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ABSTRACT

Deep neural networks (DNNs) have attained surprising achievement during the
last decade due to the advantages of automatic feature learning and freedom of
expressiveness. However, their interpretability remains mysterious because DNNs
are complex combinations of linear and nonlinear transformations. Even though
many models have been proposed to explore the interpretability of DNNs, several
challenges remain unsolved: 1) The lack of interpretability quantity measures for
DNNs, 2) the lack of theory for stability of DNNs, and 3) the difficulty to solve
nonconvex DNN problems with interpretability constraints. To address these chal-
lenges simultaneously, this paper presents a novel intrinsic interpretability evalu-
ation framework for DNNs. Specifically, Four independent properties of inter-
pretability are defined based on existing works. Moreover, we investigate the the-
ory for the stability of DNNs, which is an important aspect of interpretability, and
prove that DNNs are generally stable given different activation functions. Finally,
an extended version of deep learning Alternating Direction Method of Multipliers
(dlADMM) are proposed to solve DNN problems with interpretability constraints
efficiently and accurately. Extensive experiments on several benchmark datasets
validate several DNNs by our proposed interpretability framework.

1 INTRODUCTION

The last decade has witnessed the tremendous success of deep neural networks (DNNs) in a variety
of domains since Alexnet ranked first in the ImageNet Large Scale Visual Recognition Challenge
in 2012 (Krizhevsky et al., 2012). The main advantages of DNNs over traditional machine learning
models are two folds: firstly, DNNs can learn features automatically through linear and nonlinear
transformations, while traditional machine learning models require prior knowledge and feature en-
gineering; secondly, DNNs usually outperform traditional machine learning models tremendously.
This is because DNNs have more flexibility and freedom of expressiveness than traditional machine
learning models.
Even though DNNs have achieved outstanding performance in many applications, interpreting
DNNs is very challenging because DNNs are a combination of linear and nonlinear transforma-
tion and hence lack transparency, whose decision making process is still not well understood by
human beings. Without sufficient interpretability, their applications in specialized domains such as
finance are largely limited. For example, it is useful for applicants to know the reason why their
mortgage applications are denied, to get the loan when applied again in the future.
A surge of works have been proposed to explore the interpretability of DNNs recently, they are
mainly classified as two categories: the post-hoc approach and the intrinsic approach. The post-hoc
approach proposes an interpretable model to interpret a pre-trained DNN. This approach is indepen-
dent of structures of DNNs. Different from the post-hoc approach, the intrinsic approach explains
DNNs directly by imposing regularization and constraints. Please refer to (Du et al., 2018) for more
information.
Although many approaches have been proposed to interpret DNNs intrinsically, several challenges
remain unsolved including 1. The lack of interpretability quantity measures for DNNs. Ex-
isting literature focuses mainly on the qualitative investigation: For example, Melis and Jaakkola
proposed three desiderata for self-explaining models: explicitness, faithfulness, and stability (Melis
& Jaakkola, 2018); Vaughan et al. and Yang et al. presented an additive index model with architec-
ture constraints including sparsity, orthogonality and smoothness (Vaughan et al., 2018; Yang et al.,
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2019). However, there still lacks an investigation of the quantitative measures of interpretability.
2. The lack of theory for the stability of DNNs. Even though previous literature has proposed
practical measures for the stability of DNNs (Alvarez-Melis & Jaakkola, 2018), which is considered
as an important issue of interpretability, the theoretical analysis of stability for DNNs has not yet
been established. This is because stability analysis requires the smoothness of DNNs while DNNs
can be nonsmooth, which makes theoretical analysis rather difficult. 3. The difficulty to solve
nonconvex DNN problems with interpretability constraints. Many recent works have imposed
interpretability constraints on DNNs like an orthogonality constraint (Yang et al., 2019), but such
hard constraints are nonlinear and nonconvex such that common state-of-the-art optimizers such as
Stochastic Gradient Descent (SGD) are not suitable for such problems (Márquez-Neila et al., 2017).
As a result, an optimization framework to solve these problems is demanding.
To address these challenges simultaneously, we propose a novel intrinsic interpretability evaluation
framework for DNNs. Our interpretability evaluation framework is established on the formulation
of fully-connected neural networks. Specifically, we define four interpretability properties based on
existing literature and give quantitative measures for interpretability evaluation. These properties
are shown to be conceptually independent. We show that many previous works are special cases
of our interpretability evaluation framework. Moreover, we prove that the fully-connected neural
network is theoretically globally stable given smooth activation functions, and locally stable given
nonsmooth activation functions. Finally, the deep learning Alternating Direction Method of Mul-
tipliers (dlADMM) (Wang et al., 2019) is extended to solve DNN problems with interpretability
constraints, and global convergence to a critical point is maintained. Our contributions in this paper
include:

• We present a novel framework to evaluate the interpretability of a fully-connected neural
network, which can be extended to other network structures. Four interpretability properties
are introduced, and quantitative measures are given.

• The stability aspect of the interpretability for DNNs is analyzed theoretically. Two types of
stabilities are discussed, and we prove that DNNs are globally stable for smooth activation
functions, and locally stable for nonsmooth activation functions.

• An extended version of deep learning Alternating Direction Method of Multipliers
(dlADMM) is proposed to handle interpretability constraints. This optimization framework
is efficient, and convergence to a critical point can be guaranteed.

• We conduct experiments on several benchmark datasets to evaluate the interpretability of
different layers of fully-connected neural networks by our proposed evaluation framework.

