATA GENERATION

Due to the lack of publicly available flow data sets captured from real-world experiments, we trained
our model on synthetic data. We generated fluid velocity fields with a numerical flow solver for
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Ψ branch u branch DenseBlocks Ljacobian Lvort Ldiv MAE
(a) X X X X X X 0.268
(b) X X X X 0.270
(c) X X X X X 0.261
(d) X X X X X 0.353
(e) X X X X X 0.280
(f) X X X X 0.276
(g) X X X 0.280
(h) X X X X 0.307
(i) X X X 0.314
(j) X X 0.332
(k) X 0.332

Table 1: Ablation study configurations.

incompressible fluids (Mantaflow (Thuerey & Pfaff, 2018)). Each training data sample consists of
a 2-dimensional vector field containing the velocity components u and v and the empty regions and
obstacles masks M and O. During training, different types of empty region masks are generated on
the fly with empty to filled area region ratios that vary randomly from 25 to 99 percent. We generate
three different types of masks: uniform random noise masks mimic possible sampling noise from
real-world velocity measurements; scan path masks simulate paths of a velocity probing; and large
region masks model large occluded areas that are not reachable by probes or measurement devices.
Illustrations of types of masks can be seen in the leftmost column in Figure 3.

To evaluate the proposed architecture and loss functions, we applied our model on two different
datasets, both computed on grid resolutions of 128 × 96. The first wind tunnel dataset implements
a scene with turbulent flow around obstacles. We define inflow velocities at bottom and top regions
of the domain, while the remaining two sides (left and right) are set as free-flow (open) boundary
conditions. The inflow speed is set to random values, and obstacles (6 spheres, 6 rectangles) are
randomly positioned, yielding a total of 32,000 simulation frames. The second simple plume dataset
implements a smoke rising from a source at the bottom of a fully enclosed box, which represents
a common setup in graphics applications. In this dataset, no solid obstacles are included and the
source position and size are the parameters that vary across different simulations. In total, 21,000
simulation frames are present in the simple plume dataset.

4.2 ABLATION STUDIES

To investigate the effects of various components introduced in previous sections, we performed a
series of ablation studies, with results shown in Table 1. We train and evaluate the architectures
of different configurations on the wind tunnel dataset, selectively deactivating the DenseBlocks, as
well as the stream function and velocity branches. We also compare the effect of the proposed loss
functions by progressively adding them to different architecture configurations. Besides evaluating
Mean Absolute Error (MAE) over the whole dataset, we also evaluate the model capabilities when
varying masking occlusion levels in Figure 2.

Figure 2: Mean Absolute Error of different model configurations at each mask occlusion level.

Our ablation study shows that the quality of inpainting results can be significantly improved by
Dense Blocks (entries (a-c) and (e-g)) when compared with architectures with no DenseBlocks (en-
tries (d) and (h-k)). We also tested adding loss functions progressively to architectures with (entries
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(a) and (e-g)) and without DenseBlocks (entries (h-k)) to evaluate if those effects are cumulative.
Combining the proposed physically-inspired losses yields better results also in this case, which
seems a strong indication that they contribute to better results even in distinct architectures.

The model that employs only a stream function branch (b) performs similarly to our full model (a).
Note that since model (b) reconstructs velocities by taking the curl of stream function predictions,
incompressibility is guaranteed and thus no divergence loss is used. However, the synthetic velocity
field data has discretization errors and it is not truly divergence free. Therefore, the approach with
a single stream function branch cannot capture the divergent modes present on the original data,
yielding higher MAE than the combined branches approach. We hypothesize that a pure stream
function architecture would fare better with velocity fields obtained from real-world experiments or
highly accurate flow solvers, where the divergence is closer to zero.

We notice that the model with only the velocity branch (c) has a lower MAE over the whole dataset.
However, Figure 2 shows that this model has a low capability of inpainting samples with large empty
regions. This indicates that the stream function branch can better guide the network to predict results
obeying physical laws, while the velocity branch can help predicting results based on information
from a known region. The functionality of the two branches can be more clearly shown in Figure 3,
where the models (a,b,c) are visually compared. To plot the velocity fields, we use a HSV colormap
that encodes flow direction and relative velocity in the hue and saturation, respectively. The model
in (c) only uses the velocity branch information, and it reconstructs lower frequency content better
as the information is easier to infer from surrounding known regions. Using the stream function
branch only, model (b) better predicts high frequency information, but mistakenly reconstructs lower
frequency regions. Finally, model (a) combines the advantages of models (b) and (c) by using both
branches, and predictions are more precise in both higher and lower frequency ranges.