The rest of this paper is organized as follows. In Section 2, we summarize recent research related
to this topic. In Section 3, we present our interpretability framework to evaluate a fully-connected
neural network. In Section 4, an extended version of dlADMM algorithm is proposed to handle
interpretability constraints. The experimental results are reported in Section 5, and Section 6 con-
cludes this paper by summarizing the research.

2 RELATED WORK

The previous works on intrinsically interpretable models are related to this paper, which can be sum-
marized as follows:
Sparsity-based Interpretable Models. Sparsity is considered as an important factor of inter-
pretability in many machine learning models. Sparse models indicate small subsets of useful features
and reflect good interpretability. Many models impose `1 penalty on the objective function in order
to restrict the number of useful features: Bouchard et al. proposed a Union of Intersection (UoI)
model for model selection and compression (Bouchard et al., 2017); Yang et al. added `1 penalties
in their interpretable neural network model to ensure sparsity in both the scales of ridge functions
and the projection weights (Yang et al., 2019); Wang et al. proposed an interpretable model to detect
vaccine adverse events (Wang et al., 2018). Some works utilized a `2 regularized term to ensure
feature sparsity, because `2 is differentiable and models can be solved by gradient-based optimiza-
tion methods (Ross et al., 2017; Wu et al., 2018; Tong et al., 2018; Bansal et al., 2018). Other
papers aimed to impose sparsity on group structures: for instance, Scardapane et al. proposed a `2,1
regularization to ensure the sparsity on the input groups, hidden groups, and bias groups of neural
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networks (Scardapane et al., 2017); Tsang et al. proposed a disentangled group regularizer to disen-
tangle feature interactions (Tsang et al., 2018).
Stability-based Interpretable Models. Aside from sparsity, stability is also one of the considera-
tions of interpretability: stability refers to the idea that similar inputs generate similar interpretations,
in other words, the interpretation should not change much when the input changes little. Previous
literature mentioned stability explicitly in their models: for example, Zhang et al. presented an al-
gorithm to generate stable corrections, which are a useful way to provide feedback to users (Zhang
et al., 2018); Melis and Jaakkola required basic interpretable concepts to be stable (i.e. difference-
bounded in their definition) in their self-explaining models (Melis & Jaakkola, 2018); Melis and
Jaakkola also proposed a quantity to gauge stability (Alvarez-Melis & Jaakkola, 2018). For other
papers, stability was a byproduct of their interpretable models. For more information, Please see
(Chen et al., 2016; Yeh et al., 2017).
Other Regularized Interpretable Models. Apart from sparsity and stability, many models consid-
ered other aspects of interpretability: as an example, Melis and Jaakkola proposed faithfulness and
explicitness as two additional properties of interpretability (Melis & Jaakkola, 2018); In the algo-
rithm presented by Zhang et al, they guaranteed that the correction is minimal and symbolic (Zhang
et al., 2018); Yang et al. imposed tow additional orthogonality and smoothness constraints on the
interpretable additive index model (Yang et al., 2019); Hsu et al. presented a factorized hierarchi-
cal variational autoencoder to learn disentangled and interpretable representations from sequential
data (Hsu et al., 2017). However, to the best of our knowledge, there still lacks an quantitative
investigation of interpretability for DNNs.

3 INTERPRETABILITY OF A FULLY-CONNECTED NEURAL NETWORK

In this section, the interpretability of a fully-connected neural network is discussed in detail.
Table 1 introduces necessary mathematical notations. We consider a typical fully-connected
neural network of L layers, which generally is composed of by multiple linear mappings and
nonlinear activation functions. A linear mapping for the l-th layer is defined by a weight matrix
Wl ∈ Rnl×nl−1 and an intercept bl ∈ Rnl , where nl is the number of neurons for the l-th layer;
a nonlinear mapping for the l-th layer is defined by a continuous nonlinear activation function
fl(•). al is denoted as the output of the l-th layer, or equivalently the input of the (l + 1)-th layer,
then the relation between the al and al−1 is shown as al = fl(zl) = fl(Wlal−1 + bl), where
zl = Wlal−1 + bl is an auxiliary variable. Using this fact, the relation between the output aL−1 and
the input a0 is shown as aL−1 = fL−1(WL−1fL−2(WL−2 · · · f1(W1a0+b1)+· · ·+bL−2)+bL−1).

Table 1: Important Notations and Descriptions
Notations Descriptions
L Number of layers.
Wl The weight matrix for the l-th layer.
Wl,i The i-th row ofWl .
Wl,i,j The i-th row, j-th column ofWl .
bl The intercept for the l-th layer.

fl(•) The nonlinear activation function for the l-th layer.
al The output of the l-th layer.
a0 The input of a fully-connected neural network.
y The predefined label vector.

Ωl(Wl) The regularization term for the l-th layer.
nl The number of neurons for the l-th layer.

Now we introduce four interpretability proper-
ties for a fully-connected neural network in this
section, all of them have appeared in the previ-
ous literature, but are not defined formally. First
of all, the sparsity is defined as follows:
Definition 1 (Sparsity). The l-th layer is ε-
sparse in `p,q-norm if ‖Wl‖p,q ≤ ε.

Sparsity controls the number of nonzero
weights. Intuitively, sparse models mean that
predictions of models are closely related to a
small subset of features. Such models usually
provide users with good interpretations, which
can be expressed by several concise sentences for people to easily understand. For example, a grade
prediction model shows that grades of a course are only positively correlated to the time spent on
homework, which provides good feedback for the instructor, who may assign more homework to
students to improve course grades.
The definition of sparsity is well-generalized: it includes common regularization terms like `1 or `2
penalties, and group sparsity penalties like `2,1. ε quantifies the degree of sparsity: the less ε is, the
more sparse the l-th layer is.
The second property, stability, is another important property of interpretability, which is defined as
follows:
Definition 2 (Stability).
(a). The fully-connected neural network is globally zeroth-order stable if there exists a constant
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0‖.
(b). Assume fl(•) is subdifferentiable such that ∂aL−1/∂a0 exists, then the fully-connected neural
network is globally first-order stable if there exists a constant M1 > 0, for any two inputs a

′
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′′
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′
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′′

0 − ∂a
′

L−1/∂a
′

0‖ ≤M2‖a
′′

0 − a
′

0‖.

Stability measures the consistency of the interpretability, which implies that two similar inputs
should lead to similar outputs and interpretations. For example, two applicants who both have
excellent credit records and high salaries should both approved by the banking decision support sys-
tem to get the loan.
In the above definition, we consider two types of stability: zeroth-order stability and first-order sta-
bility. Zeroth-order stability means that the change of aL−1 (i.e. output) is bounded by the change
of a0 (i.e. input); while first-order stability means that the change of ∂aL−1/∂a0 (i.e. interpre-
tation) is bounded by the change of a0 (i.e. input). The zeroth-order stability is weaker than the
first-order one: if a fully-connected neural network is locally/globally first-order stable, then it is
also locally/globally zeroth-order stable. Similarly, local stability is also weaker than the global
one. This means that if a fully-connected neural network is globally zeroth-order/first-order stable,
then it is also locally zeroth-order/first-order stable. The following theorem guarantees that a fully-
connected neural network is guaranteed to be zeroth-order stable for common activation functions
fl(•):
Theorem 1 ( Zeroth-order Stability). If the activation function fl is either sigmoid, tanh, ReLU or
leaky ReLU, then the fully-connected neural network is globally zeroth-order stable, and hence is
also locally zeroth-order stable.

The proof of Theorem 1 is in the Appendix. Theorem 1 provides a upper bound of C. The case is
more complex for first-order stability, which is summarized in the following theorem:
Theorem 2. (First-order Stability) If the activation function fl is either sigmoid or tanh, then the
fully-connected neural network is globally first-order stable. Moreover, if the activation function
fl is either ReLU or leaky ReLU and bl 6= 0, then the fully-connected neural network is locally
first-order stable almost surely (i.e. with probability 1).

The fully-connected neural network is guaranteed to be zeroth-order/first-order locally stable from
Theorems 1 and 2, this shows that individual interpretation of a0, which can be defined by
∂aL−1/∂a0, remains consistent when a0 is in a small neighbourhood N(a0). However, for non-
smooth activation functions, the global first-order stability is not necessarily achieved, due to the
abrupt change of derivative directions at nonsmooth points, while it can be achieved for smooth
activation functions, as mentioned in Theorem 2. In this sense, smooth activation functions are in-
terpretable than nonsmooth ones.
Previous papers have proposed quantitative measures to evaluate the zeroth-order and first-order
stability, which are shown as follows (Alvarez-Melis & Jaakkola, 2018; Melis & Jaakkola, 2018):

C1 = arg max∀a′0,a
′′
0
‖a
′′

L−1 − a
′

L−1‖/‖a
′′

0 − a
′

0‖ (1)

C2 = arg max∀a′0,a
′′
0
‖∂a

′′

L−1/∂a
′′

0 − ∂a
′

L−1/∂a
′

0‖/‖a
′′

0 − a
′

0‖ (2)

where C1, C2 > 0 are stability quantities.

The third property of interpretability is faithfulness, which is defined as follows:
Definition 3 (Faithfulness). Assume ul is a vector of performance gain whose i-th element is ul,i =
R|Wl,i=0 − R, where R is a risk function of fully-connected neural network, and R(zl)|Wl,i=0 is
the risk function such that Wl,i = 0 while fixing other weights. The l-th layer is β-faithful if the
correlation between the performance gain ul and feature importance ‖Wl,i‖ is no less than β, i.e
corr(u, ‖Wl,i‖)) ≥ β, where corr(•, •) is a correlation function, and β > 0 is a threshold.

Faithfulness is a quantitative measure to assess the reliability of fully-connected neural networks.
DNNs should be faithful if weights truly reflect the importance of features. That is, if important
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features are removed from DNNs in ablation study, performance should decrease in proportion to the
importance of such features. Interpretations which faithful models provide reflect true importance
of features and thus are reliable.
Finally, the definition of disentanglement is given below:
Definition 4 (Disentanglement). AssumeWl,i is the i-th row of theWl, i.e. the vector representation
of the i-th neuron for the l-th layer, then the i-th neuron and the j-th neuron are α-disentangled if
cos(Wl,i,Wl,j) = Wl,iW

T
l,j/‖Wl,i‖2‖Wl,j‖2 ≤ α, where cos(•, •) is a cosine similarity function,

and α > 0 is a threshold.

The disentanglement is defined to measure the independence of neurons in the same layer. If the
i-th neuron and j-th neuron are different (i.e. cos(Wl,i,Wl,j) is small) , then they are more likely to
represent independent concepts. For example, assume the i-th neuron, the j-th neuron, and the k-th
neuron for the l-th layer represent a human face, eye, and nose, respectively. Then cos(Wl,i,Wl,j)
should be large because face representation includes eye while cos(Wl,j ,Wl,k) should be small
because eye and nose are independent of each other. Disentangled models learn independent
features which represent atomic components of data. As an example, a disentangled model to learn
a human face should return atomic features such as eye, nose, and ear, and therefore increases the
interpretability of a model.
However, disentanglement is not a necessary condition of interpretability. In other words, even
though a model is not disentangled, it may be still an interpretable model. For example, a neural
network all whose neurons behave the same is easy to interpret, but it does not satisfy disentangle-
ment.