4.3 PREDICTION RESULTS

Figure 4 shows the results of applying different mask profiles for the simple plume dataset. The top
left example shows a scan path mask (left), comparing the reconstructed (middle) and ground truth
velocity profiles (right). Even with a sparse scan mask with a occlusion of 0.74, our reconstruction
is able recreate velocity profiles that are close to the ground truth, even in regions that are far away
from the mask. The top and bottom right images of Figure 4 show similar examples, while the
bottom left image depicts a random noise mask to mimic the effects of noisy sampling. In Figure 5
we show corresponding results for the wind tunnel dataset. In this challenging scenario, we use
large region masks in combination with obstacles immersed in the fluid. Our results show that our
method is able to accurately capture flows around obstacles, even though very sparse velocity field
samples were used. We additionally compare the original image inpainting model (Liu et al., 2018)
(Table 1 (k)) with our best architecture (Table 1 (a)). The results are shown in Figure 6, indicating
that our approach can reconstruct more flow structures, especially near immersed obstacles.

5 CONCLUSIONS

We have presented a physics-aware architecture for inpainting missing velocity data. We have shown
that our method is especially powerful for data completion of large areas with more than 50% miss-
ing data entries. Using the proposed stream function branch in combination with DenseBlocks has
proven to be the key element to reduce Mean Absolute Error (MAE), and augmenting the archi-
tectures with our physically-derived loss functions has further improved accuracy. The proposed
method outperforms existing image inpainting models when applied to flow data, demonstrating the
effectiveness of including knowledge about fluid dynamics in the network design.

We have evaluated our method on 2-dimensional data. Extending the method to 3-dimensional
flows that exhibit more turbulent structures is an essential next step. The major challenge with 3D
data, however, is the large memory consumption, which is especially critical for high-resolution
simulations. Approaches based on progressive patch-based inpainting (Isola et al., 2016) or view-
by-view inpainting (Han et al., 2019) could be relevant for reducing the memory footprint. Further
tests are also needed with simulation datasets that capture different real-world scenarios, as well as
data from real-world measurements.
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Figure 3: Inpainted flow fields with different masked inputs and obstacle configurations. From left
to right: masked velocity input , output from configuration (a), output velocity from configuration
(b), output from configuration (c), ground truth. All the masks used on the examples above have an
approximate occlusion rate of 52%.

Figure 4: Examples of predictions on Simple Plume dataset. From left to right of each example:
masked velocity input, output from configuration (a), ground truth velocity.
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A APPENDIX

A.1 NETWORK PARAMETERS

The U-Net architecture is similar to the one described in (Liu et al., 2018) with the sole difference
that stride 2 partial convolutions are only done in every 2nd layer in order to fit the dataset resolution
of 128 by 96.

For the DenseBlocks U-Net, we replace layers 7 to 10 with a DenseBlock described in Table 3.
Note that a DenseBlock as described in Huang et al. (2017) has a skip connection between each
layer. Outputs of all previous layers inside the block are concatenated and represent the input of the
current layer. The encoder part is also modified to achieve a constant compression ratio of 1.5 over

each subsequent layer, see Table 2. The number of features is computed as follows:
64 · 4b l

2 c

1.5l−1
with

l being the layer number from 1 to 7. The decoder then connects from layer 17 to 22 and is built
symmetrically to the encoder. Note that this architecture, although deeper compared to the U-Net
(22 vs 16), has only about 28% as many trainable parameters.

The stream function prediction network is a DenseBlock that consists of 5 convolution layers, and is
described in Table 4. Activation is done with the swish function (Ramachandran et al., 2017) instead
of the conventional ReLU because it turned out to facilitate training and improve accuracy.

Training for all models is done using Adam optimizer with a learning rate of 0.01 and a batch size
of 16. During training, all masks are used equally and the occlusion is set uniformly at random to a
value between 25% and 99%.
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Layer 1 2 3 4 5 6 7
Type PConv PConv PConv PConv PConv PConv PConv

Output Resolution 128x96 64x48 64x48 32x24 32x24 16x12 16x12
Features 64 170 113 303 202 539 359

Kernel size 7 5 5 3 3 3 3
Stride 1 2 1 2 1 2 1

Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU
Batch Normalization No Yes Yes Yes Yes Yes Yes

Table 2: Structure of the encoder part in the velocity branch.

Layer 8-16
Type PConv

Resolution 16x12
Features 32

Kernel size 3
Stride 1

Activation ReLU
Batch Normalization Yes

Table 3: Structure of the DenseBlock in the velocity branch.

Layer 1 2-4 5
Type Conv Conv Conv

Padding zero padding zero padding zero padding
Resolution 128x96 128x96 128x96
Features 64 32 1

Kernel size 7 5 1
Stride 1 1 1

Activation swish swish swish
Batch Normalization No No No

Table 4: Structure of the DenseBlock in the stream function prediction network.

A.2 LOSS FUNCTION WEIGHTS

The weights for all loss functions are listed in Table 5. Except for Lvort and Ldiv , all losses are
weighted differently on known and empty regions. We choose higher weight on empty regions
because they are more important for final results.

Loss Name Loss Weight
Lvelvalid

1
Lvelempty 6
Ljacobianvalid

1
Ljacobianempty

6
Lvort 6
Ldiv 1

Table 5: Loss functions weights. The losses Lvel and Ljacobian are weighted differently on empty
regions (emtpy) and known regions (valid).
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