Figure 1: The relation between interpretability
and interpretability properties.

Now the relationship between interpretability
and interpretability properties are summarized
in Figure 1: an interpretable model implies
sparsity, stability and faithfulness, but not dis-
entanglement, and every interpretability prop-
erty is independent of others. Due to space
limit, the concept independence among inter-
pretability properties and the relation between
our proposed interpretability framework and
previous works are detailed in the supplemen-

tary materials.

4 AN OPTIMIZATION FRAMEWORK TO SOLVE
INTERPRETABILITY-CONSTRAINED PROBLEMS

We adapt a novel optimization framework in this section to DNN problems with interpretability
constraints, which can be formulated as follows (Wang et al., 2019):

minWl,bl,zl,al F (W,b, z, a)=R(zL; y)+
∑L

l=1
Ωl(Wl)+(ν/2)

∑L−1

l=1
(‖zl−Wlal−1−bl‖22+‖al−fl(zl)‖22)

s.t. zL = WLaL−1 + bL, Gl(Wl) = 0 (l = 1, · · · , L)

where W = {Wl}Ll=1, b = {bl}Ll=1, z = {zl}Ll=1, a = {al}L−1l=1 , R(zL; y) is a risk function, y is
a predefined label vector, ν > 0 is a tuning parameter, and Gl(Wl) = 0(l = 1, · · · , L) are any
interpretability constraints for the l-th layer.
General DNN problems are conventionally solved by state-of-the-art Stochastic Gradient Descent
(SGD) and its variant. However, they are not applicable for the case where the hard nonconvex
constraint Gl(Wl) = 0 is imposed on the DNN problems. This is because SGD and its variants can
not guarantee the feasibility of Gl(Wl) = 0. On the other hand, the recently proposed deep learning
Alternating Direction Method of Multipliers (dlADMM) by Wang et al. can be adapted to solve
the above interpretability-constrained DNN problem. To achieve this, the augmented Lagrangian
function Lρ is formulated mathematically as follows:

Lρ(W,b, z, a, u) = F (W,b, z, a) + I(Gl(Wl) = 0)

+ uT (zL −WLaL−1 − bL) + (ρ/2)‖zL −WLaL−1 − bL‖22
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where u is a dual variable and ρ > 0 is a parameter. I(Gl(Wl) = 0) is an indicator function such
that its value is 0 if Gl(Wl) = 0 and +∞ for otherwise. The strategy of the dlADMM framework
is to update Wl,bl, zl and al backward and then forward. The above problem is solved by the
same routine of Algorithm 1 in (Wang et al., 2019). The only modification is to solve Wl: the
interpretability constraints Gl(Wl) = 0 must be satisfied before jumping out of loops in Line 2 of
Algorithm 3 and Algorithm 4. The Algorithms 1 and 2 of the extended dlADMM are shown in
the Appendix, which correspond to Algorithm 3 and 4 in (Wang et al., 2019), respectively. The
theoretical guarantee of the dlADMM algorithm still holds: the extended dlADMM algorithm is
guaranteed to converge globally to a critical point of the above problem when ρ is sufficiently large.

5 EXPERIMENTS

In this section, we evaluate our proposed interpretability evaluation framework using benchmark
datasets. The effectiveness and scalability of the extended dlADMM algorithm are also exam-
ined. All experiments were conducted on 64-bit Ubuntu16.04 LTS with Intel(R) Xeon processor
and GTX1080Ti GPU.

5.1 EXPERIMENT SETUP

5.1.1 DATASET

In this experiment, two benchmark datasets were used for performance evaluation: MNIST (Le-
Cun et al., 1998) and Fashion MNIST (Xiao et al., 2017). The MNIST dataset has ten classes
of handwritten-digit images, which was firstly introduced by Lecun et al. in 1998 (LeCun et al.,
1998). It contains 55,000 training samples and 10,000 test samples with 784 features each, which
is provided by the Keras library (Chollet, 2017). Unlike the MNIST dataset, the Fashion MNIST
dataset has ten classes of assortment images on the website of Zalando, which is Europes largest
online fashion platform (Xiao et al., 2017). The Fashion-MNIST dataset consists of 60,000 training
samples and 10,000 test samples with 784 features each.

5.1.2 EXPERIMENT SETTINGS

We set up three DNN architectures: (1). The DNN contained four hidden layers with 300 neurons
each. (2). The DNN contained three hidden layers with 500 hidden units each. (3). The DNN
contained two hidden layers with 1, 000 hidden units each For each DNN architecture, we consider
two different problem constraints: (a). no regularization term, and (b). The regularization term is
set as Ωl(Wl) = λ‖Wl‖1 where λ > 0 is a tuning parameter and was set to 10−5. Therefore, Four
problem formulations are used for interpretability evaluation altogether. DNN (1)+(a) denotes that
the DNN architecture (1) with problem constraint (a) and so on.
For other common settings, the Rectified Linear Unit (ReLU) was used for the activation function
for all network structures. The loss function was set as the cross-entropy loss. ν was set to 10−6. ρ
was initialized to be 10−6. The number of iteration was set to 100.
In the experiments, several metrics were utilized to evaluate model interpretability including sparsity,
zeroth-order stability, disentanglement, and faithfulness. Besides, the accuracy is used to evaluate
model performance, which is the ratio of accurately labeled samples to all samples.

5.2 EXPERIMENTAL RESULTS

The results of experiments are detailed in this section.

5.2.1 SPARSITY

Table 2 shows the average `1 norm of weight matrices Wl on the MNIST and Fashion MNIST
datasets from DNN architectures (1), (2) and (3), respectively. Overall, constraint (b) re-
duces the sparsity of all DNN architectures because the `1 regularization is imposed in the
constraint (b). However, the degree of reduced sparsity is different: the reduced sparsity
from architectures (1) and (2) is much more significant than architecture (3). For example,
while the average `1 norm of layer 1 from architecture (1) on the Fashion MNIST dataset is
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Dataset Constraint DNN architecture (1) DNN architecture (2) DNN architecture (3)
Layer 1 Layer 2 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 4

MNIST (a) 0.0798 0.0798 0.0798 0.0798 0.0799 0.0798 0.0796 0.0796 0.0796
MNIST (b) 0.0602 0.0344 0.0609 0.0263 0.0385 0.0770 0.0754 0.0758 0.0764

Fashion MNIST (a) 0.0798 0.0798 0.0797 0.0798 0.0798 0.0798 0.0796 0.0796 0.0796
Fashion MNIST (b) 0.0240 0.0384 0.0242 0.0362 0.0402 0.0739 0.0764 0.0768 0.0770

Table 2: The average `1 norm of weight matrices from three DNN architectures: Constraint (b)
reduces the average `1 norm on two datasets significantly.

Dataset Constraint DNN architecture (1) DNN architecture (2) DNN architecture (3)
Layer 1 Layer 2 Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3 Layer 4

MNIST (a) 0.0707 0.0026 0.0383 0.0165 0.0119 0.0274 -0.0246 -0.0322 0.0486
MNIST (b) 0.0951 0.3808 0.0108 0.3976 0.2033 0.0380 0.0074 -0.0032 0.0743

Fashion MNIST (a) 0.0011 0.0092 0.0526 0.0190 0.0090 0.0284 -0.0016 -0.0372 0.0175
Fashion MNIST (b) 0.01 0.1383 0.3148 0.1743 0.2355 0.0579 0.0100 -0.0300 0.0256

Table 3: The faithfulness of DNN architectures (1) (2) and (3).

around 0.08 when no constraint is imposed (i.e. constraint (a)), and this value drops drasti-
cally to 0.0240 when constraint (b) takes effect, this value changes little for architecture (3).

Figure 2: The estimation of the zeroth-order sta-
bility for different DDN formulations: constraint
(b) enhances zeroth-order stability.

5.2.2 ZEROTH-ORDER STABILITY

The zeroth-order stability is estimated from
Equation equation 1. The smaller a C is, the
more stable a DNN is. Figure 2(a) and (b)
show the estimation of the zeroth-order sta-
bility on the MNIST and the Fashion MNIST
datasets, respectively. X-axis and Y-axis re-
flect different DNN formulations and the esti-
mated zeroth-order stability, respectively. The
estimated zeroth-order stability is larger from
architectures (1) and (2) than that from archi-
tecture (3). For example, the estimated value is around 4 or more from architecture (1) on two
datasets, while it is only 1.5 from architecture (3). Moreover, constraint (b) again has a more signifi-
cant effect on the stability from architectures (1) and (2) than from architecture (3). But the variance
of the estimation is also enlarged: for instance, the rectangles in Figure 2(b) when constraint (b) is
imposed on DNN architectures are wider than those when constraint (a) is imposed.

5.2.3 FAITHFULNESS

Table 3 shows the value of faithfulness of architectures (1), (2) and (3). Generally, the interpretability
constraint (b) does improve the faithfulness for all architectures, but the degrees are more obvious
for architectures (1) and (2) than (3). For example, the faithfulness of layer 2 from architecture 1
on the MNIST dataset increases by 0.38 when constraint (b) is imposed on the problem. As another
example, the value of layer 3 from architecture 1 on the MNIST dataset improves by 0.21 as well,
and little improvement can be seen from architecture 3: all values are below 0.1 on two datasets
either constraint (a) or (b) is imposed on the problem.

5.2.4 DISENTANGLEMENT

Figure 3 illustrates the disentangled degree of every pair of neurons from DNN architecture (1). X-
axis and Y-axis reflect the cosine similarity measure and frequency, respectively. It can be concluded
that every pair of neurons is disentangled because the maximum cosine similarity is around 0.15.
The cosine similarity measure generally follows the Gaussian distribution. Most pairs of cosine
similarity measures are around 0. This indicates that they are orthogonal to each other. We also
find that a fully-connected neural network seems to be naturally disentangled. This is because this
disentanglement can be formed without any imposed constraints (i.e. constraint (a)), as shown in
Figure 3.
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Figure 3: The histogram of cosine similarity between every pair of neurons on the MNIST dataset:
every pair of neurons is disentangled.

5.2.5 ACCURACY

Previous interpretability evaluation has shown that the fully connected DNN is interpretable in terms
of sparsity, zeroth-order stability, and disentanglement. Specifically, constraint (b) improves sparsity
and zeroth-order stability to a great extent. However, the accuracy of a DNN model may decrease
according to the no free lunch theorem (Xu et al., 2011). To evaluate the accuracy loss, we test
the performance of DNN architectures (1), (2) and (3) with constraints (a) or (b). The performance
curves are shown in Figure 4. X-axis and Y-axis reflect the number of iterations and accuracy,
respectively. We find that the regularization (i.e. constraint (b)) generally has a tiny impact on
accuracy loss. Most of the curves overlap from the same DNN architecture. DNN architecture (1)
performs the best while DNN architecture (2) is the secondary. The performance on the MNIST
dataset is better than that on the Fashion dataset from the same DNN architecture.
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Figure 4: Performance of all DNN formulations on the MNIST and Fashion MNIST datasets: the
regularization has a tiny effect on accuracy.

6 CONCLUSION

With the popularity of deep neural networks (DNNs), their interpretability has attracted the atten-
tion of the machine learning community. In this paper, we propose a novel interpretability evalua-
tion framework. Specifically, we propose Four interpretability properties and quantitative measures.
Moreover, we theoretically prove that DNNs are zeroth-order stable and first-order stable. Last but
not least, We adapt an extended version of deep learning Alternating Direction Method of Mul-
tipliers (dlADMM) to solve DNN problems with interpretability constraints, which is guaranteed
convergence to a critical point. Experiments on two benchmark datasets validate our proposed in-
terpretability evaluation framework.
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Appendix

A PROOF OF THEOREM 1

Proof. Four activation functions, which are sigmoid, tanh, ReLU and leaky ReLU, are Lipschitz
continuous (Virmaux & Scaman, 2018). Then there exists M > 0 such that

‖a
′′

l − a
′

l‖ ≤M‖z
′′

l − z
′

l‖ (3)

= M‖Wl‖‖a
′′

l−1 − a
′

l−1‖

where a
′

l = fl(z
′

l) and a
′′

l = fl(z
′′

l ). We continue this process recursively from L− 1 to 1 to obtain

‖a
′′

L−1 − a
′

L−1‖ ≤M l−1
∏L−1

l=1
‖Wl‖‖a

′′

0 − a
′

0‖.

We letH1 = M l−1∏L−1
l=1 ‖Wl‖, then for any a

′

0, a
′′

0 , we have ‖a′′L−1−a
′

L−1‖ ≤ H1‖a
′′

0 −a
′

0‖.

B PROOF OF THEOREM 2

Proof. Four activation functions, which are sigmoid, tanh, ReLU and leaky ReLU, are categorized
as two cases. Case (1) contains like sigmoid and tanh whose second derivatives are bounded. Case
(2) includes non-smooth functions like ReLU and leaky ReLU.
Case (1). If fl is either sigmoid or tanh, then the first derivative and the second derivative of fl
are bounded, this means that ‖∇fl‖ ≤ S and ‖∇2fl‖ ≤ T where S > 0 and T > 0 are constant.
Because al = fl(zl) = fl(Wlal−1 + bl), we have

‖∂al/∂a0‖ =
∏l

i=1
‖WT

i ∇fi(Wiai−1 + bi)‖

≤
∏l

i=1
‖Wi‖‖∇fi(Wiai−1+bi)‖(Cauthy-Schwarz inequality)

≤ Sl
∏l

i=1
‖Wi‖(∇fi is bounded) (4)

Now we need to prove that there exists Ql > 0 such that for any two inputs a
′

0, a
′′

0 ,

‖∂a
′′

l/∂a
′′

0−∂a
′

l/∂a
′

0‖≤Ql‖a
′′

0−a
′

0‖(l=1,· · · ,L− 1) (5)

Thus the fully-connected neural network is globally stable. To achieve this, we prove by induction
as follows:
(a). When l = 1, we have the following:

‖∂a
′′

1/∂a
′′

0 − ∂a
′

1/∂a
′

0‖

= ‖W1‖‖∇f1(W1a
′′

0 + b1)−∇f1(W1a
′

0 + b1)‖

= ‖W1‖‖∇2f1(γ1)W1(a
′′

0 − a
′

0)‖

(Mean value theorem, γ1 is between W1a
′

0+b1 and W1a
′′

0 +b1.)

≤ ‖W1‖2‖∇2f1(r1)‖‖a
′′

0 − a
′

0‖

≤ ‖W1‖2T‖a
′′

0 − a
′

0‖(∇2f1(•) is bounded)

Let Q1 = ‖W1‖2T , then ‖∂a′′1/∂a
′′

0 − ∂a
′

1/∂a
′

0‖ ≤ Q1‖a
′′

0 − a
′

0‖ holds for a
′

0, a
′′

0 .
(b). Assume there exists Ql such that for any two inputs a

′

0, a
′′

0 , ‖∂a′′l /∂a
′′

0 − ∂a
′

l/∂a
′

0‖ ≤
Ql‖a

′′

0 − a
′

0‖, we prove that there exists Ql+1 such that for any two inputs a
′

0, a
′′

0 , ‖∂a′′l+1/∂a
′′

0 −
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∂a
′

l+1/∂a
′

0‖ ≤ Ql+1‖a
′′

0 − a
′

0‖. To achieve this,

‖∂a
′′

l+1/∂a
′′

0 − ∂a
′

l+1/∂a
′

0‖

= ‖(∂a
′′

l+1/∂a
′′

l )(∂a
′′

l /∂a
′′

0 )− (∂a
′

l+1/∂a
′

l)(∂a
′

l/∂a
′

0)‖
(Chain rule)

= ‖(∂a
′′

l+1/∂a
′′

l )(∂a
′′

l /∂a
′′

0 )− (∂a
′′

l+1/∂a
′′

l )(∂a
′

l/∂a
′

0)

+ (∂a
′′

l+1/∂a
′′

l )(∂a
′

l/∂a
′

0)− (∂a
′

l+1/∂a
′

l)(∂a
′

l/∂a
′

0)‖

= ‖(∂a
′′

l+1/∂a
′′

l )(∂a
′′

l /∂a
′′

0 )− (∂a
′′

l+1/∂a
′′

l )(∂a
′

l/∂a
′

0)‖

+ ‖(∂a
′′

l+1/∂a
′′

l )(∂a
′

l/∂a
′

0)− (∂a
′

l+1/∂a
′

l)(∂a
′

l/∂a
′

0)‖
(Triangle inequality)

≤ ‖∂a
′′

l+1/∂a
′′

l ‖‖∂a
′′

l /∂a
′′

0 − ∂a
′

l/∂a
′

0‖

+ ‖∂a
′

l/∂a
′

0‖‖∂a
′′

l+1/∂a
′′

l − ∂a
′

l+1/∂a
′

l‖
(Cauchy-Schwarz inequality)

≤ ‖∂a
′′

l+1/∂a
′′

l ‖Ql‖a
′′

0 − a
′

0‖+ ‖∂a
′

l/∂a
′

0‖

‖WT
l+1(∇fl+1(Wl+1a

′′

l + bl+1)−∇fl+1(Wl+1a
′

l + bl+1))‖

= ‖∂a
′′

l+1/∂a
′′

l ‖Ql‖a
′′

0 − a
′

0‖+ ‖∂a
′

l/∂a
′

0‖

‖WT
l+1∇2fl+1(γl+1)(Wl+1a

′′

l −Wl+1a
′

l)‖
(Meanvaluetheorem,γl+1 isbetween

Wl+1a
′

l+bl+1andWl+1a
′′

l +bl+1)

≤ ‖∂a
′′

l+1/∂a
′′

l ‖Ql‖a
′′

0 − a
′

0‖+ ‖∂a
′

l/∂a
′

0‖

‖Wl+1‖2‖∇2fl+1(γl+1)‖‖a
′′

l − a
′

l‖
(Cauthy-Schwarz inequality)

≤ ‖∂a
′′

l+1/∂a
′′

l ‖Ql‖a
′′

0 − a
′

0‖+ ‖∂a
′

l/∂a
′

0‖

‖Wl+1‖2‖∇2fl+1(γl+1)‖M l
∏l−1

i=0
‖Wi‖‖a

′′

0 − a
′

0‖

(Inequality equation 3)

≤ ‖Wl‖SQl‖a
′′

0 − a
′

0‖+ Sl
∏l

i=1
‖Wi‖

‖Wl+1‖2TM l
∏l−1

i=0
‖Wi‖‖a

′′

0 − a
′

0‖

(Inequality equation 4 and∇2fl+1 is bounded)

Let Ql+1 = ‖Wl‖SQl + SlTM l‖Wl+1‖2
∏l
i=1 ‖Wi‖

∏l−1
i=0 ‖Wi‖, for any two inputs a

′

0, a
′′

0 ,
‖∂a′′l+1/∂a

′′

0 − ∂a
′

l+1/∂a
′

0‖ ≤ Ql+1‖a
′′

0 − a
′

0‖ holds.
Based on steps (a) and (b), we prove that Inequality equation 5 holds. Therefore, the fully-connected
neural network is globally stable.
Case (2). In this case, we consider nonsmooth activation functions like ReLU and leaky ReLU. We
show that the fully-connected neural network is locally stable almost surely when fl is ReLU, the
same routine is applied when fl is leaky ReLU.
The derivative of ReLU (except 0) is defined as follows:

∂al/∂zl =

{
0 zl < 0

1 zl > 0

Noticeably, the ReLU is non-differentiable at 0. Now we find out all inputs that make zl = 0.
To achieve this, we define Sl = {a0| zl = 0}(l = 1, · · · , L) as non-differentiable inputs for the
l-th layer. Then the non-differentiable input set is defined as C =

⋃L−1
l=1 Cl = {a0|∃1 ≤ l ≤

L − 1, s.t. zl = 0}, and C = Rn0 − C is the differentiable input set, where n0 is the number of
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input features. We firstly show that the fully-connected neural network is locally stable on C, then
we show that P (C) = 1 to prove the fully-connected neural network is locally stable almost surely.
For any a0 ∈ C, we easily find a neighborhood N(a0) such that any a

′

0, a
′′

0 ∈ N(a0), z
′

l ◦ z
′′

l >

0(l = 1, · · · , L − 1) where ◦ is the Hadamard product. This implies that ∂a
′

l/∂z
′

l = ∂a
′′

l /∂z
′′

l .
Therefore, for any M2 > 0 , ‖∂a′′l /∂z

′′

l − ∂a
′

l/∂z
′

l‖ = 0 ≤ M2‖a
′′

l − a
′

l‖. In other words, the
fully-connected neural network is locally stable on C.
Next, we show P (C) = 1 . To achieve this, we prove that P (Cl) = 0. For Wl, we discuss two
situations:
Situation a. Wl = 0. In this case, zl = bl 6= 0, so Cl = ∅. P (Cl) = 0.
Situation b. Wl 6= 0. In this case, zl ∈ Rnl , then P (Cl) = P (zl = 0) = 0 (i.e. the probability of
taking 0 in a real space is 0).
So P (C) ≤

∑L−1
l=1 P (Cl) = 0 and P (C) = 1. This means that the fully-connected neural network

is locally first-order stable almost surely.

C CONCEPT INDEPENDENCE AMONG PROPERTIES

We illustrate the concept of independence among all Four properties of interpretability in this
section: sparsity, first-order stability, disentanglement, faithfulness, and explicitness. To prove the
independence between any two properties of interpretability P1 and P2, we show that there exist
two cases for P1 does not imply P2 and P2 does not imply P1, respectively.
(1). sparsity and first-order stability.
The following example shows that sparsity does not imply first-order stability: there is a two-layer
neural network where all weights are zeros and activation functions are ReLU. Then it satisfies
sparsity, but is not first-order locally stable everywhere because of the nonsmooth ReLU.
The following example shows that first-order stability does not imply sparsity: there is a two-layer
network where all weights are 9999 and activation functions are sigmoid. Then it satisfies first-order
local stability, but is not sparse.
(2). sparsity and disentanglement.
The following example shows that sparsity does not imply disentanglement: there is a one-layer
neural network whose weights are almost zeros except W1,1,1 = 0.001 and W1,2,1 = 0.001. Then
it satisfies sparsity, but the first neuron and the second neuron are not disentangled because W1,1

and W1,2 are identical.
The following example shows that disentanglement does not imply sparsity: there is a one-layer
neural network where W1 is orthogonal so that every pair of neurons is disentangled, but all
elements of W1 are nonzero and hence it does not satisfy sparsity.
(3). sparsity and faithfulness.
The following example shows that sparsity does not imply faithfulness: there is a neural network
whose prediction accuracy is low and almost all weights are 0. However, its faithfulness is low due
to low accuracy. In other words, its weights do not truly reflect the importance of features.
The following example shows that faithfulness does not imply sparsity: there is a neural network
whose prediction accuracy is high and every weight is nonzero. Obviously, its faithfulness is high
but is not sparse.
(4). first-order stability and disentanglement.
The following example shows that first-order stability does not imply disentanglement: there is a
neural network whose activation functions are sigmoid, and every row of the weight matrices is
exactly the same. Then it is globally first-order stable, but every pair of neurons is not disentangled.
The following example shows that disentanglement does not imply stability: there is a neural
network whose activation functions are ReLU, and all weight matrices are orthogonal. Then every
pair of neurons is disentangled, but the neural network is not first-order stable everywhere because
of the nonsmooth ReLU.
(5). first-order stability and faithfulness.
The following example shows that first-order stability does not imply faithfulness: there is a neural
network whose activation functions are sigmoid, and its prediction accuracy is low. Then it is
globally first-order stable, but is not faithful.
The following example shows that faithfulness does not imply first-order stability: there is a neural
network whose activation functions are ReLU, and its prediction accuracy is high. Then it is faithful
but is not first-order stable everywhere because of the nonsmooth ReLU.
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(6). disentanglement and faithfulness.
The following example shows that disentanglement does not imply faithfulness: there is a neural
network whose weight matrices are orthogonal and thus every pair of neurons is disentangled, but
its prediction accuracy is low and hence is not faithful.
The following example shows that faithfulness does not imply disentanglement: there is a neural
network whose prediction accuracy is high and hence is faithful, but every row of weight matrices
is identical so that every pair of neurons is not disentangled.

D RELATIONS TO PREVIOUS WORK

In this part, our proposed interpretability evaluation framework is compared with several previous
state-of-the-art intrinsic methods. We show that they are special cases of our framework.
interpretation-constrained model (Ross et al., 2017). Ross et al. proposed a general model to penal-
ize the input gradient and imposed `2 regularization on weight, which equivalently requires DNN to
be sparse and zeroth-order stable.
Self-explaining Neural Network (Melis & Jaakkola, 2018). Melis and Jaakkola proposed three
desiderata in their self-explaining neural network models: explicitness, faithfulness, and stability,
two of which are shown as properties of interpretability in our framework.
Explainable neural networks with architecture constraints (Yang et al., 2019). Yang et al. imposed
three constraints on the explainable neural network: `1 penalty, orthogonality constraint, and smooth
constraint. These are equivalently required neural network to be sparse, disentangled and stable.

E ALGORITHMS 1 AND 2 OF THE EXTENDED DLADMM ALGORITHM

All notations in Algorithms 1 and 2 follow the same dlADMM algorithm proposed by Wang et al.
(Wang et al., 2019).

Algorithm 1 The Backtracking Algorithm to update W
k+1

l

Require: Wk+1
l+1 ,bk+1

l , zk+1
l

,ak+1
l

,uk , ρ, some constant γ > 1.

Ensure: θk+1
l ,Wk+1

l .

1: Pick up α and ζ = Wk
l −∇Wk

l
φ/α.

2: while φ({Wk
i }

l−1
i=1, ζ, {W

k+1
i }Li=l+1, bk+1

l , zk+1
l

, ak+1
l

, uk) > P l(ζ;α) orGl(ζ) 6= 0 do

3: α← α γ.
4: Solve ζ by Equation (9) in (Wang et al., 2019).
5: end while
6: Output θk+1

l ← α.

7: OutputWk+1
l ← ζ.

Algorithm 2 The Backtracking Algorithm to update W k+1
l

Require: Wk+1
l−1

,bk+1
l−1

, zk+1
l−1

,ak+1
l−1

,uk , ρ, some constant γ > 1.

Ensure: θk+1
l

,Wk+1
l

.

1: Pick up α and ζ = Wk
l −∇W

k+1
l

φ/α.

2: while φ({Wk+1
i }l−1

i=1, ζ, {W
k+1
i }Li=l+1, bk+1

l
, zk+1

l
, ak+1

l
, uk) > Pl(ζ;α) orGl(ζ) 6= 0 do

3: α← α γ.
4: Solve ζ by Equation (11) in (Wang et al., 2019).
5: end while
6: Output θk+1

l
← α.

7: OutputWk+1
l

← ζ.
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